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Abstract

We introduce the concept of an L1 full group associated with a measure-preserving
action of a Polish normed group on a standard probability space. These groups carry a
natural Polish group topology induced by an L1 norm. Our construction generalizes L1

full groups of actions of discrete groups, which have been studied recently by the first
author.

We show that under minor assumptions on the actions, topological derived sub-
groups of L1 full groups are topologically simple and — when the acting group is
locally compact and amenable — are whirly amenable and generically two-generated.
L1 full groups of actions of compactly generated locally compact Polish groups are
shown to remember the L1 orbit equivalence class of the action.

For measure-preserving actions of the real line (also often called measure-preserving
flows), the topological derived subgroup of the L1 full group is shown to coincide
with the kernel of the index map, which implies that L1 full groups of free measure-
preserving flows are topologically finitely generated if and only if the flow admits
finitely many ergodic components. The latter is in striking contrast to the case of
Z-actions, where the number of topological generators is controlled by the entropy of
the action. We also prove a reconstruction-type result: the L1 full group completely
characterizes the associated ergodic flow up to flip Kakutani equivalence.

Finally, we study the coarse geometry of L1 full groups. The L1 norm on the derived
subgroup of the L1 full group of an aperiodic action of a locally compact amenable
group is proved to be maximal in the sense of C. Rosendal. For measure-preserving
flows, this holds for the L1 norm on all of the L1 full group.
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Chapter 1

Introduction

Full groups were introduced by H. Dye [15] in the framework of measure-preserving
actions of countable groups as measurable analogues of unitary groups of von Neumann
algebras, by mimicking the fact that the latter are stable under countable cutting and
pasting of partial isometries. These Polish groups have since been recognized as
important invariants as they encode the induced partition of the space into orbits. A
similar viewpoint applies in the setup of minimal homeomorphisms on the Cantor
space [23], where likewise the full groups are responsible for the orbit equivalence
class of the action.

Full groups are defined to consist of transformations which act by a permutation
on each orbit. When the action is free, one can associate with an element ℎ of the full
group a cocycle defined by the equation ℎ(𝑥) = 𝜌ℎ (𝑥) · 𝑥. From the point of view of
topological dynamics, it is natural to consider the subgroup of those ℎ for which the
cocycle map is continuous, which is the defining condition for the so-called topological
full groups. The latter has a much tighter control of the action, and encodes minimal
homeomorphisms of the Cantor space up to flip-conjugacy (see [23]).

A celebrated result of H. Dye states that all ergodic Z-actions produce the same
partition up to isomorphism, and hence the associated full groups are all isomorphic.
The first named author has been motivated by the above to seek for the analog of
topological full groups in the context of ergodic theory, which was achieved in [40] by
imposing integrability conditions on the cocycle. In particular, he introduced L1 full
groups of measure-preserving ergodic transformations, and showed based on the result
of R. M. Belinskaja [8] that they also determine the action up to flip-conjugacy. Unlike
in the context of Cantor dynamics, these L1 full groups are uncountable, but they carry
a natural Polish topology.

In this work, we widen the concept of an L1 full group and associate such an
object with any measure-preserving Borel action of a Polish normed group (the reader
may consult Appendix A for a concise reminder about group norms). Quasi-isometric
compatible norms will result in the same L1 full groups, so actions of Polish boundedly
generated groups have canonical L1 full groups associated with them based on to the
work of C. Rosendal [52]. Our study also parallels the generalization of the full group
construction introduced by A. Carderi and the first named author in [11], where full
groups were defined for Borel measure-preserving actions of Polish groups.



2 Introduction

1.1 Main results

Let 𝐺 be a Polish group with a compatible norm ∥·∥ and consider a Borel measure-
preserving action 𝐺 ↷ 𝑋 on a standard probability space (𝑋, 𝜇). The group action
defines an orbit equivalence relation R𝐺 by declaring points 𝑥1, 𝑥2 ∈ 𝑋 equivalent
whenever𝐺 · 𝑥1 =𝐺 · 𝑥2. The norm induces a metric onto eachR𝐺-class via𝐷 (𝑥1, 𝑥2) =
inf𝑔∈𝐺{∥𝑔∥ : 𝑔𝑥1 = 𝑥2}. Following [11], the full group of the action is denoted by
[R𝐺 ] and is defined as the collection of all measure-preserving 𝑇 ∈ Aut(𝑋, 𝜇) that
satisfy 𝑥R𝐺𝑇𝑥 for all 𝑥 ∈ 𝑋 . The L1 full group [𝐺 ↷ 𝑋 ]1 is given by those 𝑇 ∈ [R𝐺 ]
for which the map 𝑋 ∋ 𝑥 ↦→ 𝐷 (𝑥, 𝑇𝑥) is integrable. This defines a subgroup of [R𝐺 ],
and we show in Theorem 2.10 that these groups are Polish in the topology of the norm
∥𝑇 ∥ =

∫
𝑋
𝐷 (𝑥, 𝑇𝑥) 𝑑𝜇(𝑥). The strategy of establishing this statement is analogous to

that of [12], where the Polish topology for full groups [R𝐺 ] was defined.
Understanding of the structure of various types and variants of full groups often

hinges on examining their derived subgroups (also called commutator subgroups). This
holds true for our setup as well. Since we’re dealing with full groups equipped with
non-discrete topologies, we focus on their topological derived subgroup, defined as
the closure of the subgroup generated by commutators.

Theorem 1.1. The topological derived subgroup of any aperiodic L1 full group is
equal to the closed subgroup generated by involutions.

The argument needed for Theorem 1.1 is quite robust. We extract the idea used
in [40], isolate the class of finitely full groups, and show that under mild assumptions
on the action, Theorem 1.1 holds for such groups. We provide these arguments in
Section 3 and in Corollary 3.16 in particular. Alongside we mention Corollary 3.22
which implies that L1 full groups of ergodic actions are topologically simple.

For the rest of our results we narrow down the generality of the acting groups, and
consider locally compact Polish normed groups. In Chapter 4, we show that if 𝐻 < 𝐺 is
a dense subgroup of a locally compact Polish normed group𝐺 then [𝐻↷ 𝑋 ]1 is dense
in [𝐺 ↷ 𝑋 ]1. In fact, we prove a considerably stronger statement by showing that for
each𝑇 ∈ [𝐺↷ 𝑋 ] and 𝜖 > 0 there is 𝑆 ∈ [𝐻↷ 𝑋 ] such that ess sup𝑥∈𝑋 𝐷 (𝑇𝑥, 𝑆𝑥) < 𝜖 .

Recall that a topological group is amenable if all of its continuous actions on com-
pact spaces preserve some Radon probability measure, and that it is whirly amenable
if it is amenable and moreover every invariant Radon measure is supported on the set
of fixed points. The following is a combination of Theorem 5.8 and Corollary 5.10.

Theorem 1.2. Let 𝐺 ↷ 𝑋 be a measure-preserving action of a locally compact Polish
normed group. Consider the following three statements:

(1) 𝐺 is amenable;
(2) the (topological) derived subgroup 𝔇( [𝐺 ↷ 𝑋 ]1) is whirly amenable;
(3) the L1 full group [𝐺 ↷ 𝑋 ]1 is amenable.
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The implications (1) =⇒ (2) =⇒ (3) always hold. If 𝐺 is unimodular and the action
is free, then the three statements above are all equivalent.

When the acting group is amenable and the orbits of the action are uncountable, we
are able to compute the topological rank of the derived L1 full groups — that is, the
minimal number of elements required to generate a dense subgroup of the closure of
the commutator subgroup. Theorem 5.19 provides a stronger version of the following.

Theorem 1.3. Let 𝐺 ↷ 𝑋 be a measure-preserving action of an amenable locally
compact Polish normed group on a standard probability space (𝑋, 𝜇). If all orbits
of the action are uncountable, then the topological rank of the derived L1 full group
𝔇( [𝐺 ↷ 𝑋 ]1) is equal to 2.

It is instructive to contrast the situation with the actions of finitely generated groups,
where finiteness of the topological rank of the derived L1 full group is equivalent to
finiteness of the Rokhlin entropy of the action [41].

Our most refined understanding of L1 full groups is achieved for free actions of R,
which are known as flows. All the results we described so far are valid for all compatible
norms on the acting group. When it comes to the actions of R, however, we consider
only the standard Euclidean norm on it. Just like the actions of Z, flows give rise to an
important homomorphism, known as the index map. Assuming the flow is ergodic,
the index map can be described most easily as [R ↷ 𝑋 ]1 ∋ 𝑇 ↦→

∫
𝑋
|𝜌𝑇 | 𝑑𝜇, where

𝜌𝑇 is the cocycle of 𝑇 . Chapter 6 is devoted to the analysis of the index map for general
R-flows.

The most technically challenging result of our work is summarized in Theorem 10.1,
which identifies the derived L1 full group of a flow with the kernel of the index map,
and describes the abelianization of [R ↷ 𝑋 ]1.

Theorem 1.4. Let F be a measure-preserving flow on (𝑋, 𝜇). The kernel of the index
map is equal to the derived L1 full group of the flow, and the topological abelianization
of [F ]1 is R.

Theorem 1.4 parallels the known results for Z-actions from [40]. The structure
of its proof, however, has an important difference. We rely crucially on the fact that
each element of the full group acts in a measure-preserving manner on each orbit. This
allows us to use Hopf decomposition (described in Appendix C) in order to separate
any given element 𝑇 ∈ [R ↷ 𝑋 ]1 into two parts — recurrent and dissipative. If the
acting group were discrete, the recurrent part would reduce to periodic orbits only.
This is not at all the case for non-discrete groups, hence we need a new machinery to
understand non-periodic recurrent transformations. To cope with this, we introduce the
concept of an intermitted transformation, which plays the central role in Chapter 8,
and which we hope will find other applications.
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Theorems 1.3 and 1.4 can be combined to obtain estimates for the topological rank
of the whole L1 full groups of flows, which is the content of Proposition 10.3.

Theorem 1.5. Let F be a free measure-preserving flow on a standard probability
space (𝑋, 𝜇). The topological rank rk( [F ]1) is finite if and only if the flow has finitely
many ergodic components. Moreover, if F has exactly 𝑛 ergodic components then

𝑛 + 1 ≤ rk( [F ]1) ≤ 𝑛 + 3.

In particular, the topological rank of the L1 full group of an ergodic flow is equal
to either 2, 3 or 4. We conjecture that it is always equal to 2, and more generally that
the topological rank of the L1 full group of any measure-preserving flow is equal to
𝑛 + 1 where 𝑛 is the number of ergodic components.

Our work connects to the notion of L1 orbit equivalence, an intermediate notion
between orbit equivalence and conjugacy. It goes back to the work of R. M. Belinskaja [8]
but recently attracted more attention. Stated in our framework, two flows are L1 orbit
equivalent if they can be conjugated so that the first flow is contained in the L1 full
group of the second and vice versa. A symmetric version of Belinskaja’s theorem is
that ergodic Z-actions are L1 orbit equivalent if and only if they are flip conjugate.
It is very natural to wonder whether this amazing result has a version for flows. Our
Theorem 10.14 implies the following.

Theorem 1.6. If two measure-preserving ergodic flows are L1 orbit equivalent, then
they admit some cross-sections whose induced transformations1 are flip-conjugate.

We do not know whether the above result is optimal, that is, whether having
flip-conjugate cross-sections implies L1 orbit equivalence, but it seems unlikely. It is
tempting to think that the correct analogue of Belinskaja’s theorem would be a positive
answer to the following question.

Question 1.7. Let F1 and F2 be free ergodic measure-preserving flows which are L1

orbit equivalent. Is it true that there is 𝛼 ∈ R∗ such that F1 and F2 ◦𝑚𝛼 are isomorphic,
where 𝑚𝛼 denotes the multiplication by 𝛼?

Let us also mention that Theorem 1.6 implies that there are uncountably many
L1 full groups of ergodic free measure-preserving flows up to (topological) group
isomorphism (see Corollary 10.16 and the paragraph right after its proof).

