Travaux dirigés Analyse

Table des matières

TD 1 : relation d'ordre de la droite réelle	2
TD 2 : suites réelles	3
TD 3 : suites réelles et suites extraites	5
TD 4 : fonctions de la variable réelle (définition, limite et continuité)	6
TD 5 : fonctions de la variable réelle (dérivation)	8
TD 6 : fonctions logarithme et exponentielle	10
TD 7 : fonctions trigonométriques	11
TD 8 : révisions de limites, utilisation des fonctions équivalentes	12
TD 9 : trigonométrie hyperbolique	13
TD 10 : intégration (méthodes de base)	14
TD 11 : intégration (changement de variable)	15
TD 12 : intégration (révisions)	16
TD 13 : équations différentielles linéaires du premier ordre	17
TD 14 : équations différentielles linéaires du deuxième ordre	18

TD 1: relation d'ordre de la droite réelle

Le minimum

Exercice 1. Résoudre dans \mathbb{R} les inéquations suivantes

1.
$$3x \le x - 5$$

2.
$$(x+3)(x+4) \ge 0$$

Exercice 2. Résoudre dans \mathbb{R} les équations suivantes

1.
$$|x| - 2|x + 3| = 0$$

$$2. x^4 + 2x^2 = 3$$

Exercice 3. Les sous-ensembles suivants de \mathbb{R} sont-ils vides? majorés? minorés? Donner (si ils existent) leurs minima, maxima, bornes inférieures et bornes supérieures.

1.
$$[0,1]$$

5.
$$]0, +\infty[$$

4.
$$[0, +\infty[$$

Exercices supplémentaires

Exercice 4. Résoudre dans \mathbb{R} les inéquations suivantes

$$1. \qquad \frac{x+3}{x+4} \ge 0$$

$$3. \qquad e^{2x} + 4e^x - 1 \ge 0$$

2.
$$x^2 + 2x < 3$$

4.
$$\cos^2(x) + \frac{1}{2}\cos(x) - \frac{1}{2} \le 0$$

Exercice 5. Résoudre dans \mathbb{R} les équations suivantes

$$1. \qquad \frac{x}{\mid x-2\mid} = \frac{\mid x+1\mid}{3}$$

2.
$$|2 + 3x| - |x - 1| = 2$$

Exercice 6. Les sous-ensembles suivants de \mathbb{R} sont-ils vides? majorés? minorés? Donner (si ils existent) leurs minimums, maximums, bornes inférieures et bornes supérieures.

3.
$$[1,2[\cup [3,4]$$

5.
$$\mathbf{Q} \cap [5, 6]$$

$$2.\ [1,2] \ \cup \]3,4]$$

$$4. \ \{1\} \ \cup \]5,6]$$

Exercice 7. Résoudre dans \mathbb{R} les inéquations suivantes

1.
$$\frac{x}{x^2 - 4} \ge \frac{1}{2(x - 2)}$$

2.
$$\frac{x^2 + 10}{3x^2 + 5} + \frac{x^2 + 1}{x^2 - x + 1} \ge 0$$

Exercice 8. Résoudre dans \mathbb{R} les équations suivantes

1.
$$x^4 - 2x^2 + 1 = 0$$

2.
$$\cos^4(x) - 2\cos^2(x) + 1 = 0$$

Exercice 9. Résoudre dans \mathbb{R} les inéquations suivantes

1.
$$8x^4 + 2x^2 - 1 \le 0$$

2.
$$8\cos^4(x) + 2\cos^2(x) - 1 \le 0$$

Exercice 10. Quels sont les x réels tels que $\ln(x+3) - \ln(x-2) \ge 1$?

Exercice 11. Montrer que si un réel x > 0 est irrationnel, alors \sqrt{x} est également irrationnel.

TD 2: suites réelles

Le minimum

Exercice 12.

Les suites ci-dessous sont définies par leur premier terme et une relation de récurrence valable pour tout n de \mathbb{N} . Dans chaque cas, donner l'expression du terme général, la limite (si elle existe) et la somme des 100 premiers termes de la suite.

1.
$$\begin{cases} u_{n+1} &= 2u_n \\ u_0 &= 3 \end{cases}$$
2.
$$\begin{cases} v_{n+1} &= 2 + v_n \\ v_0 &= 3 \end{cases}$$

3.
$$\begin{cases} w_{n+1} = -2w_n \\ w_0 = 3 \end{cases}$$
4.
$$\begin{cases} x_{n+1} = x_n/2 \\ x_0 = 3 \end{cases}$$

Exercice 13.

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=0,\ u_1=1$ et la relation de récurrence, valable pour tout n de \mathbb{N} , $u_{n+2}=2u_{n+1}-2u_n$. Que vaut u_{1000} ?

Exercice 14.

