Complément au cours du 22 septembre

1. Preuve du fait que la suite $(\frac{1}{n+1})_{n\in\mathbb{N}}$ converge vers 0

Théorème. On $a \lim_{n \to +\infty} \frac{1}{n+1} = 0$.

Démonstration. Pour $n \in \mathbb{N}$, posons $u_n = \frac{1}{n+1}$, notre but est de démontrer que $\lim_{n \to +\infty} u_n = 0$.

Soit $\epsilon > 0$. Alors $\frac{1}{\epsilon} > 0$. D'après la propriété archimédienne des réels il existe $N \in \mathbb{N}$ tel que $\frac{1}{\epsilon} \leqslant N$. Fixons un tel entier n. Alors en particulier $0 < \frac{1}{\epsilon} \leqslant N$. On vient de trouver le rang "à partir duquel" on a que u_n est à distance $\leqslant \epsilon$ de la limite 0. Démontrons le!

Soit maintenant $n \in \mathbb{N}$ tel que $n \ge N$, alors en particulier $n+1 \ge N$ et donc $0 < \frac{1}{\epsilon} \le n+1$. Donc en passant à l'inverse, ce qui renverse les inégalités entre réels *strictement* positifs ¹, on obtient $\epsilon \ge \frac{1}{n+1} = u_n$. De plus $u_n \ge 0$, donc $|u_n - 0| = u_n$. On vient donc de montrer que pour tout $n \ge N$, on a

$$|u_n - 0| \leqslant \epsilon.$$

Faisons encore un pas en arrière : on a été capables, pour n'importe quel $\epsilon > 0$, de trouver un entier $N \in \mathbb{N}$ de sorte que pour tous $n \ge N$, on a l'inégalité

$$|u_n - 0| \leqslant \epsilon$$
.

On a donc bien montré que

$$\forall \epsilon > 0 \exists N \in \mathbb{N} \forall n \geqslant N, |u_n - 0| \leqslant \epsilon,$$

c'est-à-dire que $\lim_{n\to +\infty}u_n=0,$ ou encore que $\lim_{n\to +\infty}\frac{1}{n+1}=0.$

2. Preuve du fait que $\sqrt{2}$ existe

On verra plus tard que tout ce qui suit est une conséquence du théorème des valeurs intermédiaires (que l'on prouvera à partir de la propriété de la borne supérieure même si elle ne sera pas mentionnée directement dans sa preuve) et de la continuité de la fonction réelle $x \mapsto x^2$.

On commence par un lemme bien connu, que l'on reformulera plus tard comme le fait que la fonction $x \mapsto x^2$ est croissante sur $[0, +\infty[$.

Lemme. Soient a, b réels positifs. Alors $a \le b$ implique $a^2 \le b^2$.

Démonstration. Montrons l'implication directe On utilise deux fois le fait vu en cours que pour tout $x, y, z \in \mathbb{R}$, si $x \leq y$ et si $z \geq 0$ alors $x \times z \leq y \times z$ (autrement dit multiplier par un réel positif préserve les inégalités larges). Tout d'abord, comme $a \geq 0$, on peut multiplier l'hypothèse $a \leq b$ par a pour obtenir

$$a^2 = a \times a \le a \times b$$
.

Ensuite on a également $b \ge 0$ donc en multipliant l'inégalité $a \le b$ par b on a

$$a \times b \leq b \times b = b^2$$

D'où le résultat voulu :

$$a^2 \le a \times b \le b^2$$
.

Théorème. L'équation $x^2 = 2$, d'inconnue $x \in \mathbb{R}$, admet une solution réelle.

Démonstration. Pour plus de lisibilité, on découpe la preuve en étapes.

Étape 1 : trouver x.

Considérons l'ensemble suivant :

$$A = \{ y \in \mathbb{R} \colon y^2 \leqslant 2 \}.$$

Cet ensemble est non vide (car il contient 0). Montrons qu'il est majoré. Pour cela, il faut trouver un majorant, et on va par exemple montrer que $\frac{3}{2}$ est un majorant c'est-à-dire que pour tout $y \in A$, on a $y \leq \frac{3}{2}$, en utilisant le fait que $(\frac{3}{2})^2 = \frac{9}{4} > 2$.