Finally, we also investigate the coarse geometry of the L1 full groups. We establish
that the L1 norm is maximal (in the sense of C. Rosendal [52], see also Appendix A.2) on
the derived subgroup of an L1 full group of an aperiodic measure-preserving action of

1We refer the reader to Definition 10.11 and the paragraph that follows it for details on the
measure-preserving transformation one associates to a cross-section.
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any locally compact amenable Polish group (Theorem 5.5). For the measure-preserving
flows, the L1 norm is, in fact, maximal on the whole full group (Theorem 10.18).

Acknowledgments. We are deeply thankful to the referee for their careful reading and
numerous detailed remarks, which led to many improvements of the present monograph.

1.2 Preliminaries

We assume the reader is familiar with the fundamentals of real analysis and measure
theory, as presented in standard textbooks such as [17, 53]. For the necessary results in
descriptive set theory, we primarily rely on [31].

1.2.1 Ergodic theory

Our work belongs to the field of ergodic theory, which means that all the constructions
are defined and results are proven up to null sets. We occasionally phrase our results as
holding “for all 𝑥” when strictly speaking they hold only “for almost all 𝑥”. The only
part where certain care needs to be exercised in this regard appears in Chapter 2, where
we define L1 full groups for Borel measure-preserving actions of Polish normed groups.
As in [11], these definitions require genuine actions rather than boolean actions—
a distinction that we clarify at the end of this section. This technicality vanishes
when considering the more restrictive setting of measure-preserving actions of locally
compact Polish groups.

By a standard probability space, we mean a unique (up to isomorphism) separable
atomless measure space (𝑋, 𝜇) with 𝜇(𝑋) = 1, i.e., the unit interval [0, 1] equipped
with the Lebesgue measure. Occasionally, in Chapter 5 and Appendices D and E, we
refer to a standard Lebesgue space, by which we mean a separable finite measure
space, 𝜇(𝑋) < ∞. Unlike a standard probability space, this concept allows for the
presence of atoms and does not require normalization.

Throughout, we frequently work with spaces of measurable functions identified
up to sets of measure zero. To simplify notation, we omit explicit references to the
underlying measure 𝜇. For example, we write L1(𝑋,R) instead of L1(𝑋, 𝜇,R) to denote
the Banach space of 𝜇-integrable functions 𝑋 → R.

We denote by Aut(𝑋, 𝜇) the group of all measure-preserving bĳections of (𝑋, 𝜇)
up to measure zero. This is a Polish group when equipped with the weak topology,
defined by 𝑇𝑛 → 𝑇 if and only if for all 𝐴 ⊆ 𝑋 Borel, 𝜇(𝑇𝑛 (𝐴) △ 𝑇 (𝐴)) → 0. The
weak topology is a Polish group topology, see [32, Sec. 1]. Given 𝑇 ∈ Aut(𝑋, 𝜇), its
support is the set

supp𝑇 = {𝑥 ∈ 𝑋 : 𝑇 (𝑥) ≠ 𝑥}.
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We often refer to measure-preserving bĳections as (measure-preserving) transforma-
tions, although they could more precisely be called invertible transformations. Since
this work does not involve non-invertible transformations, this terminology should not
cause confusion. We also consider (measure-preserving) partial transformations,
which are Borel bĳections 𝑇 : 𝐴 → 𝐵 between Borel subsets 𝐴, 𝐵 of 𝑋 satisfying
𝜇(𝑇−1(𝐶)) = 𝜇(𝐶) for all Borel 𝐶 ⊆ 𝐵. The set 𝐴 is called the domain of 𝑇 , denoted
dom𝑇 , and 𝐵 is its range, denoted rng𝑇 .

A measure-preserving bĳection𝑇 is called periodic when almost all of its orbits are
finite. The cardinalities of the finite orbits of 𝑇 are called the periods of 𝑇 . Periodicity
implies the existence of a fundamental domain 𝐴 for 𝑇 , which is a measurable set
that intersects every 𝑇-orbit at exactly one point. Since the ambient measure 𝜇 is finite,
the existence of a fundamental domain actually characterizes periodicity. We recall
that a transformation 𝑇 is called aperiodic if it has no periodic points, meaning that all
of its orbits are infinite.

When considering actions of full group elements on orbits, we also need to deal with
bĳections that preserve only the measure class on a possibly infinite 𝜎-finite standard
measured space. Such bĳections are referred to as non-singular transformations.

As explained at the beginning of this section, full groups are constructed for (Borel)
measure-preserving actions of a given Polish group𝐺 on a standard probability space
(𝑋, 𝜇). These actions, called spatial actions, are Borel maps𝛼 :𝐺 × 𝑋→ 𝑋 such that for
each 𝑔 ∈ 𝐺, the transformation 𝛼(𝑔) is measure-preserving. A related notions is that of
boolean actions, which are continuous group homomorphisms𝐺→ Aut(𝑋, 𝜇). Unlike
spatial actions, boolean actions identify transformations up to null sets. Consequently,
a boolean action can a priori be lifted to an action map 𝛼 such that, given 𝑔, ℎ ∈ 𝐺,
𝛼(𝑔ℎ)𝑥 = 𝛼(𝑔)𝛼(ℎ)𝑥 holds merely for almost every 𝑥 ∈ 𝑋 . As discovered by E. Glasner,
B. Tsirelson and B. Weiss, boolean actions (also called near actions) of Polish groups
do not admit Borel realizations in general, and even when they do, it could happen that
different realizations yield different full groups. This subtlety disappears once we shift
our attention to locally compact group actions, which is the case for Chapter 4 and
onwards. All boolean actions of locally compact Polish groups admit Borel realizations
which are all conjugate up to measure zero (and hence have isomorphic full groups),
so null sets can be neglected just as they always are in ergodic theory. We refer the
reader to [24, 25] for more information on this topic.

1.2.2 Orbit equivalence relations

Any group action 𝐺 ↷ 𝑋 induces the orbit equivalence relation R𝐺↷𝑋, where two
points 𝑥, 𝑦 ∈ 𝑋 are R𝐺↷𝑋-equivalent whenever𝐺 · 𝑥 = 𝐺 · 𝑦. We will usually write this
equivalence relation simply as R𝐺 for brevity. For the actions Z ↷ 𝑋 generated by an
automorphism 𝑇 ∈ Aut(𝑋, 𝜇), we denote the corresponding orbit equivalence relation
by R𝑇 . For clarity, we may sometimes want to name a measure-preserving action as
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𝛼 and write 𝐺 𝛼
↷ 𝑋 . Then for all 𝑔 ∈ 𝐺 we denote by 𝛼(𝑔) the measure-preserving

transformation of (𝑋, 𝜇) induced by the action of 𝑔.
We encounter various equivalence relations throughout this monograph. An equiva-

lence class of a point 𝑥 ∈ 𝑋 under the relation R is denoted by [𝑥]R and the saturation
of a set 𝐴 ⊆ 𝑋 is denoted by [𝐴]R and is defined to be the union of R-equivalence
classes of the elements of 𝐴: [𝐴]R =

⋃
𝑥∈𝐴[𝑥]R . In particular, [𝑥]R𝑇 is the orbit of 𝑥

under the action of 𝑇 . The reader may notice that the notation for a saturation [𝐴]R
resembles that for the full group of an action [𝐺 ↷ 𝑋 ] (see Chapter 2). Both notations
are standard, and we hope that confusion will not arise, as it applies to objects of
different nature — sets and actions, respectively.

1.2.3 Actions of locally compact groups

Consider a measure-preserving action of a locally compact Polish (equivalently, second-
countable) group 𝐺 on a standard Lebesgue space (𝑋, 𝜇). A complete section for the
action is a measurable set C ⊆ 𝑋 that intersects almost every orbit, i.e., 𝜇(𝑋 \𝐺 · C) = 0.
A cross-section is a complete sectionC ⊆ 𝑋 such that for some non-empty neighborhood
of the identity𝑈 ⊆ 𝐺 we have𝑈𝑐 ∩𝑈𝑐′ = ∅ whenever 𝑐, 𝑐′ ∈ C are distinct. When the
need to mention such a neighborhood𝑈 explicitly arises, we say that C is a𝑈-lacunary
cross-section.

With any cross-section C one associates a decomposition of the phase space known
as the Voronoi tessellation. Slightly more generally, Appendix E.2 defines the concept
of a tessellation over a cross-section, which corresponds to a set W ⊆ C × 𝑋 for
which the fibersW𝑐 = {𝑥 ∈ 𝑋 : (𝑐, 𝑥) ∈ W}, 𝑐 ∈ C, partition the phase space. Every
tessellationW gives rise to an equivalence relation RW , where points 𝑥, 𝑦 ∈ 𝑋 are
deemed equivalent whenever they belong to the same fiberW𝑐. The projection map
𝜋W : 𝑋 → C associates with each 𝑥 ∈ 𝑋 the unique 𝑐 ∈ C satisfying 𝑥 ∈ W𝑐, and it
is therefore defined by the condition (𝜋W (𝑥), 𝑥) ∈ W for all 𝑥 ∈ 𝑋 .

When the action 𝐺 ↷ 𝑋 is free, each orbit 𝐺 · 𝑥 can be identified with the acting
group. Such a correspondence 𝑔 ↦→ 𝑔 · 𝑥 depends on the choice of the anchor point 𝑥
within the orbit, but suffices to transfer structures invariant under the right translations
from the group 𝐺 onto the orbits of the action. For instance, if the acting group is
locally compact, then a right-invariant Haar measure 𝜆 can be pushed onto orbits by
setting 𝜆𝑥 (𝐴) = {𝑔 ∈ 𝐺 : 𝑔 · 𝑥 ∈ 𝐴} as discussed in Section 4.2. Freeness of the action
𝐺 ↷ 𝑋 gives rise to the cocycle map 𝜌 : R𝐺↷𝑋 → 𝐺, which is well-defined by the
condition 𝜌(𝑥, 𝑦) · 𝑥 = 𝑦. Elements of the full group [𝐺 ↷ 𝑋 ] are characterized as
measure-preserving transformations 𝑇 ∈ Aut(𝑋, 𝜇) such that (𝑇 (𝑥), 𝑥) ∈ R𝐺↷𝑋 for
all 𝑥 ∈ 𝑋 . With each 𝑇 ∈ [𝐺 ↷ 𝑋 ] one may therefore associate the map 𝜌𝑇 : 𝑋 → 𝐺,
also known as the cocycle map, and defined by 𝜌𝑇 (𝑥) = 𝜌(𝑥, 𝑇𝑥). Both the context
and the notation will clarify which cocycle map is being referred to.
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1.2.4 Measure-preserving free flows

All the previous concepts appear prominently in the chapters that deal with free measure-
preserving flows, namely free measure-preserving actions of R on standard probability
spaces. We use the additive notation for such actions: R × 𝑋 ∋ (𝑟, 𝑥) ↦→ 𝑥 + 𝑟 ∈ 𝑋 . The
group R carries a natural linear order that is invariant under the group operation and can
therefore be transferred onto orbits. More specifically, given a free measure-preserving
flow R ↷ 𝑋 , we use the notation 𝑥 < 𝑦 whenever 𝑥 and 𝑦 belong to the same orbit and
𝑦 = 𝑥 + 𝑟 for some 𝑟 > 0. Every cross-section C of a free flow intersects each orbit in a
bi-infinite fashion — each 𝑐 ∈ C has a unique successor and a unique predecessor in
the order of the orbit. One therefore has a bĳection 𝜎C : C → C, called the first return
map or the induced map, which sends 𝑐 ∈ C to the next element of the cross-section
within the same orbit. We also make use of the gap function that measures the lengths
of intervals of the cross-section, i.e., gapC (𝑐) = 𝜌(𝑐, 𝜎C (𝑐)), and of the projection
function 𝜋C : 𝑋 → C which takes every 𝑥 ∈ 𝑋 to the largest 𝑐 ∈ C such that 𝑐 ≤ 𝑥.