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par u_0 (donné), et la relation de récurrence, valable pour tout n de \mathbb{N} , $u_{n+1} = -u_n + 2$.

1. (Exemple) Calculer u_{1000} pour les valeurs suivantes de u_0

(a)
$$u_0 = 0$$

(b)
$$u_0 = 1$$

(c)
$$u_0 = -2$$

- 2. On veut montrer que la suite (u_n) est périodique quelque soit le choix de u_0 . Trouver λ dans \mathbb{R} tel que la suite $(v_n)_{n\in\mathbb{N}}$ définie, pour tout n dans \mathbb{N} , par $v_n=u_n+\lambda$ soit géométrique.
- 3. Déduire de la question précédente que, pour tout choix de u_0 , la suite (u_n) est périodique.

Exercices supplémentaires

Exercice 15.

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=-1, u_1=1$ et la relation de récurrence, valable pour tout n de \mathbb{N} , $u_{n+2}=2u_{n+1}-u_n$. Que vaut u_{1000} ?

Exercice 16.

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1, u_1=0$ et la relation de récurrence, valable pour tout n de \mathbb{N} ,

$$u_{n+2} = u_n + u_{n+1}$$

- 1. Donner l'expression du terme général u_n .
- 2. Montrer que la suite $(v_n)_{n\in\mathbb{N}} = \left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}, n\geq 2}$ est bien définie.
- 3. Montrer que la suite $(v_n)_{n\in\mathbb{N},n\geq 2}$ converge. Quelle est sa limite?

Exercice 17.

On se donne trois nombres réels C, a et b, et on considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par récurrence

$$\begin{cases} u_{n+1} &= au_n + b \\ u_0 &= C \end{cases}$$

- 1. On suppose a = 1. Donner une expression simple du terme général u_n .
- 2. On suppose $a \neq 1$.
 - (a) Trouver m tel que la suite $(v_n)_{n\in\mathbb{N}}=(u_n+m)_{n\in\mathbb{N}}$ soit géométrique.
 - (b) En déduire, pour tout n dans \mathbb{N} , une expression de u_n .
- 3. On emprunte 100 000 euros au taux mensuel de 0.2% (ce qui signifie que si on doit une somme S le premier jour du mois, juste après avoir payé la mensualité, on devra $1.002 \times S$ le premier jour du mois suivant juste avant d'avoir payé la mensualité), et on rembourse l'emprunt par des mensualités de 1000 euros.
 - (a) Quel est le rapport avec le début de l'exercice?
 - (b) Quel est le montant d $\hat{\mathbf{u}}$ au bout de n mois?
 - (c) Au bout de combien de temps l'emprunt sera-t-il remboursé?
 - (d) Quel est le coût total pour l'emprunteur de cette opération?

TD 3: suites réelles et suites extraites

Le minimum

Exercice 18.

Pour chacune des suites réelles suivantes, dire si elle est convergente ou non en justifiant.

- 1. $u_n = (-\frac{1}{2})^n$
- $2. \ v_n = \sin\left(\frac{n\pi}{3}\right),$
- 3. $w_n = \exp((-1)^n)$.

Exercice 19.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n = \sum_{k=0}^n \frac{1}{k+1}$.

- 1. Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite croissante.
- 2. Montrer que pour tout $n \in \mathbb{N}$, on a $\sum_{k=n+1}^{2n} \frac{1}{k+1} \ge \frac{1}{2}$.
- 3. En déduire que pour tout $n \in \mathbb{N}$, on a $u_{2n} u_n \ge \frac{1}{2}$.
- 4. En raisonnant par l'absurde, conclure que la suite $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Exercices supplémentaires

Exercice 20.

Est-il vrai que de toute suite convergente, on peut extraire une sous-suite monotone convergente?

Exercice 21.

Est-il vrai que de toute suite bornée, on peut extraire une sous-suite monotone convergente?

Exercice 22.

Est-il vrai que de toute suite bornée, on peut extraire une sous-suite croissante?

Exercice 23.

Donner un exemple de suite convergente non monotone (même à partir d'un certain rang).

TD 4: fonctions de la variable réelle (définition, limite et continuité)

Le minimum

Exercice 24.

Les fonctions suivantes sont-elles injective, bijective, surjective?

1.
$$f_1: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^2$

3.
$$f_3: [0, +\infty[\rightarrow [0, +\infty[$$

$$x \mapsto x^2]$$

$$2. \quad \begin{array}{ccc} f_2: & [0,+\infty[& \to & \mathbb{R} \\ & x & \mapsto & x^2 \end{array}$$

$$4. \quad \begin{array}{ccc} f_4: & \mathbb{N} & \to & \mathbb{N} \\ & x & \mapsto & x^2 \end{array}$$

Exercice 25.

