Polytech/ Institut Agro Dijon Premiére année Durée: 90 minutes

7 novembre 2024 Documents interdits sauf une feuille A4 manuscrite Calculatrices interdites

ANALYSE 1

L'épreuve est notée sur 20, le sujet comporte 22 exercices. Le candidat choisira un ou plusieurs exercices pour un total inférieur ou égal à 20 points. Toutes les réponses doivent être justifiées. On note R le corps des nombres réels; dans les exercices 21 et 22, on pourra utiliser sans justification $\frac{157}{50} < \pi < \frac{63}{20}$ et $\frac{271}{100} < e < \frac{68}{25}$.

Rappel: pour *n* entier et x > 0, la racine n^{ime} de x est $\sqrt[n]{x} = x^{\frac{1}{n}}$.

Exercice 1 (2 points)

Est-ce que $\sqrt{6+2\sqrt{5}}$ – $\sqrt{5}$ est irrationnel? (On pourra calculer $(a+\sqrt{5})^2$ pour a bien choisi.)

Exercice 2 (2 points)

Quels sont les x réels qui vérifient $\frac{|x-2|}{x-4} = \frac{|x+2|}{x+4}$?

Exercice 3 (2 points)

Quels sont les x réels qui vérifient $x^2 + 3 < 5x - 1$?

Exercice 4 (2 points)
Simplifier $\arcsin\left(\cos\left(\frac{17\pi}{8}\right)\right)$.

Exercice 5 (2 points)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $u_0=1$ et, pour tout n entier, $u_{n+1}=\frac{1}{2}u_n$. Que vaut $S = \sum_{n=0}^{\infty} u_n$? Donner une valeur exacte et une valeur approchée de S à 10^{-5} près.

Exercice 6 (2 points)

Qui est le plus grand : 3^{77} ou 2^{121} ?

Exercice 7 (2 points)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par récurrence par $u_0=2, u_1=1$ et, pour tout entier n, $u_{n+2} = 6u_{n+1} + 7u_n$. Est-ce que le quotient $\frac{u_{n+1}}{u_n}$ est bien défini pour tout n entier positif? Le quotient $\frac{u_{n+1}}{u_n}$ admet-il une limite quand n tend vers $+\infty$?

Exercice 8 (2 points)

L'équation $\frac{1}{1+x^4} = \ln(x)$ admet-elle des solutions réelles?

Exercice 9 (2 points)

Simplifier, si c'est possible, sin(Arctan(3)).

Exercice 10 (2 points)

Quels sont les x réels qui vérifient $\sin(x) - \cos(x) = 1$?

Exercice 11 (4 points) Existe-t-il des fonctions $f : \mathbf{R} \to \mathbf{R}$ croissantes qui ne seraient pas continues en 0?

Exercice 12 (4 points)

On définit la fonction

$$f: \mathbf{R} \to \mathbf{R}$$
$$x \mapsto x^2 - x + 3$$

Que vaut $f(f^{-1}([0,5]))$? Que vaut $f^{-1}(f([0,5]))$?

Exercice 13 (4 points) On définit la fonction

$$f: \mathbf{R} \to \mathbf{R}$$

 $x \mapsto x^3 \sin\left(\frac{1}{x^2}\right) \quad \text{si } x \neq 0$
 $x \mapsto 0 \quad \text{si } x = 0$

Où la fonction f est-elle dérivable? La fonction f' est-elle continue en 0?

Exercice 14 (6 points)

Montrer que pour tous a et b réels positifs, $\operatorname{Arctan}(b) - \operatorname{Arctan}(a) = \operatorname{Arctan}\left(\frac{b-a}{1+ab}\right)$.

En déduire que la suite $\left(\sum_{k=0}^{n} \operatorname{Arctan}\left(\frac{1}{1+k(k+1)}\right)\right)_{n \in \mathbb{N}}$ converge, et préciser sa limite.

Exercice 15 (6 points)

Calculer, si elle existe, la limite suivante $\lim_{x\to 0^+} \frac{x^{\sin(x)}-1}{(\tan(x))^x-1}.$

Exercice 16 (6 points) Soient deux fonctions $f_1: \mathbf{R} \to]0, +\infty[$ et $f_2: \mathbf{R} \to]0, +\infty[$ telles que $f_1 \sim f_2$. Est-on sûr que $\ln(f_1) \sim \ln(f_2)$?

Exercice 17 (6 points) Soient trois fonctions $f_1: \mathbf{R} \to \mathbf{R}$, $f_2: \mathbf{R} \to \mathbf{R}$ et $g: \mathbf{R} \to \mathbf{R}$. On suppose que $f_1 \sim f_2$. Est-on sûr que $f_1 + g \sim f_2 + g$?

Exercice 18 (6 points) Peut-on trouver n entier et α réel tels que $\cos(x) - \exp(x^2) \sim \alpha x^n$?

Exercice 19 (6 points) On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et la relation de récurrence $u_{n+1}=3u_n-1$ pour tout n de \mathbb{N} . Donner une expression simple de u_n . (On pourra définir $v_n=u_n-\lambda$ avec λ bien choisi.)

Exercice 20 (8 points) Calculer, si elles existent, les limites

1.
$$\lim_{x \to 0^+} \frac{\sin(\pi + x)}{\arctan(1 + x)}$$

2.
$$\lim_{x\to 0^+} \frac{e^x - \cos(2x)}{\sin(x) - x^2}$$

3.
$$\lim_{x \to 0^+} \frac{\tan(x^3) - \sin(x^5)}{\sin(x^3)}$$

4.
$$\lim_{x \to +\infty} \sqrt{x^2 + 1} - \sqrt{x^2 - 1}$$

$$5. \lim_{x \to +\infty} \sqrt{x^2 + x} - \sqrt{x^2 - x}$$

6.
$$\lim_{x \to 0^+} (1 + \sin(x))^{\frac{1}{x}}$$

7.
$$\lim_{x \to 0^+} \frac{1}{\sin^2(x)} - \frac{1}{\tan^2(x)}$$

8.
$$\lim_{x \to 0^+} \frac{1}{\sin(x)} - \frac{1}{\tan(x)}$$

Exercice 21 (10 points) Qui est le plus grand, $\sqrt[2024]{2024}$ ou $\frac{101}{100}$?

Exercice 22 (10 points) Qui est le plus grand, π^{2024} ou 3^{2025} ?