There is a canonical tessellation associated with a cross-section C which partitions
each orbit into intervals between adjacent points of C and is given by

WC = {(𝑐, 𝑥) ∈ C × 𝑋 : 𝑐 ≤ 𝑥 < 𝜎C (𝑐)}.

The associated equivalence relation RWC is denoted simply by RC . It groups points
(𝑥, 𝑦) ∈ RR↷𝑋 which belong to the same interval of the tessellation, 𝜋C (𝑥) = 𝜋C (𝑦).
The RC-equivalence class of 𝑥 ∈ 𝑋 is equal to [𝑥]RC = 𝜋C (𝑥) +

[
0, gapC (𝜋C (𝑥))

)
.

Often enough we need to restrict sets and functions to an RC-class. Since such
a need arises very frequently, especially in Chapter 9, we adopt the following short-
hand notations. Given a set 𝐴 ⊆ 𝑋 and a point 𝑐 ∈ C, the intersection 𝐴 ∩ [𝑐]RC is
denoted simply by 𝐴(𝑐). Likewise, 𝜆C𝑐 (𝐴) stands for 𝜆({𝑡 ∈ R : 𝑐 + 𝑡 ∈ 𝐴 ∩ [𝑐]RC })
and corresponds to the Lebesgue measure of the set 𝐴 ∩ [𝑐]RC .

The phase space 𝑋 can be identified with the subset 𝑍C ⊆ C × R,

𝑍C = {(𝑐, 𝑡) : 0 ≤ 𝑡 < gapC (𝑐)},

via the map Ψ : 𝑍C → 𝑋 given by Ψ(𝑐, 𝑡) = 𝑐 + 𝑡. Through this identification, 𝜆𝑐
corresponds to the Lebesgue measure on the fiber of 𝑍C over 𝑐. Moreover, uniqueness
of the Lebesgue measure implies uniqueness of a finite measure 𝜈 on C such that 𝜇 is the
push-forward by Ψ of the restriction of 𝜈 × 𝜆 to 𝑍C (see, for instance, [37, Prop. 4.3]).
The natural disintegration of (C × R, 𝜈 ⊗ 𝜆) corresponds to the disintegration of 𝜇
of the form 𝜇(𝐴) =

∫
C 𝜆
C
𝑐 (𝐴) 𝑑𝜈(𝑐) (see Appendix D for an overview of measure

disintegration).



Chapter 2

L1 full groups of Polish group actions

We begin by introducing the central concept of this work, namely the L1 full groups of
Borel measure-preserving actions of Polish normed groups on a standard probability
space. While our primary focus will be on actions of locally compact groups, especially
flows, the notion of an L1 full group can be introduced for actions of arbitrary Polish
normed groups. In Section 2.1, we present the definitions in this general setting.

In Section 2.2, we examine the case when there is a natural choice (up to quasi-
isometry) of a norm on 𝐺, allowing us to speak of the L1 full group of a 𝐺-action.
This framework is applicable to 𝐺 = R, yielding the definition of L1 full groups of
measure-preserving flows.

Returning to the general setting, the L1 full group of an action of a Polish normed
group is itself equipped with a natural norm. In Section 2.3, we demonstrate that
the resulting metric space is remarkably large: it contains an isometric copy of the
infinite-dimensional Banach space L1(𝑋,R).

We conclude this chapter in Section 2.4 by establishing the closure of the L1 full
group under the operation of taking induced transformations. This result will play a
pivotal role in the subsequent chapters.

2.1 L1 full groups of Polish normed group actions

A Polish normed group is a Polish group equipped with a compatible norm (see
Appendix A.1). Let (𝐺, ∥·∥) be a Polish normed group, and let 𝐺 ↷ 𝑋 be a Borel
measure-preserving action on a standard probability space (𝑋, 𝜇). Using the norm, we
define a metric 𝐷 on 𝑋 , which may take the value +∞, as follows:

𝐷 (𝑥, 𝑦) = inf
𝑢∈𝐺
{ ∥𝑢∥ : 𝑢𝑥 = 𝑦 } for (𝑥, 𝑦) ∈ 𝑋 × 𝑋. (2.1)

Remark 2.1. By definition, the infimum of the empty set is +∞. Thus, 𝐷 (𝑥, 𝑦) = +∞
if and only if 𝑥 and 𝑦 belong to distinct 𝐺-orbits.

The fact that 𝐷 is a metric is straightforward except, possibly, for the implication
𝐷 (𝑥, 𝑦) = 0 =⇒ 𝑥 = 𝑦. To justify the latter, let 𝑢𝑛 ∈ 𝐺, 𝑛 ∈ N, be a sequence such
that 𝑢𝑛 → 𝑒 and 𝑢𝑛𝑥 = 𝑦. The elements 𝑢−1

𝑛 𝑢0, 𝑛 ∈ N, belong to the stabilizer of 𝑥.
By Miller’s theorem [46], stabilizers of all points are closed, whence 𝑢0 = lim𝑛 𝑢

−1
𝑛 𝑢0

fixes 𝑥. Thus, 𝑢0𝑥 = 𝑥, and 𝑥 = 𝑦 as claimed.
Remark 2.2. When the 𝐺-orbit of 𝑥0 ∈ 𝑋 is identified with the homogeneous space
𝐺/𝐻, where 𝐻 is the stabilizer of 𝑥0, the restriction of the metric 𝐷 to the 𝐺-orbit of
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𝑥0 corresponds to the quotient metric on 𝐺/𝐻 induced by the right-invariant metric
associated with the given norm on 𝐺.

We can then use 𝐷 to define a norm (which may take the value +∞) on Aut(𝑋, 𝜇),
leading to the definition of L1 full groups.

Definition 2.3. Let 𝐺 ↷ 𝑋 be a Borel measure-preserving action of a Polish normed
group (𝐺, ∥·∥) on a standard probability space (𝑋, 𝜇), and let𝐷 : 𝑋 × 𝑋→R≥0 ∪ {+∞}
be the associated metric on 𝑋 . The L1-norm of an automorphism 𝑇 ∈ Aut(𝑋, 𝜇) is
denoted by ∥𝑇 ∥1 and is defined as the integral

∥𝑇 ∥1 =

∫
𝑋

𝐷 (𝑥, 𝑇𝑥) 𝑑𝜇(𝑥).

In general, many elements of Aut(𝑋, 𝜇) may have an infinite norm. The L1 full group
of the action consists of those automorphisms for which the norm is finite:

[𝐺 ↷ 𝑋 ]1 = {𝑇 ∈ Aut(𝑋, 𝜇) : ∥𝑇 ∥1 < +∞}.

Elements of [𝐺 ↷ 𝑋 ]1 form a group under composition, as can be readily verified
using the triangle inequality for 𝐷 and the fact that the transformations in the L1 full
group are measure-preserving. Moreover, it is straightforward to check that ∥·∥1 defines
a norm on [𝐺 ↷ 𝑋 ]1. Our primary objective is to prove that this norm ∥·∥1 induces
a Polish group topology on [𝐺 ↷ 𝑋 ]1. Before doing so, however, we establish a
connection to the full group of the action 𝐺 ↷ 𝑋 , defined by

[𝐺 ↷ 𝑋] =
{
𝑇 ∈ Aut(𝑋, 𝜇) : (𝑥, 𝑇 (𝑥)) ∈ R𝐺 for almost all 𝑥 ∈ 𝑋

}
.

Note that since the L1-norm is given by ∥𝑇 ∥1 =
∫
𝑋
𝐷 (𝑥,𝑇𝑥) 𝑑𝜇(𝑥), if ∥𝑇 ∥1 < +∞, then

𝐷 (𝑥, 𝑇𝑥) < +∞ holds almost surely, implying 𝑇 ∈ [𝐺 ↷ 𝑋 ]. Thus, the L1 full group
[𝐺 ↷ 𝑋 ]1 is a subgroup of the full group [𝐺 ↷ 𝑋 ].

The full group of the action was shown to be a Polish group by A. Carderi and the first-
named author in [11] (where it is referred to as the orbit full group). Furthermore, when
the fixed group norm ∥ · ∥ is bounded, so is𝐷, which implies that [𝐺↷ 𝑋 ]1 = [𝐺↷ 𝑋 ].
Consequently, L1 full groups encompass the full groups studied in [11]. To demonstrate
that L1 full groups are Polish, we will adopt the same approach as in [11]. We first
provide an alternative definition of the L1 full group, from which the Polishness of the
topology will follow directly, and then show that the two definitions yield isometrically
isomorphic structures. This alternative definition relies on understanding the cocycles
associated with elements of the L1 full group.

Let us introduce some notation from Appendix B. For a standard Borel space 𝑌 , we
denote by L0(𝑋,𝑌 ) the space of measurable maps 𝑋 → 𝑌 . When 𝑌 is a Polish normed
group (𝐺, ∥·∥), we define L1(𝑋, 𝐺) to be the set of all 𝑓 ∈ L0(𝑋, 𝐺) satisfying∫

𝑋

∥ 𝑓 (𝑥)∥ 𝑑𝜇(𝑥) < +∞.
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Furthermore, given a Borel measure-preserving action 𝐺 ↷ 𝑋 , we define the map
Φ : L0(𝑋, 𝐺) → L0(𝑋, 𝑋) by Φ( 𝑓 ) (𝑥) = 𝑓 (𝑥) · 𝑥 for 𝑓 ∈ L0(𝑋, 𝐺) and 𝑥 ∈ 𝑋 .

Definition 2.4. Let 𝐺 ↷ 𝑋 be a Borel measure-preserving action of a Polish group 𝐺
on a standard probability space (𝑋, 𝜇). A function 𝑐 ∈ L0(𝑋, 𝐺) is called a cocycle of
𝑇 ∈ [𝐺 ↷ 𝑋 ] if 𝑇 (𝑥) = 𝑐(𝑥) · 𝑥 holds for almost every 𝑥 ∈ 𝑋 .

Note that if we identify Aut(𝑋, 𝜇) with a subset of L0(𝑋, 𝑋), then 𝑐 is a cocycle
of 𝑇 ∈ [𝐺 ↷ 𝑋] precisely when 𝑇 = Φ(𝑐).

Definition 2.5. Consider a Borel measure-preserving action𝐺↷ 𝑋 of a Polish normed
group (𝐺, ∥·∥) on a standard probability space (𝑋, 𝜇). The L1 pre-full group PF1 is
defined as

PF1 = Φ−1(Aut(𝑋, 𝜇)) ∩ L1(𝑋, 𝐺).

In other words, the L1 pre-full group consists of all integrable cocycles.

Remark 2.6. When the group norm ∥·∥ on 𝐺 is bounded, the integrability condition
becomes trivial. In this case, PF1 = Φ−1(Aut(𝑋, 𝜇)) coincides with the pre-full group
PF as defined in [11, p. 91]. The latter was shown to be Polish in the topology of
convergence in measure induced by L0(𝑋, 𝐺), and our next result encompasses this in
view of Proposition B.8.

We equip the L1 pre-full group with the topology induced by L1(𝑋, 𝐺), which
arises from the norm

∥ 𝑓 ∥L
1 (𝑋,𝐺)

1 =

∫
𝑋

∥ 𝑓 (𝑥)∥ 𝑑𝜇(𝑥).

By Proposition B.13, L1(𝑋,𝐺) is a Polish normed group under pointwise multiplication.
Following the approach in [11, p. 91], we lift the composition law from Aut(𝑋, 𝜇)

to cocycles as follows: for 𝑓 , 𝑔 ∈ PF1 and 𝑥 ∈ 𝑋 , define the multiplication by

( 𝑓 ∗ 𝑔) (𝑥) = 𝑓 (Φ(𝑔) (𝑥))𝑔(𝑥),

and the inverse1 by
inv( 𝑓 ) (𝑥) = 𝑓 (Φ( 𝑓 )−1(𝑥))−1.