On considère la fonction

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^2$$

Est-ce que f est bijective? Peut-on définir une bijection réciproque $f^{-1}: \mathbb{R} \to \mathbb{R}$? Décrire les ensembles suivants

1.
$$f^{-1}(\mathbb{R})$$

5.
$$f^{-1}(\{-1\})$$

2.
$$f^{-1}([0,+\infty[)$$

6.
$$f^{-1}([-1,4])$$

3.
$$f^{-1}(\{0\})$$

7.
$$f^{-1}([4, 9])$$

4.
$$f^{-1}(\{1\})$$

8.
$$f^{-1}(f([2,3]))$$

Exercices supplémentaires

Exercice 26.

Pour n entier supérieur à deux, on définit

$$f_n: [0,1] \rightarrow \mathbb{R}$$

 $x \mapsto x^n - nx + 1$

- 1. Montrer que f_n s'annule en un unique point, qu'on notera a_n .
- 2. Étudier la suite $(a_n)_{n\geq 2}$. Préciser notamment son sens de variation, sa limite éventuelle et un équivalent simple.

Exercice 27.

Un randonneur effectue un chemin sans boucle, tracé d'un refuge A à un refuge B. Il part de A à 6 heures (du matin) et arrive à B à 15 heures, en s'arrétant de temps en temps pour se restaurer ou discuter avec d'autres randonneurs. Quelques jours après, il parcourt le chemin inverse, partant du refuge B à 6 heures du matin et arrivant au refuge A à 15 heures, après s'être arrêté de temps en temps pour se restaurer ou discuter avec d'autres randonneurs. Y a-t-il (au moins) un point du trajet auxquels le randonneur s'est trouvé à la même heure lors des deux parcours aller et retour?

Exercice 28.

Donner un exemple de fonction de \mathbb{R} dans \mathbb{R} qui soit à la fois continue sur $\mathbb{R} \setminus \{0\}$, pas continue en $\{0\}$ et continue à gauche en $\{0\}$.

Exercice 29.

On définit la fonction

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sin\left(\frac{1}{x}\right) \quad \text{si } x \neq 0$$

$$0 \mapsto 0$$

- 1. Montrer que f est continue sur $\mathbb{R} \setminus \{0\}$.
- 2. Montrer que f vérifie la propriété des valeurs intermédiaires (l'image de tout intervalle est un intervalle).
- 3. Est-ce que f est continue sur \mathbb{R} ?

Exercice 30.

L'équation $x = \cos(x)$ admet-elle des solutions réelles?

Exercice 31.

Montrer que, pour tout n dans \mathbb{N} , l'équation $x \sin(x) = \cos(x)$ admet au moins une solution dans l'intervalle $n\pi, n\pi + \frac{\pi}{2}$.

Exercice 32.

Soit $f: \mathbb{R} \to \mathbb{R}$ continue, telle que f admette une limite finie en $-\infty$ et une limite finie (pas forcément la même) en $+\infty$. Montrer que l'équation x = f(x) admet au moins une solution réelle.

Exercice 33.

Voici un extrait d'un livre d'exercices de première année : « Quel est le domaine de définition de la fonction $x \mapsto \sqrt{x^2 - 1}$? »

- 1. Quelle est la réponse attendue?
- 2. Au vu de l'exercice 21, expliquer la gêne du responsable de ce cours face à ce type d'énoncés.
- 3. Auriez-vous une idée de meilleure formulation de l'énoncé?

Exercice 34.

Soit $f: \mathbb{R} \to \mathbb{R}$, continue et sans point fixe $(f(x) \neq x \text{ pour tout } x \text{ réel})$ et x_0 un réel. On définit par récurrence la suite $(x_n)_{n \in \mathbb{N}}$ par $x_{n+1} = f(x_n)$ pour tout n dans \mathbb{N} . Est-ce que la suite $(x_n)_{n \in \mathbb{N}}$ peut avoir une limite finie?

TD 5: fonctions de la variable réelle (dérivation)

Le minimum

Exercice 35. En quels points les fonctions suivantes sont-elles dérivables? Donner, le cas échéant, une expression de la dérivée.

$$f_{1}: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto e^{x} \cos(x)$$

$$f_{2}: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto e^{\cos(x)}$$

$$f_{3}: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \cos(e^{x})$$

$$f_{4}: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sqrt{1 + \cos(\sin(x))}$$

$$f_{5}: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \cos(x^{2})$$

$$f_{6}: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{\cos(x)}{1 + x^{2}}$$

Exercice 36. Calculer les limites suivantes (si elles existent).

1.
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$
 3. $\lim_{x \to 0} \frac{\sqrt{1 - \cos(x)}}{\sin(x)}$ 5. $\lim_{x \to 0} \frac{e^x - 1}{\sin(x)}$ 2. $\lim_{x \to 0} \frac{\cos(x)}{x}$ 4. $\lim_{x \to 0} \frac{\sqrt{1 - \cos(x)}}{\cos(x)}$ 6. $\lim_{x \to 0} \frac{x - \sin(x)}{1 - e^x}$

Exercices supplémentaires

Exercice 37.