^{1.} Attention, ici on utilise le fait que pour tous a, b > 0 si $a \le b$ alors $\frac{1}{b} \le \frac{1}{a}$, qui n'a pas été énoncé en cours mais est important et sera revu plus tard lorsqu'on parlera de croissance/décroissance de fonctions.

En effet, soit $y \in A$, on raisonne par l'absurde : supposons $y > \frac{3}{2}$ alors en particulier $y \geqslant 0$, et donc par le lemme précédent (appliqué à $a = \frac{3}{2}$ et b = y)

$$y^2 \geqslant \left(\frac{3}{2}\right)^2 > 2,$$

ce qui est absurde. On a donc bien $y \leq \frac{3}{2}$.

En particulier, l'ensemble A est bien majoré. Comme il est non vide, la propriété de la borne supérieure nous assure que la borne supérieure de A existe. On peut donc poser

$$x = \sup(A)$$
.

Remarquons que comme on a montré que $\frac{3}{2}$ est un majorant de A et x est le plus petit majorant de A, on a

$$x \leqslant \frac{3}{2}$$
.

De plus $1 \in A$ puisque $1^2 = 1 \le 2$, ainsi $x \ge 1$, ce qui via l'inégalité précédente nous prouve que $x \in [1, \frac{3}{2}]$.

Étape 2 : une première inégalité.

Soit $\epsilon > 0$, alors $x + \epsilon \notin A$, et on doit donc avoir $(x + \epsilon)^2 > 2$, ce qui en développant nous donne une première inégalité :

(1)
$$\forall \epsilon \in]0, +\infty[, x^2 + \epsilon(2x + \epsilon) > 2.$$

Étape 3: Une seconde inégalité.

Soit maintenant $\epsilon \in]0,1[$. Fixons $y \in A$ tel que $x-\epsilon < y$ (comme déjà vu en cours, un tel y provient du fait que $x-\epsilon < x$ et donc $x-\epsilon$ ne majore pas A). Par définition on a $y^2 \leqslant 2$.

Comme $\epsilon < 1$ on a $x - \epsilon > x - 1 \ge 0$. Par le lemme on a donc $(x - \epsilon)^2 \le y^2 \le 2$. On vient de démontrer l'énoncé suivant :

$$\forall \epsilon \in]0, 1[, (x - \epsilon)^2 \leq 2,$$

ce qui en développant dit que :

(2)
$$\forall \epsilon \in]0,1[, x^2 - \epsilon(2x - \epsilon) \leq 2,$$

C'est la seconde inégalité recherchée.

Étape 4 : conclusion par l'absurde.

On voudrait maintenant "faire tendre ϵ vers zéro" dans les deux inégalités, mais on ne sait pas encore faire! On va devoir raisonner par l'absurde : supposons que $x^2 \neq 2$, c'est-à-dire que : $x^2 < 2$ ou $x^2 > 2$. On a donc deux cas à considérer (ce que l'on appelle faire une disjonction de cas)

— Cas $x^2 < 2$. On va utiliser l'inégalité (1). Soit $\delta = 2 - x^2 > 0$. Soit $\epsilon > 0$ tel que $\epsilon(2x + \epsilon) < \delta$ (par exemple, comme $2x \le 3$ d'après l'inégalité juste avant l'étape 2, on peut prendre $\epsilon = \min(\frac{\delta}{4}, \frac{1}{2})$, la preuve qu'un tel ϵ vérifie bien $\epsilon(2x + \epsilon) < \delta$ est laissée en exercice). Alors

$$x^2 + \epsilon(2x + \epsilon) < x^2 + \delta = 2$$

ce qui contredit l'inégalité (1).

— Cas $x^2 > 2$. On utilise de manière similaire l'inégalité (2). Soit $\delta = x^2 - 2 > 0$. Soit $\epsilon \in]0,1[$ tel que $\epsilon(2x - \epsilon) < \delta$ (par exemple on peut vérifier en exercice que $\epsilon = \min(1, \frac{\delta}{3})$ convient). Alors $\epsilon(2x - \epsilon) > 0$ et donc $x^2 - \epsilon(2x - \epsilon) > x^2 - \delta = 2$, ce qui contredit l'inégalité (2).

Dans tous les cas on a aboutit à une contradiction : c'est donc qu'on a bien une contradiction globale, ce qui termine la preuve par l'absurde que $x^2 = 2$, et donc la preuve du théorème annoncé.