Proposition 2.7. PF1 is a Polish group with the multiplication ( 𝑓 , 𝑔) ↦→ ( 𝑓 ∗ 𝑔) and
the inverse 𝑓 ↦→ inv( 𝑓 ). The function 𝑓 ↦→ ∥ 𝑓 ∥L

1 (𝑋,𝐺)
1 is a compatible group norm

on PF1, and Φ ↾PF1 : PF1 → Aut(𝑋, 𝜇) is a continuous homomorphism.

1The symbol 𝑓 −1 is already reserved for the pointwise inverse on L1 (𝑋, 𝐺). To avoid confu-
sion, we introduce a distinct notation for this new operation.
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Proof. First of all, we need to show that these operations are well-defined in the sense
that the functions 𝑓 ∗ 𝑔 and inv( 𝑓 ) belong to L1(𝑋, 𝐺) whenever 𝑓 and 𝑔 do. To this
end, observe that for 𝑓 , 𝑔 ∈ PF1,

∥ 𝑓 ∗ 𝑔∥L
1 (𝑋,𝐺)

1 =

∫
𝑋

∥ 𝑓 (Φ(𝑔) (𝑥))𝑔(𝑥)∥ 𝑑𝜇(𝑥)

≤
∫
𝑋

∥ 𝑓 (Φ(𝑔) (𝑥))∥ 𝑑𝜇(𝑥) +
∫
𝑋

∥𝑔(𝑥)∥ 𝑑𝜇(𝑥).

Now note that since Φ(𝑔) is measure-preserving, we have∫
𝑋

∥ 𝑓 (Φ(𝑔) (𝑥))∥ 𝑑𝜇(𝑥) =
∫
𝑋

∥ 𝑓 (𝑥)∥ 𝑑𝜇(𝑥),

and therefore

∥ 𝑓 ∗ 𝑔∥L
1 (𝑋,𝐺)

1 ≤
∫
𝑋

∥ 𝑓 (𝑥)∥ 𝑑𝜇(𝑥) +
∫
𝑋

∥𝑔(𝑥)∥ 𝑑𝜇(𝑥) = ∥ 𝑓 ∥L
1 (𝑋,𝐺)

1 + ∥𝑔∥L
1 (𝑋,𝐺)

1 .

In particular, 𝑓 ∗ 𝑔 ∈ L1(𝑋, 𝐺), and thus PF1 is closed under multiplication. Similarly,
Φ( 𝑓 ) ∈ Aut(𝑋, 𝜇) implies

∥inv( 𝑓 )∥L
1 (𝑋,𝐺)

1 =

∫
𝑋

∥ 𝑓 (Φ( 𝑓 )−1(𝑥))−1∥ 𝑑𝜇(𝑥)

=

∫
𝑋

∥ 𝑓 (𝑥)−1∥ 𝑑𝜇(𝑥) = ∥ 𝑓 ∥L
1 (𝑋,𝐺)

1 .

Thus PF1 is closed under taking inverses. We leave it to the reader to verify that the
operation ∗ endows PF1 with a group structure, where the inverse of an element 𝑓 ∈ PF1

is given by inv( 𝑓 ). Additionally, we have shown that ∥·∥L
1 (𝑋,𝐺)

1 defines a group norm
on PF1. It remains to establish the following properties:
• The topology induced by L1(𝑋, 𝐺) on PF1 is Polish.
• The topology induced by L1(𝑋, 𝐺) on PF1 is a group topology.

• The restriction of the norm ∥·∥L
1 (𝑋,𝐺)

1 to PF1 is compatible with this group topology.

Note that the third property follows directly from the first two, as the norm ∥·∥L
1 (𝑋,𝐺)

1
determines the topology of L1(𝑋, 𝐺), even though the latter is equipped with distinct
group operations.

We are thus left with verifying that the topology induced by L1(𝑋, 𝐺) on PF1 is a
Polish group topology. To achieve this, we equip 𝑋 with a Polish topology that induces its
standard Borel structure and ensures the continuity of the𝐺-action on 𝑋 . Such a topology
is guaranteed by a well-known result of H. Becker and A. S. Kechris [6, Thm. 5.2.1].
With this topology in place, L0(𝑋, 𝑋) can be endowed with the topology of convergence
in measure, and the evaluation map

Φ : L0(𝑋, 𝐺) → L0(𝑋, 𝑋), Φ( 𝑓 ) (𝑥) = 𝑓 (𝑥) · 𝑥,
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becomes continuous by Lemma B.4.
Since the topology of L1(𝑋, 𝐺) refines that of L0(𝑋, 𝐺), the restriction of Φ to

L1(𝑋, 𝐺) remains continuous under its Polish group topology. The continuity of the
group operations now follows directly from the continuity of Φ, combined with the
continuity of the Aut(𝑋, 𝜇)-action on L1(𝑋, 𝐺) (Proposition B.11) and the fact that
L1(𝑋,𝐺) forms a topological group under pointwise multiplication (Proposition B.13).

We now establish that the induced topology on PF1 is Polish by invoking Alexan-
drov’s theorem. This theorem states that a subspace of a Polish space is Polish under
the induced topology if and only if it is a 𝐺 𝛿 set (see [31, Thm. 3.9]). The forward
direction of Alexandrov’s theorem, together with Proposition B.12, implies that the
Polish group Aut(𝑋, 𝜇) is a 𝐺 𝛿 subset of L0(𝑋, 𝑋). By the continuity of Φ, it follows
that PF1 = Φ−1(Aut(𝑋, 𝜇)) ∩ L1(𝑋,𝐺) is a 𝐺 𝛿 subset of L1(𝑋,𝐺). Consequently, the
reverse implication of Alexandrov’s theorem ensures that PF1 is Polish.

Remark 2.8. Our arguments rely fundamentally on the results of H. Becker and
A. S. Kechris [6], which allow us to transform Borel actions into continuous ones.
We note that the application of [6, Thm. 5.2.1] in the proof of Proposition 2.7 can be
replaced with the more straightforward result [6, Thm. 2.6.6]: every Borel 𝐺-action
admits a Borel embedding into a continuous 𝐺-action on a compact Polish space. By
equipping this space with the push-forward measure, we can proceed with our analysis,
as the Borel embedding ensures that the actions are isomorphic up to a null set.

Let 𝐾 ⊴ PF1 denote the kernel of Φ ↾PF1 , and let ∥·∥PF1/𝐾
1 denote the quotient norm

induced by ∥·∥L
1 (𝑋,𝐺)

1 (see Proposition A.3 regarding the properties of the quotient
norm). The factor group (PF1/𝐾, ∥·∥PF1/𝐾

1 ) is evidently a Polish normed group, and it
turns out to be isometrically isomorphic to the L1 full group introduced in Definition 2.3,
as we will now see. Let Φ̃ : PF1/𝐾 → Aut(𝑋, 𝜇) denote the homomorphism induced
by Φ ↾PF1 onto the factor group.

Proposition 2.9. The homomorphism Φ̃ : PF1/𝐾→Aut(𝑋, 𝜇) establishes an isometric
isomorphism between (PF1/𝐾, ∥·∥PF1/𝐾

1 ) and ( [𝐺 ↷ 𝑋 ]1, ∥·∥1).

Proof. We begin by showing that ∥𝑔𝐾 ∥PF/𝐾
1 = ∥Φ̃(𝑔𝐾)∥1 holds for any 𝑔𝐾 ∈ PF1/𝐾 .

By the definition of the quotient norm,

∥𝑔𝐾 ∥PF1/K
1 = inf

𝑘∈𝐾

∫
𝑋

∥𝑔(𝑥)𝑘 (𝑥)∥ 𝑑𝜇(𝑥).

For any fixed 𝑘 ∈ 𝐾 , we have 𝑔(𝑥)𝑘 (𝑥) · 𝑥 = 𝑔(𝑥) · 𝑥, and therefore

𝐷 (𝑥, 𝑔(𝑥) · 𝑥) ≤ ∥𝑔(𝑥)𝑘 (𝑥)∥ for almost every 𝑥 ∈ 𝑋.
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This readily implies the inequality ∥Φ̃(𝑔𝐾)∥1 ≤ ∥𝑔𝐾 ∥PF1/𝐾
1 . For the other direction,

let 𝜖 > 0 and consider the set

{(𝑥, 𝑢) ∈ 𝑋 × 𝐺 : 𝑔(𝑥) · 𝑥 = 𝑢 · 𝑥 and ∥𝑢∥ ≤ 𝐷 (𝑥, 𝑔(𝑥) · 𝑥) + 𝜖}.

Using the Jankov–von Neumann uniformization theorem, one may pick a measurable
map 𝑔0 : 𝑋 → 𝐺 that satisfies 𝑔0(𝑥) · 𝑥 = 𝑔(𝑥) · 𝑥 and ∥𝑔0(𝑥)∥ ≤ 𝐷 (𝑥, 𝑔(𝑥) · 𝑥) + 𝜖
for almost all 𝑥 ∈ 𝑋 . Since 𝑥 ↦→ 𝑔(𝑥)−1𝑔0(𝑥) ∈ 𝐾 , we have

∥Φ̃(𝑔𝐾)∥1 =

∫
𝑋

𝐷 (𝑥, 𝑔(𝑥) · 𝑥) 𝑑𝜇(𝑥)

≥
∫
𝑋



𝑔(𝑥)𝑔(𝑥)−1𝑔0(𝑥)


 𝑑𝜇(𝑥) − 𝜖

≥ ∥𝑔𝐾 ∥PF1/𝐾
1 − 𝜖 .

As 𝜖 is an arbitrary positive real, we conclude that ∥𝑔𝐾 ∥PF1/𝐾
1 = ∥Φ̃(𝑔𝐾)∥1.

It remains to check that Φ̃ is surjective. For an automorphism 𝑇 ∈ [𝐺 ↷ 𝑋 ]1,
consider the set

{(𝑥, 𝑢) ∈ 𝑋 × 𝐺 : 𝑇𝑥 = 𝑢 · 𝑥 and ∥𝑢∥ ≤ 𝐷 (𝑥, 𝑇𝑥) + 1}.

Applying the Jankov–von Neumann uniformization theorem once again, we get a map
𝑔 ∈ L0(𝑋, 𝐺) such that Φ(𝑔) = 𝑇 and ∥𝑔(𝑥)∥ ≤ 𝐷 (𝑥, 𝑇𝑥) + 1. The latter inequality,
together with the assumption that 𝑇 ∈ [𝐺 ↷ 𝑋 ]1, easily implies that 𝑔 ∈ L1(𝑋, 𝐺),
and thus 𝑔𝐾 ∈ PF1/𝐾 is the preimage of 𝑇 under Φ̃.

Results discussed thus far can be summarized as follows.

Theorem 2.10. Let 𝐺 ↷ 𝑋 be a Borel measure-preserving action of a Polish normed
group (𝐺, ∥·∥) on a standard probability space. The L1 full group [𝐺 ↷ 𝑋 ]1 is a
Polish normed group relative to the norm ∥𝑇 ∥1 =

∫
𝑋
𝐷 (𝑥, 𝑇𝑥) 𝑑𝜇(𝑥).

Remark 2.11. When the acting group is finitely generated and equipped with the word
length metric with respect to a finite generating set, it can be shown that the left-invariant
metric induced by the norm on the L1 full group is complete (see [40, Prop. 3.4 and 3.5]
and the remark thereafter for a more general statement). Nevertheless, L1 full groups
generally do not admit compatible complete left-invariant metrics, i.e., they are not
necessarily CLI groups. For instance, if 𝐺 = R is acting by rotation on the circle, the
L1 full group of the action is all of Aut(S1, 𝜆), which is not CLI.