On considère la fonction

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \exp\left(-\frac{1}{x^2}\right) \quad \text{si } x \neq 0$$

$$0 \mapsto 0$$

En quels points la fonction f est-elle dérivable?

Exercice 38.

On considère la fonction

$$\begin{array}{cccc} f: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & ax^2 + bx + c & & \text{si } x < 0 \\ & & & \cos(x) + \sin(x) & & \text{si } x \geq 0 \end{array}$$

Pour quelles valeurs de a, b et c la fonction f est-elle continue en 0? dérivable en 0? C^1 en 0? C^2 en zéro?

Exercice 39.

Donner un exemple de fonction $f: \mathbb{R} \to \mathbb{R}$ continue sur \mathbb{R} tout entier, et dérivable partout sauf en 1, 2 et 3.

Pour aller plus loin

Exercice 40.

Montrer que pour tout n entier supérieur à 2, $\frac{1}{n+1} < \ln(n+1) - \ln(n) < \frac{1}{n}$. En déduire que la suite $\left(\sum_{k=1}^{n} \frac{1}{k}\right)$ diverge.

Exercice 41.

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable et ρ dans [0,1[tels que $|f'(x)| < \rho$ pour tout x réel. Soit x_0 un point de \mathbb{R} . On construit par récurrence la suite $(x_n)_{n\in\mathbb{N}}$ telle que $x_{n+1}=f(x_n)$ pour tout n de \mathbb{N} .

- 1. Montrer que pour tous n, m dans \mathbb{N} tels que $n < m, |x_n x_m| \leq \frac{\rho^n}{1-\rho} |x_1 x_0|$.
- 2. En déduire que la suite $(x_n)_{n\in\mathbb{N}}$ converge vers une certaine limite que l'on notera l.
- 3. Que peut-on dire de f(l)?
- 4. On dit qu'un réel a est un point fixe de f si f(a) = a. Combien f admet-elle de point fixe?
- 5. Comment vous-y prendriez vous pour résoudre numériquement l'équation $2x \cos(x) = 0$?

TD 6: fonctions logarithme et exponentielle

Le minimum

Exercice 42.

Classer ces nombres par ordre croissant : $2^{(3^4)}$, $(2^3)^4$, $(4^3)^2$, $4^{(3^2)}$, $3^{(2^4)}$, $(3^2)^4$.

Exercice 43.

- 1. En utilisant la notion de dérivée, montrer que $\lim_{x\to +\infty} x \ln\left(1+\frac{1}{x}\right) = 1$.
- 2. Quelle est la limite, quand n entier tend vers $+\infty$, de $\left(1+\frac{1}{n}\right)^n$?

Exercice 44.

Quels sont les x réels (si il y en a) tels que $\frac{1}{e^x - 1} = \frac{e^x - 1}{e^x + 1}$?

Exercice 45.

Soit a un nombre réel donné. L'équation en $x: x = \ln(x) + a$ admet-elle des solutions réelles?

Exercices supplémentaires

Exercice 46.

Soit un réel a > 0, on définit alors la suite $(u_n)_{n \ge 1}$ par : pour tout entier $n \ge 1$, $u_n = \sum_{k=1}^n \frac{1}{k^a}$.

- 1. Montrer que la suite $(u_n)_{n\geq 1}$ est croissante.
- 2. Montrer que pour tout n entier plus grand que 2, $\int_{x}^{n+1} \frac{1}{x^a} dx < \frac{1}{n^a} < \int_{x=1}^{n} \frac{1}{x^a} dx$.
- 3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée si et seulement si a>1.
- 4. À quelle condition sur a la suite $(u_n)_{n\in\mathbb{N}}$ converge-t-elle? Sa limite est souvent notée $\zeta(a)$, et la fonction $a\mapsto \zeta(a)$ est appelée fonction zeta de Riemann.

Exercice 47.

Montrer que pour tout x réel non nul, $\frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\frac{e^{2x} + e^{-2x}}{e^{2x} - e^{-2x}} - \frac{e^x + e^{-x}}{e^x - e^{-x}}$.

Exercice 48.

Quelle est la limite, quand n entier tend vers l'infini, de $\left(1 + \frac{1}{n^2}\right)^n$?

Exercice 49.

1. Montrer, en utilisant la notion de dérivation, que $\frac{e^x-1}{x}$ tend vers 1 quand x tend vers 0.

10

2. Quelle est la limite, quand x tend vers 0, de $\frac{x^x - x^{(x^2)}}{x}$?

TD 7: fonctions trigonométriques

Le minimum

Exercice 50. Donner les valeurs

1.
$$\cos(\pi)$$

3.
$$\sin\left(\frac{5\pi}{4}\right)$$

5.
$$\cos\left(\frac{13\pi}{6}\right)$$

2.
$$\cos\left(\frac{2\pi}{3}\right)$$

4.
$$\tan\left(\frac{2\pi}{3}\right)$$

6.
$$\sin\left(\frac{11\pi}{4}\right)$$

Exercice 51. Calculer

1.
$$\arccos(\cos(\pi))$$

4.
$$\arcsin\left(\sin\left(\frac{2\pi}{3}\right)\right)$$

7.
$$\arctan\left(\tan\left(\frac{\pi}{4}\right)\right)$$

2.
$$\arccos\left(\cos\left(\frac{2\pi}{3}\right)\right)$$

5.
$$\arcsin\left(\cos\left(\frac{13\pi}{6}\right)\right)$$

8.
$$\arctan\left(\tan\left(\frac{3\pi}{4}\right)\right)$$

3.
$$\arccos\left(\sin\left(\frac{5\pi}{4}\right)\right)$$

6.
$$\arcsin\left(\sin\left(\frac{11\pi}{4}\right)\right)$$

9.
$$\arctan\left(\tan\left(\frac{11\pi}{4}\right)\right)$$

Exercice 52. Résoudre dans \mathbb{R} l'équation $\cos(x) + \sqrt{3}\sin(x) = 1$.

Exercices supplémentaires

Exercice 53. Calculer $\cos\left(\frac{\pi}{8}\right)$.

Exercice 54. Calculer $\cos\left(\frac{\pi}{12}\right)$.

Exercice 55. Tracer le graphe de la fonction

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \arccos(\cos(x))$

Exercice 56. Montrer que pour tout x réel strictement positif

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$$

Cette formule est-elle encore vraie pour x < 0? Pour x = 0?

Exercice 57.

Discuter, en fonction de x réel, l'existence et la valeur de la limite de la suite $\left(\sum_{k=0}^{n} \cos(kx)\right)_{n\in\mathbb{N}}$. Cette suite est-elle bornée?

Exercice 58.

Discuter, en fonction de x réel, l'existence et la valeur de la limite de la suite $\left(\sum_{k=0}^{n} k \sin(kx)\right)_{n \in \mathbb{N}}$. Cette suite est-elle bornée?

TD 8: révisions de limites, utilisation des fonctions équivalentes

Le minimum

Exercice 59.

Est-il vrai que $x + 1 \underset{x \to +\infty}{\sim} x + 2$?

Exercice 60.

Est-il vrai que $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x+2)$?

Exercice 61.

Est-il vrai que $e^{x+1} \sim e^{x+2}$?

Exercice 62. Calculer les limites suivantes (si elles existent)

$$1. \lim_{x \to 0} \frac{x \sin(x^2)}{\sin(x^3)}$$

$$4. \lim_{x \to 0} \frac{x}{\sqrt{\sin(x^2)}}$$

7.
$$\lim_{x \to 0} \frac{\sin(x)\tan(\sin(x))}{1 - \cos(\sin(x))}$$

$$2. \lim_{x \to 0} \frac{x \cos(x^2)}{\cos(x^3)}$$

5.
$$\lim_{x \to 0} \frac{\sqrt{1 - \cos(x)}}{1 - e^x}$$

5.
$$\lim_{x \to 0} \frac{\sqrt{1 - \cos(x)}}{1 - e^x}$$
8. $\lim_{x \to 0^+} \frac{e^x - \cos(x)}{\sin(x)\cos(x^2) + 1}$
6. $\lim_{x \to +\infty} \sqrt{x^2 + 1} - \sqrt{x^2 - 1}$
9. $\lim_{x \to 0^+} \frac{e^x - \cos(x)}{\sin(x)\cos(x^2)}$

3.
$$\lim_{x \to 0} \frac{x \cos(x^2)}{1 - \cos(x^3)}$$

6.
$$\lim_{x \to +\infty} \sqrt{x^2 + 1} - \sqrt{x^2 - 1}$$

9.
$$\lim_{x\to 0^+} \frac{e^x - \cos(x)}{\sin(x)\cos(x^2)}$$

Exercice 63.

Donner un équivalent (simple) de $\sqrt{x^4 - x^2 + 1}$ quand x tend vers $+\infty$.

Exercices supplémentaires

Exercice 64.

Peut-on trouver deux fonctions $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ dérivables sur \mathbb{R} telles que $f = o_0(g)$ et $g' = o_0(f')$?

Exercice 65.

Est-il vrai que si $f: \mathbb{R} \to \mathbb{R}$ est une fonction dérivable sur \mathbb{R} et $h_1: \mathbb{R} \to \mathbb{R}$, $h_2: \mathbb{R} \to \mathbb{R}$ sont deux fonctions équivalentes en 0, alors $f \circ h_1$ et $f \circ h_2$ sont équivalentes en 0?