Let us point out a possibility to generalize our framework. Given a standard prob-
ability space (𝑋, 𝜇), consider an extended Borel metric 𝐷 on 𝑋 , i.e., a Borel metric
that is allowed to take the value +∞ (Eq. (2.1) provides such an example). Note that
the relation 𝐷 (𝑥, 𝑦) < +∞ is an equivalence relation. One can now define the L1 full
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group of 𝐷 in complete analogy with Definition 2.3 as the group of all 𝑇 ∈ Aut(𝑋, 𝜇)
whose norm ∥𝑇 ∥𝐷 =

∫
𝑋
𝐷 (𝑥, 𝑇 (𝑥)) 𝑑𝜇(𝑥) is finite.

Question 2.12. Suppose that 𝐷 restricts to a complete separable metric on each
equivalence class {𝑦 ∈ 𝑋 : 𝐷 (𝑥, 𝑦) < +∞}, 𝑥 ∈ 𝑋 . Is the L1 full group of 𝐷 Polish in
the topology of the norm ∥·∥𝐷?

2.2 L1 full groups and quasi-metric structures

When viewed as a normed group, the L1 full group [𝐺 ↷ 𝑋 ]1 depends on the choice
of a compatible norm on𝐺. The topological structure on [𝐺 ↷ 𝑋 ]1, however, depends
only on the quasi-metric structure of the acting group. Recall that two norms ∥·∥ and
∥·∥′ on a Polish group 𝐺 are quasi-isometric if there exists a constant 𝐶 > 0 such that
for all 𝑔 ∈ 𝐺,

1
𝐶
∥𝑔∥ − 𝐶 ≤ ∥𝑔∥′ ≤ 𝐶∥𝑔∥ + 𝐶.

Lemma 2.13. Let ∥·∥ and ∥·∥′ be two quasi-isometric compatible norms on a Polish
group 𝐺, and let 𝐺 ↷ (𝑋, 𝜇) be a Borel measure-preserving action on a standard
probability space. The L1 full groups associated with the two norms are equal as
topological groups.

Proof. The quasi-isometry condition implies that a function 𝑓 : 𝑋 → 𝐺 satisfies∫
𝑋
∥ 𝑓 (𝑥)∥ 𝑑𝜇(𝑥) < +∞ if and only if

∫
𝑋
∥ 𝑓 (𝑥)∥′ 𝑑𝜇(𝑥) < +∞. In particular, the L1

full groups associated with these norms are equal as abstract groups.
Both topologies make the inclusion of [𝐺 ↷ 𝑋 ]1 into Aut(𝑋, 𝜇) continuous

by Proposition 2.7, and, in particular, the inclusion map is Borel. Since injective
images of Borel sets by Borel maps are Borel (see, for example, [31, Thm. 15.1]), it
follows that both topologies induce the same Borel structure on [𝐺 ↷ 𝑋 ]1, which
also coincides with the one induced by the weak topology on Aut(𝑋, 𝜇). A standard
automatic continuity result (originally due to S. Banach [4, Thm. 4 p. 23]) then yields
equality of the two topologies (see also the second paragraph following [6, Lem. 1.2.6]).

When a Polish group 𝐺 admits a canonical choice of the quasi-metric structure, L1

full groups [𝐺 ↷ 𝑋 ]1 are unambiguously defined as topological groups without the
need to choose any particular norm on𝐺. This is the case for boundedly generated Polish
groups—the class of groups identified and studied by C. Rosendal in his treatise [52].
Appendix A.2 provides a succinct review of the concept of maximal norms on boundedly
generated Polish groups.

An example of this situation is given by 𝐺 = R, where the usual Euclidean norm is
maximal in the sense of Definition A.5.
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Remark 2.14. We will see in the last chapter that the natural L1 norm on the L1 full
groups of R-actions is maximal so that it defines a quasi-metric structure which is
canonically associated with the topological group structure.

2.3 Embedding L1 isometrically in L1 full groups

We now present a general result on the geometry of L1 full groups equipped with the
L1 norm ∥·∥1, demonstrating that these groups are quite large.

Given a 𝜎-finite measured space (𝑋,B, 𝜆), let MAlg 𝑓 (𝑋, 𝜆) denote the space of
all finite-measure subsets 𝐵 ∈ B, identified up to measure zero. Endow MAlg 𝑓 (𝑋, 𝜆)
with the metric 𝑑𝜆(𝐵1, 𝐵2) = 𝜆(𝐵1 △ 𝐵2), where △ denotes the symmetric difference.

Proposition 2.15. Let 𝐺 ↷ 𝑋 be a Borel measure-preserving action of a Polish
normed group (𝐺, ∥·∥). If

[𝐺 ↷ 𝑋 ]1 ≠ [𝐺 ↷ 𝑋],

then the metric space (MAlg 𝑓 (R, 𝜆), 𝑑𝜆) embeds isometrically into the L1 full group
of 𝐺 ↷ 𝑋 endowed with its L1 metric, and hence so does L1(𝑋, 𝜇,R).

Proof. [𝐺 ↷ 𝑋] is a full group, so any of its elements can be written as a product of
three involutions belonging to [𝐺↷ 𝑋] by [55]. By assumption, [𝐺↷ 𝑋 ]1 ≠ [𝐺↷ 𝑋],
so there must be an involution 𝑈 ∈ [𝐺 ↷ 𝑋] which does not belong to [𝐺 ↷ 𝑋 ]1.
Denote by B𝑈 the 𝜎-algebra on supp𝑈 consisting of𝑈-invariant sets, endowed with
the measure given by 𝜆𝑈 (𝐴) = ∥𝑈𝐴∥1, where𝑈𝐴(𝑥) = 𝑈 (𝑥) if 𝑥 ∈ 𝐴 and𝑈𝐴(𝑥) = 𝑥
otherwise. Since supp𝑈 =

⋃
𝑛{𝑥 ∈ supp𝑈 : 𝐷 (𝑥,𝑈 (𝑥)) ≤ 𝑛}, the measure 𝜆𝑈 is 𝜎-

finite. Also, 𝜆𝑈 is non-atomic, because so is 𝜇, and infinite, because𝑈 ∉ [𝐺 ↷ 𝑋 ]1.
There is only one 𝜎-finite standard atomless infinite measured space up to isomorphism
(namely (R,B(R), 𝜆)), so we conclude that (MAlg 𝑓 (supp𝑈, 𝜆𝑈), 𝑑𝜆𝑈 ) is isometric
to (MAlg 𝑓 (R, 𝜆), 𝑑𝜆). Composing this isometry with 𝐴 ↦→ 𝑈𝐴, we get the desired
isometric embedding (MAlg 𝑓 (R, 𝜆), 𝑑𝜆) → [𝐺 ↷ 𝑋 ]1.

Finally, we observe that L1(𝑋, 𝜇,R) can be embedded into MAlg 𝑓 (𝑋 × R, 𝜇 ⊗ 𝜆)
by taking a function 𝑓 to its epigraph, namely the set of all (𝑥, 𝑦) ∈ 𝑋 × R such that
𝑓 (𝑥) ≤ 𝑦 ≤ 0 or 0 ≤ 𝑦 ≤ 𝑓 (𝑥). Since there is again only one infinite 𝜎-finite standard
atomless measured space and (𝑋 × R, 𝜇 ⊗ 𝜆) is such a space, we get an isometric
embedding L1(𝑋, 𝜇,R) → MAlg 𝑓 (R, 𝜆) as wanted.

Remark 2.16. Full groups of actions of Polish groups are always coarsely bounded.
In fact, they are coarsely bounded even as discrete groups2, which is a result due to

2Being coarsely bounded as a discrete group is also called the Bergman property.
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M. Droste, W. C. Holland and G. Ulbrich [14] (see also [45, Section I.8] for a more
general statement which encompasses the non-ergodic case). In particular, the above
result is actually a sharp dichotomy: every L1 full group of a Polish normed group
action is either coarsely bounded, or it contains an isometric copy of L1(𝑋, 𝜇,R).
Remark 2.17. Proposition 2.15 significantly improves [41, Prop. 6.9], sinceR𝑛, endowed
with the ℓ1 norm, embeds isometrically into L1(𝑋, 𝜇,R).

2.4 Stability under taking induced transformations

Some of the basic properties of L1 full groups are discussed—in the wider generality
of induction friendly finitely full groups—in Chapter 3. The often-used fundamental
fact is the closure of L1 full groups under taking the induced transformations, which is
a generalization of [40, Prop. 3.6]. We formulate this in Proposition 2.18.

Let 𝑇 ∈ Aut(𝑋, 𝜇) be a measure-preserving transformation. Recall that for a mea-
surable subset 𝐴 ⊆ 𝑋 , the induced transformation 𝑇𝐴 is supported on 𝐴 and is defined
to be 𝑇𝑛 (𝑥) for 𝑥 ∈ 𝐴 where 𝑛 ≥ 1 is the smallest integer such that 𝑇𝑛 (𝑥) ∈ 𝐴. By the
Poincaré recurrence theorem, such a map yields a well-defined measure-preserving
transformation.

Proposition 2.18. Let𝐺↷ 𝑋 be a Borel measure-preserving action of a Polish normed
group (𝐺, ∥·∥). For any element 𝑇 ∈ [𝐺 ↷ 𝑋 ]1 and any measurable set 𝐴 ⊆ 𝑋 , the
induced transformation 𝑇𝐴 belongs to [𝐺 ↷ 𝑋 ]1 and moreover ∥𝑇𝐴∥1 ≤ ∥𝑇 ∥1.

Proof. For 𝑛 ≥ 1, let 𝐴𝑛 be the set of elements of 𝐴 whose return time is equal to 𝑛;
note that 𝑋 =

⊔
𝑛≥1

⊔𝑛−1
𝑖=0 𝑇

𝑖 (𝐴𝑛). Let as before 𝐷 : R𝐺 → R≥0 be the metric induced
by the group norm ∥·∥ on the orbits of the action. To estimate the value of ∥𝑇𝐴∥1,
observe that

∥𝑇𝐴∥1 =

∫
𝑋

𝐷 (𝑥, 𝑇𝐴𝑥) 𝑑𝜇(𝑥) =
∞∑︁
𝑛=1

∫
𝐴𝑛

𝐷 (𝑥, 𝑇𝐴𝑥) 𝑑𝜇(𝑥)

=

∞∑︁
𝑛=1

∫
𝐴𝑛

𝐷 (𝑥, 𝑇𝑛𝑥) 𝑑𝜇(𝑥).
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Using the triangle inequality, we get

∥𝑇𝐴∥1 ≤
∞∑︁
𝑛=1

𝑛−1∑︁
𝑖=0

∫
𝐴𝑛

𝐷 (𝑇 𝑖𝑥, 𝑇 𝑖+1𝑥) 𝑑𝜇(𝑥)

=

∞∑︁
𝑛=1

𝑛−1∑︁
𝑖=0

∫
𝑇𝑖 (𝐴𝑛 )
𝐷 (𝑥, 𝑇𝑥) 𝑑 (𝜇 ◦ 𝑇−𝑖) (𝑥)

∵ 𝑇 preserves 𝜇 =

∞∑︁
𝑛=1

𝑛−1∑︁
𝑖=0

∫
𝑇𝑖 (𝐴𝑛 )
𝐷 (𝑥, 𝑇𝑥) 𝑑𝜇(𝑥) =

∫
𝑋

𝐷 (𝑥, 𝑇𝑥) 𝑑𝜇(𝑥) = ∥𝑇 ∥1 .

Thus 𝑇𝐴 ∈ [𝐺 ↷ 𝑋 ]1 and ∥𝑇𝐴∥1 ≤ ∥𝑇 ∥1 as claimed.



Chapter 3

Polish finitely full groups

The primary focus of this work is the study of L1 full groups of Borel measure-preserving
actions of Polish normed groups. However, several results are valid in the more general
context of what we call Polish finitely full groups. This generalization encompasses L1

full groups and provides a unified and extended context for addressing topics such as
topological simplicity and maximal norms, building on the results of [40, 41].