Exercice 66.

Est-il vrai que si $h_1: \mathbb{R} \to]0, +\infty[$, $h_2: \mathbb{R} \to]0, +\infty[$ sont deux fonctions équivalentes en 0, alors $\ln(h_1)$ et $ln(h_2)$ sont équivalentes en 0?

12

Exercice 67. On note x_n la n-ième solution positive de $x \tan(x) = 1$.

- 1. Donner un équivalent de x_n quand n tend vers $+\infty$.
- 2. Donner un équivalent de $x_n \pi n$ quand n tend vers $+\infty$.

TD 9: trigonométrie hyperbolique

Le minimum

Exercice 68. Calculer

 $1. \sinh(1)$

8. $\operatorname{argch}(1)$

15. $\operatorname{argsh}(e)$

 $2. \cosh(1)$

9. $\operatorname{argsh}(1)$

16. $\operatorname{argth}(e)$

 $3. \tanh(1)$

10. argth(1)

17. $\operatorname{argth}(\tanh(2))$

 $4. \sinh(0)$

11. $\operatorname{argch}(0)$

18. tanh(argth(2))

5. $\sinh(1) + \cosh(1)$

12. $\operatorname{argsh}(0)$

19. $\operatorname{argch}(\cosh(5))$

6. $\cosh^2(\sqrt{2}\pi) - \sinh^2(\sqrt{2}\pi)$ 7. $\sinh(\sqrt{17}) + \sinh(-\sqrt{17})$

13. argth(0)14. $\operatorname{argch}(e)$

20. $\sinh(\operatorname{argch}(1))$

Exercice 69. Résoudre dans \mathbb{R} l'équation $\cosh(x) = \cosh(3)$.

Exercice 70. Résoudre dans \mathbb{R} l'équation $\sinh(x) = \sinh(\pi)$.

Exercices supplémentaires

Exercice 71. Calculer les limites suivantes

1.
$$\lim_{x \to +\infty} \left(e^x - 2\cosh(x) \right)$$

3.
$$\lim_{x \to +\infty} \left(e^x - \cosh(2x) \right)$$

5.
$$\lim_{x \to \infty} (\operatorname{argch}(x) - \ln(x))$$

2.
$$\lim_{x \to +\infty} (e^x - 2\sinh(x))$$

4.
$$\lim_{x \to +\infty} (e^x - \tanh(2x))$$

1.
$$\lim_{x \to +\infty} (e^x - 2\cosh(x))$$
2.
$$\lim_{x \to +\infty} (e^x - 2\sinh(x))$$
3.
$$\lim_{x \to +\infty} (e^x - \cosh(2x))$$
4.
$$\lim_{x \to +\infty} (e^x - \tanh(2x))$$
6.
$$\lim_{x \to +\infty} (\operatorname{argch}(x) - \ln(x))$$

Exercice 72.

Montrer que pour tout x réel, $\tanh(2x) = \frac{2\tanh(x)}{1+\tanh^2(x)}$.

Exercice 73.

Montrer que pour tout x réel,

$$\arctan(\sinh(2x)) = 2\arctan(\tanh(x)).$$

Exercice 74.

Montrer que pour tout $x \geq 0$,

$$\arccos\left(\frac{1}{\cosh(x)}\right) = \arctan(\sinh(x)).$$

Exercice 75.

Est-il vrai que pour tout x réel,

$$\operatorname{argth}(x) = \frac{\operatorname{argsh}(x)}{\operatorname{argch}(x)}$$
?

TD 10: intégration (méthodes de base)

Le minimum

Exercice 76. Calculer

$$1. \int_{1}^{2} x^{2} \mathrm{d}x$$

3.
$$\int_{1}^{2} e^{x} dx$$

$$5. \int_0^{2\pi} \sin(2x) \mathrm{d}x$$

2.
$$\int_{1}^{2} \mathrm{d}x$$

4.
$$\int_0^{\pi} \sin(x) dx$$

6.
$$\int_{0}^{2\pi} \sin(x)^2 dx$$

Exercice 77. Calculer

$$1. \int_0^1 x^2 e^x \mathrm{d}x$$

$$2. \int_{1}^{2} \ln(x) dx$$

3.
$$\int_0^1 x^2 \sin(x) dx$$

Exercice 78. Trouver a et b réels tels que, pour tout x dans $\mathbb{R} \setminus \{0, -1\}$, $\frac{1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1}$. En déduire le calcul de $\int_2^3 \frac{1}{x(x+1)} dx$.

Exercices supplémentaires

Exercice 79. Trouver a, b et c réels tels que, pour tout x dans $\mathbb{R}\setminus\{0, -1\}$, $\frac{1}{x^2(x+1)} = \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x+1}$. En déduire le calcul de $\int_2^3 \frac{1}{x^2(x+1)} \mathrm{d}x$.