Beginning with a Polish finitely full group as defined in Section 3.1, we construct
in Section 3.2 a natural closed subgroup, termed the symmetric subgroup, which is
analogous to V. Nekrashevych’s symmetric and alternating topological full groups [48].
We show that this closed subgroup coincides with the topological derived subgroup
under a mild hypothesis, satisfied by L1 full groups, which we call induction friendliness.
Section 3.3 explores closed normal subgroups of the symmetric subgroup: we establish
their correspondence to invariant sets—a fact that easily yields topological simplicity
when the ambient Polish finitely full group is ergodic. Finally, in Section 3.4, we provide
a condition on a normed induction friendly Polish finitely full group that guarantees
the maximality of its norm’s restriction to the symmetric subgroup. Maximality is
understood in the sense of C. Rosendal, and Appendix A.2 contains a brief reminder
of the relevant notions.

3.1 Polish full and finitely full groups

H. Dye defined a subgroup G ≤ Aut(𝑋, 𝜇) as being full when it is stable under the
cutting and pasting of its elements along a countable partition: given any partition
(𝐴𝑛)𝑛 of 𝑋 and any sequence (𝑔𝑛)𝑛 such that the family (𝑔𝑛 (𝐴𝑛))𝑛 also partitions
𝑋 , the element 𝑇 ∈ Aut(𝑋, 𝜇) obtained as the reunion over 𝑛 ∈ N of the restrictions
𝑔𝑛 ↾𝐴𝑛 belongs to G. In particular, the group Aut(𝑋, 𝜇) itself is full.

Given any G ≤ Aut(𝑋, 𝜇), the group obtained by cutting and pasting elements of
G along countable partitions is the smallest full subgroup containing G. We denote it
by [G] and call it the full group generated by G.

Recall that the uniform topology on Aut(𝑋, 𝜇) is the topology induced by the
uniform metric 𝑑𝑢 defined by

𝑑𝑢 (𝑇1, 𝑇2) = 𝜇({𝑥 ∈ 𝑋 : 𝑇1𝑥 ≠ 𝑇2𝑥}).

The following can essentially be traced back to H. Dye [15, Lem. 5.4].

Proposition 3.1. The metric 𝑑𝑢 is complete on any full group G, and it is separable if
and only if the full group is generated by a countable group.
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Proof. Suppose that (𝑇𝑛)𝑛 is a Cauchy sequence in the full group G. Taking a subse-
quence, we may assume that 𝑑𝑢 (𝑇𝑛,𝑇𝑛+1) < 2−𝑛 for all 𝑛. By the Borel–Cantelli lemma,
for almost every 𝑥 ∈ 𝑋 there is some 𝑁 ∈ N such that 𝑇𝑛𝑥 = 𝑇𝑁𝑥 for all 𝑛 ≥ 𝑁 . Let
𝑇𝑥 = 𝑇𝑁𝑥 for such 𝑁 = 𝑁 (𝑥), and note that 𝑇 is a measure-preserving bĳection1 and
𝑑𝑢 (𝑇𝑛, 𝑇) ≤ 2−𝑛+1. By construction, 𝑇 is obtained by cutting and pasting the elements
𝑇𝑛 of G along a countable partition so 𝑇 ∈ G, since G is full.

Suppose G is separable and let Γ be a countable dense subgroup. The group [Γ]
is a countably generated full group which is dense in G, so G = [Γ] by completeness.
The converse is obtained by noting that if Γ generates G, then one can view G as the
full group of the equivalence relation generated by a realization of the action of Γ on
(𝑋, 𝜇), which is 𝑑𝑢-separable by [32, Prop. 3.2].

The L1 full groups that we are considering are not full in the sense of H. Dye unless
the norm on the acting Polish group is bounded, a case which was considered earlier
in [11]. They nevertheless satisfy the following weaker property.

Definition 3.2. A group G ≤ Aut(𝑋, 𝜇) of measure-preserving transformations is
finitely full if for any partition 𝑋 = 𝐴1 ⊔ · · · ⊔ 𝐴𝑛 and all elements 𝑔1, . . . , 𝑔𝑛 ∈ G
such that the sets 𝑔1𝐴1, . . . , 𝑔𝑛𝐴𝑛 also partition 𝑋 , the transformation 𝑇 ∈ Aut(𝑋, 𝜇),
obtained as the reunion over 𝑖 ∈ {1, . . . , 𝑛} of the restrictions 𝑔𝑖 ↾𝐴𝑖 , belongs to G.

We have the following useful relationship between fullness and finite fullness.

Proposition 3.3. The 𝑑𝑢-closure of any finitely full group G is equal to the full group
[G] generated by G. Moreover, every element 𝑇 ∈ [G] is a 𝑑𝑢-limit of elements of G
whose support is contained in the support of 𝑇 .

Proof. Since full groups are 𝑑𝑢-closed and using the definition of fullness, it suffices
to show that every element 𝑇 ∈ [G] is a limit of elements of G that belong to the full
group generated by 𝑇 .

Since every 𝑇 ∈ [G] is a product of three involutions in [𝑇]2 [55], it suffices to
show that every involution in [G] is a limit of elements of G whose support is contained
in the support of that involution. Let𝑈 be such an involution, let (𝐴𝑛)𝑛 be a partition of
𝑋 , and let (𝑔𝑛)𝑛 in G be such that𝑈𝑥 = 𝑔𝑛𝑥 for all 𝑥 ∈ 𝐴𝑛. Pick a fundamental domain
𝐵 for𝑈, i.e., 𝐵 ∩𝑈 (𝐵) = ∅ and supp𝑈 = 𝐵 ∪𝑈 (𝐵). If 𝐵𝑛 = 𝐴𝑛 ∩ 𝐵, then𝑈𝑥 = 𝑔𝑛𝑥
for all 𝑥 ∈ 𝐵𝑛, and, since𝑈 is an involution,𝑈𝑥 = 𝑔−1

𝑛 𝑥 for all 𝑥 ∈ 𝑈 (𝐵𝑛). Let

𝑈𝑛𝑥 =

{
𝑈𝑥 if 𝑥 ∈ ⋃𝑚≤𝑛 (𝐵𝑚 ∪𝑈 (𝐵𝑚)) ,
𝑥 otherwise.

1This also follows from the fact due to P. Halmos [27] that Aut(𝑋, 𝜇) is 𝑑𝑢-complete.
2In fact, we only need the much easier fact that every element is a limit of products of two

involutions from its full group, which follows by combining Theorem 3.3 and Sublemma 4.3
from [32].
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Clearly𝑈𝑛 ∈ G, since G is finitely full. Furthermore,𝑈𝑛
𝑑𝑢−−→ 𝑈 and supp𝑈𝑛 ⊆ supp𝑈

by construction, which finishes the proof.

Consider a finitely full group G which is a Borel subset of Aut(𝑋, 𝜇) and therefore
inherits the structure of a standard Borel space. If G is Polishable, i.e., if it admits
a Polish group topology compatible with the Borel structure, then such topology
is necessarily unique and must refine the weak topology inherited from Aut(𝑋, 𝜇)
(standard automatic continuity results can be found, for instance, in [6, Sec. 1.6]). We
refer to such Polishable groups G endowed with their unique Polish group topology
refining the weak topology as Polish finitely full groups. In this monograph, our
motivating example for introducing this class is of course L1 full groups.

Remark 3.4. For clarity, we adopt the notation 𝑇𝑛
G−→ 𝑇 to mean convergence of the

sequence (𝑇𝑛) to 𝑇 in the Polish topology of G.

For any subgroup𝐺 ≤ Aut(𝑋, 𝜇), there is the smallest finitely full group containing
𝐺. Note that if 𝐻 ≤ Aut(𝑋, 𝜇) is a finite group, then the finitely full group it generates
coincides with the full group it generates. This, in particular, applies to the group
generated by a periodic transformation with bounded periods.

Proposition 3.5. Suppose G is a Polish finitely full group, and 𝑈 ∈ G is a periodic
transformation with bounded periods. The topology induced by G on the full group
of 𝑈 is equal to the uniform topology.

Proof. The weak and uniform topologies on [𝑈 ] coincide because𝑈 is periodic. We
have already mentioned that the topology of G refines the weak topology. Since [𝑈 ]
is Polish in the uniform topology, by the automatic continuity result [6, Thm. 1.2.6],
the topology induced by G on the full group of𝑈 is refined by the uniform topology.
Consequently, the uniform topology and the topology induced from G onto [𝑈 ] must
coincide.

We conclude this preliminary discussion with a definition of aperiodicity, which
applies to arbitrary subgroups of Aut(𝑋, 𝜇). Such a notion was already worked out
by H. Dye [15, Sec. 2] when he introduced type II subgroups. An equivalent version,
which suffices for our purposes, is as follows.

Definition 3.6. A subgroup 𝐺 ≤ Aut(𝑋, 𝜇) is aperiodic if it contains a countable
subgroup whose action on (𝑋, 𝜇) has no finite orbits.

Since the weak topology on Aut(𝑋, 𝜇) is separable and metrizable, every group
𝐺 ≤ Aut(𝑋, 𝜇) contains a countable weakly dense subgroup. Therefore, every aperiodic
𝐺 contains a countable weakly dense subgroup whose action on (𝑋, 𝜇) has no finite
orbits. Further discussion of aperiodicity can be found in Appendix F.4.
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3.2 Derived subgroup and symmetric subgroup

Recall that the algebraic derived subgroup of a group 𝐺 is the subgroup generated by
all commutators. If 𝐺 is additionally equipped with a group topology, the topological
derived subgroup is defined as the closure of the algebraic derived subgroup. In
this work, we do not consider algebraic derived subgroups and use the term derived
subgroup exclusively to refer to the topological derived subgroup.

Our goal in this section is to determine when the derived subgroup of a Polish
finitely full group is topologically generated by involutions—that is, when involutions
generate a dense subgroup of the derived subgroup. We begin by noting that aperiodic
finitely full groups admit many involutions in the sense of [18, p. 384].

Lemma 3.7. Let G be a finitely full aperiodic group. For every measurable nontrivial
𝐴 ⊆ 𝑋 , there is a nontrivial involution 𝑔 ∈ G whose support is contained in 𝐴.

Proof. By Lemma F.13, there is an involution 𝑇 ∈ [G] whose support is equal to 𝐴.
By the moreover part of Proposition 3.3, 𝑇 is the 𝑑𝑢-limit of 𝑔𝑛 ∈ G supported in 𝐴.
In particular, one of the 𝑔𝑛’s is nontrivial and 𝑔 = 𝑔𝑛 satisfies the statement of the
lemma.

The first and second items of the following definition constitute analogues of
V. Nekrashevych’s symmetric and alternating topological full groups [48], respectively.
In the setup of L1 full groups, however, these notions coincide, as we will see shortly.

Definition 3.8. Given a Polish finitely full group G, we let
• 𝔖(G) be the closed subgroup of G generated by involutions, which we call the

symmetric subgroup of G.
• 𝔄(G) be the closed subgroup of G generated by 3-cycles, i.e., generated by periodic

transformations whose non-trivial orbits have size 3.
• 𝔇(G) be the closed subgroup generated by commutators, called the derived sub-

group.

All these groups are closed normal subgroups of G, and 𝔄(G) ≤ 𝔖(G) ∩𝔇(G)
because every 3-cycle is a commutator of two involutions from its full group.

Proposition 3.9. 𝔄(G) = 𝔖(G) for any aperiodic finitely full group G.

Proof. We need to show that every involution is a limit of products of 3-cycles. Let𝑈 ∈G
be an involution, and let𝐷 denote a fundamental domain of𝑈; thus supp𝑈 = 𝐷 ⊔𝑈 (𝐷).
By Lemma F.13, one can find an involution𝑉 ∈ [G] whose support is equal to 𝐷. Since
G is finitely full, we may write 𝐷 as an increasing union 𝐷 =

⋃
𝑛 𝐷𝑛, 𝐷𝑛 ⊆ 𝐷𝑛+1,

where each 𝐷𝑛 is 𝑉-invariant, and for every 𝑛 ∈ N the transformation 𝑉𝑛 induced by 𝑉
on 𝐷𝑛 belongs to the group G itself. Let𝑈𝑛 = 𝑈𝐷𝑛⊔𝑈 (𝐷𝑛 ) denote the transformation
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induced by𝑈 onto 𝐷𝑛 ⊔𝑈 (𝐷𝑛) and note that𝑈𝑛 → 𝑈 in the uniform topology, and
hence also in the topology of G by Proposition 3.5. Our plan is to use the following
permutation identity

(12) (34) = (12) (23) (24) (23) = (123) (423), (3.1)

where 𝑈𝑛 corresponds to (12) (34), 𝑉𝑛 to (13), and 𝑈𝑛𝑉𝑛𝑈𝑛 corresponds to (24).
To this end, let 𝐶𝑛 be a fundamental domain for 𝑉𝑛, put 𝑊𝑛 = 𝑈𝐶𝑛⊔𝑈 (𝐶𝑛 ) (which
corresponds to the involution (12)), and, at last, set 𝑆𝑛 = 𝑊𝑛𝑉𝑛𝑊𝑛 (corresponding
to (23) = (12) (13) (12)). Figure 3.1 illustrates the relations between these sets and
transformations.

1

𝐶𝑛

𝑊𝑛

2

𝑈𝑛 (𝐶𝑛)

𝑉𝑛 3

𝑉𝑛 (𝐶𝑛)

𝑈𝑛𝑉𝑛𝑈𝑛

4

𝑈𝑛𝑉𝑛 (𝐶𝑛)

𝑆𝑛

𝑈𝑛 (𝐷𝑛)

𝐷𝑛

Figure 3.1. The involution𝑈𝑛 is a products of 3-cycles via (12) (34) = (123) (234).

Eq. (3.1) translates into 𝑈𝑛 =
(
𝑊𝑛𝑆𝑛

) (
(𝑈𝑛𝑉𝑛𝑈𝑛)𝑆𝑛

)
, so 𝑈𝑛 is a product of two

3-cycles, hence it belongs to 𝔄(G). Since𝑈𝑛
G−→ 𝑈, we conclude that𝑈 ∈ 𝔄(G).

We do not know whether 𝔄(G) = 𝔇(G) holds for all finitely full groups, but here
is a convenient sufficient condition.

Definition 3.10. A Polish finitely full groupG is called induction friendly if it is stable
under taking induced transformations and, furthermore, whenever 𝑇 ∈ G and (𝐴𝑛)𝑛 is
an increasing sequence of 𝑇-invariant sets such that

⋃
𝑛 𝐴𝑛 = 𝐴, then 𝑇𝐴𝑛

G−→ 𝑇𝐴.
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In the above definition, we require stability under taking the induced transformations,
and so 𝑇𝐴𝑛 always belongs to G. However, for 𝑇-invariant 𝐴𝑛, the assertion 𝑇𝐴𝑛 ∈ G is
already a consequence of G being finitely full.

Observe that L1 full groups of measure-preserving actions of Polish normed groups
are finitely full and also induction friendly. Indeed, finite fullness follows from a
straightforward computation, while induction friendliness is a direct consequence of
Proposition 2.18 and the Lebesgue dominated convergence theorem.

Lemma 3.11. In an induction friendly Polish finitely full group G, every periodic
element belongs to 𝔖(G).

Proof. Suppose 𝑇 is periodic. For 𝑛 ∈ N, let 𝐴𝑛 be the set of 𝑥 ∈ 𝑋 whose 𝑇-orbit
has cardinality at most 𝑛. Each 𝐴𝑛 is 𝑇-invariant and

⋃
𝑛 𝐴𝑛 = 𝑋 . Moreover, 𝑇𝐴𝑛 is

periodic, so it can be written as a product of two involutions from its full group (see
e.g., [32, Sublem. 4.3]). SinceG is finitely full and the periods of𝑇𝐴𝑛 are bounded, these
two involutions belong to G, hence 𝑇𝐴𝑛 ∈ 𝔖(G). By induction friendliness, 𝑇𝐴𝑛

G−→ 𝑇 ,
which finishes the proof since 𝔖(G) is closed in G.

Lemma 3.12. Let G be an induction friendly Polish finitely full group. Let 𝑇 ∈ G
and 𝐹 ⊆ 𝑋 be the aperiodic part of 𝑇 , i.e.,

𝐹 = {𝑥 ∈ 𝑋 : 𝑇 𝑘𝑥 ≠ 𝑥 for all 𝑘 ≠ 0}.

For any 𝐴 ⊆ 𝑋 such that 𝐹 ⊆ ⋃
𝑘∈Z 𝑇

𝑘 (𝐴) one has 𝑇𝐴𝔖(G) = 𝑇𝔖(G).

Proof. Since 𝐹 ⊆ ⋃
𝑘∈Z 𝑇

𝑘 (𝐴), the transformation 𝑇−1𝑇𝐴 is periodic and therefore
belongs to 𝔖(G) by Lemma 3.11. Hence

𝑇𝔖(G) = 𝑇𝑇−1𝑇𝐴𝔖(G) = 𝑇𝐴𝔖(G).

Remark 3.13. The usefulness of the above lemma stems from the following simple
observation. If 𝑇, 𝑇 ′, 𝑈, 𝑈′ satisfy 𝑇𝔖(G) = 𝑇 ′𝔖(G) and 𝑈𝔖(G) = 𝑈′𝔖(G), then
[𝑇,𝑈] ∈ 𝔖(G) if and only if [𝑇 ′,𝑈′] ∈ 𝔖(G). In particular, for 𝐴 as in Lemma 3.12,
[𝑇,𝑈] ∈ 𝔖(G) whenever [𝑇𝐴, 𝑈] ∈ 𝔖(G). This fact is used in the proof of the next
lemma.

Lemma 3.14. Suppose G is an induction friendly Polish finitely full group. If 𝑇,𝑈 ∈ G
are aperiodic on their supports, then [𝑇,𝑈] ∈ 𝔖(G).

Proof. Let 𝐶 be a cross-section for the restriction of R𝑇 onto supp𝑇 . In other words,
𝐶 ⊆ 𝑋 is a measurable set satisfying

⋃
𝑖∈Z𝑇

𝑖 (𝐶) = supp𝑇 . The induced transformation
𝑈𝑋\𝐶 commutes with𝑇𝐶 , since their supports are disjoint. We would be done if supp𝑈 ⊆⋃
𝑖∈Z𝑈

𝑖 (𝑋 \ 𝐶). Indeed, in this case 𝑇𝔖(G) = 𝑇𝐶𝔖(G), 𝑈𝔖(G) = 𝑈𝑋\𝐶𝔖(G) by
Lemma 3.12 and [𝑇𝐶 ,𝑈𝑋\𝐶] is trivial, hence [𝑇,𝑈] ∈ 𝔖(G).



Derived subgroup and symmetric subgroup 25

Motivated by this observation, we argue as follows. Pick a vanishing nested sequence
(𝐶𝑛)𝑛∈N of cross-sections for R𝑇 ↾supp𝑇 , i.e., 𝐶𝑛 ⊇ 𝐶𝑛+1,

⋃
𝑘∈Z 𝑇

𝑘 (𝐶𝑛) = supp𝑇 for
all 𝑛 ∈ N, and

⋂
𝑛∈N𝐶𝑛 = ∅ (see also Lemma F.11). Such a sequence of cross-sections

exists since 𝑇 is assumed to be aperiodic on its support. Define inductively sets 𝐵′𝑛,
𝑛 ∈ N, by setting 𝐵′0 = 𝑋 \𝐶0, and letting 𝐵′𝑛 be the part of 𝑋 \𝐶𝑛 that does not belong
to the𝑈-saturation of any 𝐵′

𝑘
, 𝑘 < 𝑛,

𝐵′𝑛 = (𝑋 \ 𝐶𝑛) \
⋃
𝑘<𝑛

⋃
𝑖∈Z

𝑈𝑖 (𝐵′𝑘).

By construction, saturations under 𝑈 of the sets 𝐵′𝑛 are pairwise disjoint, and the
saturation of their union is the whole space,

⋃
𝑖∈Z𝑈

𝑖
(⋃

𝑛∈N 𝐵
′
𝑛

)
= 𝑋 , because sets 𝐶𝑛

vanish.
Let 𝐵𝑛 =

⊔
𝑘<𝑛 𝐵

′
𝑘
, 𝐵 =

⊔
𝑘∈N 𝐵

′
𝑘
, and note that𝑈𝐵𝑛 ,𝑈𝐵 ∈ G, and𝑈𝐵𝑘

G−→ 𝑈𝐵 by
the induction friendliness of G. By construction, the transformations 𝑇𝐶𝑛 and𝑈𝐵𝑛 have
disjoint supports for each 𝑛 and, therefore, commute. Since all sets𝐶𝑛 are cross-sections
for R𝑇 ↾supp𝑇 , one has [𝑇,𝑈𝐵𝑛 ] ∈ 𝔖(G) by Lemma 3.12 and Remark 3.13. Taking the
limit as 𝑛→∞, this yields [𝑇,𝑈𝐵] ∈ 𝔖(G). Finally, the𝑈-saturation of 𝐵 is all of 𝑋 ,
and we use Lemma 3.12 and Remark 3.13 once again to conclude that [𝑇,𝑈] ∈ 𝔖(G),
as claimed.

Proposition 3.15. If G is an aperiodic induction friendly Polish finitely full group,
then 𝔖(G) = 𝔇(G).

Proof. The inclusion 𝔄(G) ≤𝔇(G) holds for any Polish finitely full group, and Proposi-
tion 3.9 gives𝔖(G) ≤𝔇(G). We therefore concentrate on proving the reverse inclusion:
given 𝑇,𝑈 ∈ G, we need to check that [𝑇,𝑈] ∈ 𝔖(G). Let 𝐹𝑇 and 𝐹𝑈 be the aperiodic
parts of 𝑇 and 𝑈 respectively, so that 𝑇𝔖(G) = 𝑇𝐹𝑇𝔖(G), 𝑈𝔖(G) = 𝑈𝐹𝑈𝔖(G) by
Lemma 3.12. By construction, 𝑇𝐹𝑇 and𝑈𝐹𝑈 are aperiodic on their supports and there-
fore [𝑇𝐹𝑇 ,𝑈𝐹𝑈 ] ∈ 𝔖(G) by Lemma 3.14. It remains to use Remark 3.13 to conclude
that necessarily [𝑇,𝑈] ∈ 𝔖(G), as needed.

Corollary 3.16. Let 𝐺 be a Polish normed group, and let 𝐺 ↷ 𝑋 be an aperiodic
Borel measure-preserving action on a standard probability space (𝑋, 𝜇). The three
subgroups of [𝐺 ↷ 𝑋 ]1 introduced in Definition 3.8 coincide:

𝔇( [𝐺 ↷ 𝑋 ]1) = 𝔄( [𝐺 ↷ 𝑋 ]1) = 𝔖( [𝐺 ↷ 𝑋 ]1).

Moreover, they are all equal to the closure of the group generated by periodic elements
of [𝐺 ↷ 𝑋 ]1.

Proof. The equality𝔇( [𝐺↷ 𝑋 ]1) = 𝔄( [𝐺↷ 𝑋 ]1) =𝔖( [𝐺↷ 𝑋 ]1) follows immedi-
ately from Propositions 3.9 and 3.15, since [𝐺↷ 𝑋 ]1 is both finitely full and induction
friendly. All these groups are equal to the closure of the group generated by periodic
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elements of [𝐺 ↷ 𝑋 ]1 in view of Lemma 3.11 and the fact that this group obviously
contains 𝔖( [𝐺 ↷ 𝑋 ]1).

3.3 Topological simplicity of the symmetric group

We now move on to showing that symmetric subgroups of ergodic Polish finitely
full groups are always topologically simple. More generally, we describe the closed
normal subgroups of symmetric subgroups of aperiodic Polish finitely full groups. Our
argument abstracts from [40, Sec. 3.4]. In particular, we rely on conditional measures
associated with subgroups of Aut(𝑋, 𝜇), whose construction and basic properties are
recalled in Appendix F. We begin with two lemmas on involutions.