Exercice 80. On veut calculer $I_2 = \int_0^1 \frac{1}{(1+x^2)^2} dx$.

- 1. En écrivant $I_1 = \int_0^1 \frac{1}{1+x^2} dx = \int_0^1 1 \frac{1}{1+x^2} dx$ et en intégrant par partie (avec u'=1), exprimer I_2 en fonction de I_1 .
- 2. Conclure : que vaut I_2 ?
- 3. Comment pourrait-on calculer $I_3 = \int_0^1 \frac{1}{(1+x^2)^3} dx$?

Exercice 81.

- 1. Simplifier, pour n et N dans \mathbb{N} , $N \geq 1$, $\frac{1}{1 + (\frac{n}{N})^2}$.
- 2. Quelle est la limite quand N tend vers l'infini de $\sum_{n=0}^N \frac{N}{N^2 + n^2}\,?$
- 3. Trouver un N entier tel que

$$\left| \sum_{n=0}^{N} \frac{N}{N^2 + n^2} - \frac{\pi}{4} \right| < 10^{-3}.$$

14

4. Est-ce une bonne façon de calculer une approximation de π ?

TD 11: intégration (changement de variable)

Le minimum

Exercice 82. Calculer

$$1. \int_0^\pi \cos^2(x) \sin(x) dx$$

3.
$$\int_0^{\pi} \cos^4(x) \sin^5(x) dx$$

$$5. \int_0^1 \sin(e^x) e^x dx$$

$$2. \int_0^{\frac{\pi}{4}} \frac{\sin(x)}{\cos(x)} \mathrm{d}x$$

4.
$$\int_{0}^{1} xe^{x^{2}} dx$$

$$6. \int_{1}^{2} \frac{\sin^{3}(\sqrt{x})}{\sqrt{x}} \mathrm{d}x$$

Exercices supplémentaires

Exercice 83. Calculer

$$1. \int_0^\pi \frac{\sin(x)\cos(x)}{1+\cos^2(x)} \mathrm{d}x$$

$$3. \int_0^{\frac{\pi}{4}} \frac{1}{\cos(x)} \mathrm{d}x$$

$$5. \int_0^1 \frac{\operatorname{ch}(x)}{1 + \operatorname{sh}(x)} \mathrm{d}x$$

$$2. \int_0^{\frac{\pi}{4}} \frac{1}{1 + \cos(x)} \mathrm{d}x$$

4.
$$\int_0^1 \frac{e^{2x} - 3e^x}{e^{2x} + 2e^x + 1} dx$$

6.
$$\int_0^1 \frac{1 + \sinh(x)}{1 + \cosh(x)} dx$$

Exercice 84. Calculer les intégrales suivantes

a)
$$\int_0^1 x \cdot \arctan x \, \mathrm{d}x$$

$$b) \int_0^1 \frac{1}{x^2 + 16} \, \mathrm{d}x$$

c)
$$\int_{1}^{2} \frac{x^2 + x + 2}{x(x^2 + 1)} dx$$

$$d$$
) $\int_0^1 \arctan x \, \mathrm{d}x$

$$e) \int_0^1 \frac{e^x}{1 + e^{2x}} \, \mathrm{d}x$$

$$f) \int_0^1 \frac{x-1}{x^2 + x + 1} \, \mathrm{d}x$$

$$g) \int_0^1 \frac{1}{(x^2+1)^2} \, \mathrm{d}x$$

$$h) \int_0^1 \frac{\sin x}{1 + \cos^2 x} \, \mathrm{d}x$$

i)
$$\int_0^1 \arcsin x \, \mathrm{d}x$$

$$j) \int_0^1 \frac{x-1}{x^2+2} \, \mathrm{d}x$$

$$k) \int_0^1 \frac{1}{\sqrt{4+x^2}} \, \mathrm{d}x$$

$$l) \int_0^1 x^2 \operatorname{sh}(x) \, \mathrm{d}x$$

$$m) \int_0^1 \frac{1}{\sqrt{2-x^2}} \, \mathrm{d}x$$

$$n) \int_{1}^{2} \ln\left(x + \frac{1}{x}\right) \, \mathrm{d}x$$

TD 12: intégration (révisions)

Le minimum

Exercice 85.

Calculer les intégrales suivantes

$$1. \int_0^\pi \sin^2(x) \mathrm{d}x$$

$$3. \int_0^{\frac{\pi}{4}} \tan^2(x) \mathrm{d}x$$

$$5. \int_0^1 \sinh^2(x) dx$$

$$2. \int_0^{2\pi} \cos^2(x) dx$$

4.
$$\int_0^1 \cosh^2(x) dx$$

6.
$$\int_0^1 \tanh^2(x) dx$$

Exercice 86.

Calculer les intégrales suivantes

$$1. \int_{1}^{2} \ln(x) \mathrm{d}x$$

3.
$$\int_{1}^{2} x^{2} \ln(x) dx$$

2.
$$\int_{1}^{2} x \ln(x) dx$$

4.
$$\int_{1}^{2} (2x^2 - x + 3) \ln(x) dx$$

Exercices supplémentaires

Exercice 87.

Quelle est la limite, quand n tend vers $+\infty$, de $\int_0^1 \frac{1}{1+x^n} dx$?

Exercice 88.

Calculer $\int_{2}^{3} \frac{1}{\sqrt{2+x^2}} dx$.

Exercice 89.

On donne $f: \mathbb{R} \to \mathbb{R}$ continue, décroissante, telle que $\lim_{x \to +\infty} \int_0^x f(s) ds = +\infty$.

1. Montrer que, pour tout k entier,

$$f(k+1) \le \int_k^{k+1} f(s) \mathrm{d}s \le f(k).$$

- 2. En déduire que la suite $\left(\sum_{k=0}^n f(k)\right)_{n\in\mathbb{N}}$ diverge vers $+\infty$.
- 3. Montrer que la suite $\left(\sum_{k=0}^{n} f(k)\right)_{n\in\mathbb{N}}$ est équivalente à la suite $\left(\int_{0}^{n} f(s) ds\right)_{n\in\mathbb{N}}$.
- 4. Donner un équivalent simple, quand n tend vers l'infini, de $\sum_{k=0}^{n} \frac{1}{\sqrt{1+k}}$.
- 5. Donner une valeur approchée à 10^{-3} près de $\sum_{k=0}^{10^6} \frac{1}{\sqrt{1+k}}$.

TD 13: équations différentielles linéaires du premier ordre

Le minimum

Exercice 90.

Résoudre l'équation différentielle y' = -2y + 1 avec la condition initiale y(0) = 1.

Exercice 91.

Résoudre l'équation différentielle $y'(x) = -2y(x) + e^{-x}$ avec la condition initiale y(0) = 1.

Exercice 92.

Résoudre l'équation différentielle

$$y'(x) = -xy(x) - e^{-\frac{x^2}{2}}$$

avec la condition initiale y(0) = 1.

Exercices supplémentaires

Exercice 93.

L'équation différentielle $y'(x) + xy''(x) = x^2$ est-elle du premier ordre? La résoudre en posant u = y'.

Exercice 94.

Résoudre l'équation différentielle (dite « de Bernoulli »)

$$y'(x) + xy(x) = y^2(x).$$

(On pourra poser u = 1/y et montrer que u est solution d'un équation différentielle linéaire.)

Exercice 95.

Résoudre l'équation différentielle de Bernoulli

$$y'(x) + xy(x) = y^3(x).$$

(On pourra poser $u = y^{\alpha}$ avec $\alpha < 0$ bien choisi.)

Exercice 96.

Résoudre l'équation différentielle (dite « de Ricatti »)

$$y' = -1 - y(x) + 2y^2(x).$$

(On pourra chercher une solution évidente y_0 , poser $y = y_0 + u$, trouver une équation différentielle vérifiée par u et poser z = 1/u).

TD 14: équations différentielles linéaires du deuxième ordre

Le minimum

Exercice 97.

Résoudre l'équation différentielle

$$y''(x) - 5y'(x) + 6y(x) = 1$$

avec les conditions initiales y(0) = y'(0) = 1.

Exercice 98.

Résoudre l'équation différentielle

$$y''(x) - 5y'(x) + 6y(x) = e^{2x}$$

avec les conditions initiales y(0) = y'(0) = 1.

Exercice 99.

Résoudre l'équation différentielle

$$y''(x) - 5y'(x) + 6y(x) = xe^{2x}$$

avec les conditions initiales y(0) = y'(0) = 1.

Exercice 100.

Résoudre l'équation différentielle

$$y''(x) - 2y'(x) + y(x) = 1$$

avec les conditions initiales y(0) = y'(0) = 1.

Exercice 101.

Résoudre l'équation différentielle

$$y''(x) - 2y'(x) + y(x) = e^x$$

avec les conditions initiales y(0) = y'(0) = 1.

Exercice supplémentaire

Exercice 102.

On veut résoudre l'équation différentielle $y'(x) = e^{-x} + y(x) + e^x y(x)^2$ (équation dite « de Ricatti »).

- 1. Est-ce que cette équation est linéaire?
- 2. Poser $v(x) = e^x y(x)$ et montrer que v vérifie une équation différentielle non linéaire du premier ordre.
- 3. Poser v = -u'(x)/u(x) et montrer que u vérifie une équation différentielle linéaire du deuxième ordre à coefficients constants.
- 4. Trouver u, puis v et résoudre l'équation de départ.