Lemma 3.17. Let G be an aperiodic Polish finitely full group, let 𝑈,𝑉 ∈ G be two
involutions whose supports are disjoint and have the same G-conditional measure.
Then𝑈 and 𝑉 are approximately conjugate in 𝔖(G), i.e., there are 𝑇𝑛 ∈ 𝔖(G) such
that 𝑇𝑛𝑈𝑇−1

𝑛

G−→ 𝑉 .

Proof. Let 𝐴 (resp. 𝐵) be a fundamental domain of the restriction of𝑈 (resp. 𝑉) to its
support. Then 𝜇G(𝐴) = 𝜇G(𝐵), and there is an involution 𝑇 ∈ [G] such that 𝑇 (𝐴) = 𝐵.

Since G is finitely full, there is an increasing sequence (𝐴𝑛)𝑛 of subsets of 𝐴 such
that the involutions 𝑇 ′𝑛 induced by 𝑇 on 𝐴𝑛 ∪𝑈 (𝐴𝑛) belong to G, and

⋃
𝑛 𝐴𝑛 = 𝐴. Let

𝐵𝑛 = 𝑇 (𝐴𝑛) = 𝑇 ′𝑛 (𝐴𝑛) and define involutions 𝑇𝑛 ∈ G which almost conjugate𝑈 to 𝑉
as follows. For 𝑥 ∈ 𝑋 , let

𝑇𝑛𝑥 =


𝑇𝑥 if 𝑥 ∈ 𝐴𝑛 ⊔ 𝐵𝑛

𝑉𝑇𝑈𝑥 if 𝑥 ∈ 𝑈 (𝐴𝑛)
𝑈𝑇𝑉𝑥 if 𝑥 ∈ 𝑉 (𝐵𝑛)
𝑥 otherwise.

For all 𝑛 ∈ N and all 𝑥 ∈ 𝑋 , an easy calculation yields that:
• if 𝑥 ∈ (𝐴 ∪𝑈 (𝐴)) \ (𝐴𝑛 ∪𝑈 (𝐴𝑛)), then 𝑇𝑛𝑈𝑇𝑛𝑥 = 𝑈𝑥;
• if 𝑥 ∈ 𝐵𝑛 ∪𝑉 (𝐵𝑛), then 𝑇𝑛𝑈𝑇𝑛𝑥 = 𝑉𝑥;
• and 𝑇𝑛𝑈𝑇𝑛𝑥 = 𝑥 in all other cases.
In particular, 𝑑𝑢 (𝑇𝑛𝑈𝑇𝑛, 𝑉) → 0 and Proposition 3.5, applied to the full group of the
involution𝑈𝑉 (which contains both𝑈 and 𝑉), guarantees that 𝑇𝑛𝑈𝑇𝑛

G−→ 𝑉 .

Lemma 3.18. LetG be an aperiodic Polish finitely full group, let𝑈 ∈G be an involution,
and let 𝐴 be a 𝑈-invariant subset contained in supp𝑈. Suppose that there exists an
involution 𝑉 ∈ G such that 𝑉 (𝐴) is disjoint from supp𝑈. Then for all G-invariant
functions 𝑓 ≤ 2𝜇G(𝐴), there is an involution𝑊 ∈ G such that𝑈𝑊𝑈𝑊 is an involution
whose support has G-conditional measure 𝑓 .
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Proof. Let 𝐵 ⊆ 𝐴 be a fundamental domain for the restriction of 𝑈 to 𝐴 and note
that 𝜇G(𝐵) = 𝜇G(𝐴)/2. By Maharam’s lemma (Theorem F.12), there is 𝐶 ⊆ 𝐵 such
that 𝜇G(𝐶) = 𝑓 /4. The set 𝐷 = 𝐶 ⊔𝑈 (𝐶) is𝑈-invariant and satisfies 𝜇G(𝐷) = 𝑓 /2.
Consider the involution𝑊 ∈ G defined by

𝑊𝑥 =

{
𝑉𝑥 if 𝑥 ∈ 𝐷 ⊔𝑉 (𝐷)
𝑥 otherwise.

A straightforward computation shows that𝑈𝑊𝑈𝑊 is an involution that coincides with
𝑈 on 𝐷, with 𝑉𝑈𝑉 on 𝑉 (𝐷), and is trivial elsewhere. Hence, the support of𝑈𝑊𝑈𝑊
is equal to 𝐷 ⊔𝑉 (𝐷) and has G-conditional measure 𝑓 .

Given a subgroup 𝐺 ≤ Aut(𝑋, 𝜇) and a 𝐺-invariant set 𝐴, we let 𝐺𝐴 stand for the
subgroup {𝑇 ∈ 𝐺 : supp𝑇 ⊆ 𝐴}. Note that 𝐺𝐴 is a normal subgroup of 𝐺. Our focus
is on the case 𝐺 = 𝔖(G), where G is an aperiodic Polish finitely full group. Every
subgroup 𝔖(G)𝐴 is necessarily closed, because the topology of G refines the weak
topology. We show in Theorem 3.20 that all closed normal subgroups of 𝔖(G) arise in
this way.

Proposition 3.19. Let G be an aperiodic Polish finitely full group, let 𝑇 ∈ G, and
let 𝐴 denote the G-saturation of supp𝑇 . Then the closed subgroup of G generated by
the 𝔖(G)-conjugates of 𝑇 contains 𝔖(G)𝐴.

Proof. Let the closed subgroup ofG generated by the𝔖(G)-conjugates of𝑇 be denoted
by 𝐺. By [20, Lem. 7.2], we can find a set 𝐵 ⊆ supp 𝑇 whose 𝑇-translates cover
supp𝑇 and which satisfies 𝐵 ∩ 𝑇 (𝐵) = ∅. Since 𝑇-translates of 𝐵 cover supp𝑇 , we
conclude that the G-translates of 𝐵 cover 𝐴, and so 𝜇G(𝐵) (𝑥) > 0 for all 𝑥 ∈ 𝐴. By
Maharam’s lemma (Theorem F.12), we can find𝐶 ⊆ 𝐵 whose G-conditional measure is
everywhere at most 1/4, and is strictly positive on 𝐴. Take 𝑉 ∈ [G] to be an involution
such that 𝑉 (𝐶 ⊔ 𝑇 (𝐶)) is disjoint from 𝐶 ⊔ 𝑇 (𝐶). Such an involution exists because
𝜇G(𝐶 ⊔ 𝑇 (𝐶)) ≤ 1/2, and so, by Maharam’s lemma, we can find a subset contained
in 𝑋 \ (𝐶 ⊔ 𝑇 (𝐶)) having the same conditional measure as 𝐶 ⊔ 𝑇 (𝐶). We can then
apply the last item from Proposition F.10.

Let𝑊 ∈ [G] be an involution such that supp𝑊 = 𝐶, whose existence is guaranteed
by Lemma F.13. Using the facts that G is finitely full, that 𝑇 ∈ G and that 𝑉,𝑊 ∈ [G],
one can find an increasing sequence (𝐶𝑛)𝑛 of 𝑊-invariant subsets of 𝐶 such that⋃
𝑛 𝐶𝑛 = 𝐶 and for each 𝑛 ∈ N both𝑊𝐶𝑛 ∈ G and 𝑉𝐶𝑛⊔𝑇 (𝐶𝑛 )⊔𝑉 (𝐶𝑛⊔𝑇 (𝐶𝑛 ) ) ∈ G. The

transformations𝑊𝐶𝑛𝑇𝑊𝐶𝑛𝑇−1 belong to𝐺, and are, in fact, involutions whose support
is equal to 𝐶𝑛 ⊔ 𝑇 (𝐶𝑛) and has conditional measure at most 2𝜇G(𝐶) ≤ 1/2. Let us
define for brevity

𝑈̃𝑛 = 𝑊𝐶𝑛𝑇𝑊𝐶𝑛𝑇
−1 ∈ 𝐺 and 𝑉̃𝑛 = 𝑉𝐶𝑛⊔𝑇 (𝐶𝑛 )⊔𝑉 (𝐶𝑛⊔𝑇 (𝐶𝑛 ) ) ∈ G.
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For every 𝑛 ∈ N, let 𝐴𝑛 denote the G-saturation of 𝐶𝑛. Note that 𝐴 =
⋃
𝑛 𝐴𝑛 and

the union is increasing. Every involution supported on 𝐴 is thus the uniform limit of
the involutions it induces on 𝐴𝑛’s. By Proposition 3.5, it therefore suffices to show that
𝐺 contains all the involutions which are supported on some 𝐴𝑛.

Let 𝑈 be an involution supported on some 𝐴𝑛. Let 𝐷 be a fundamental domain
for the restriction of 𝑈 to its support. Using Maharam’s lemma repeatedly, we can
partition 𝐷 into a countable family (𝐷𝑘)𝑘 such that

𝜇G(𝐷𝑘) ≤ 𝜇G(supp 𝑈̃𝑛)/2 for all 𝑘 ∈ N. (3.2)

If we let 𝐸𝑘 = 𝐷𝑘 ⊔𝑈 (𝐷𝑘), the sequence (𝐸𝑘)𝑘 forms a partition of supp𝑈 into 𝑈-
invariant sets. In particular,𝑈 = lim𝑘

∏𝑘
𝑖=0𝑈𝐸𝑘 in the uniform topology and therefore

in the topology of G as well by Proposition 3.5. Moreover, the support of𝑈𝐸𝑘 has G-
conditional measure at most 𝜇G(supp 𝑈̃𝑛) by Eq. (3.2). The set 𝑉̃𝑛 (supp 𝑈̃𝑛) is disjoint
from supp 𝑈̃𝑛 by construction. Lemma 3.18 applies and provides an involution in 𝐺
whose support has the same conditional measure as that of𝑈𝐸𝑘 . Lemma 3.17 shows
that each𝑈𝐸𝑘 belongs to 𝐺 and therefore also𝑈 ∈ 𝐺, as needed.

Theorem 3.20. Let G ≤ Aut(𝑋, 𝜇) be an aperiodic Polish finitely full group. For
any closed normal subgroup 𝑁 ≤ 𝔖(G), there is a unique G-invariant set 𝐴 such
that 𝑁 = 𝔖(G)𝐴.

Proof. First, observe that for G-invariant 𝐴1 and 𝐴2, any involution𝑈 ∈ G supported
in 𝐴1 ∪ 𝐴2 decomposes into the product of one involution supported in 𝐴1, and one
supported in 𝐴2. It follows that the closed group generated by 𝔖(G)𝐴1 ∪ 𝔖(G)𝐴2

is equal to 𝔖(G)𝐴1∪𝐴2 . Also, by Proposition 3.5, whenever (𝐴𝑛)𝑛 is an increasing
sequence of G-invariant sets, one has⋃

𝑛

𝔖(G)𝐴𝑛 = 𝔖(G)⋃
𝑛 𝐴𝑛

.

The set {𝐴 ∈ MAlg(𝑋, 𝜇) : 𝐴 is G-invariant and 𝔖(G)𝐴 ≤ 𝑁} is thus directed and is
closed under the countable unions. It therefore admits a unique maximum element,
which is the set 𝐴 we seek. Indeed, 𝔖(G)𝐴 ≤ 𝑁 , and the reverse inclusion is a direct
consequence of Proposition 3.19.

It remains to argue that the set 𝐴 satisfying 𝑁 = 𝔖(G)𝐴 is unique. Suppose towards
a contradiction that 𝔖(G)𝐴1 = 𝔖(G)𝐴2for 𝐴1 ≠ 𝐴2. By symmetry, we may assume
that 𝜇(𝐴1 \ 𝐴2) > 0. Lemma 3.7 provides an involution 𝑉 ∈ G whose support is
nontrivial and is contained in 𝐴1 \ 𝐴2, thus𝑉 ∈𝔖(G)𝐴1 but𝑉 ∉ 𝔖(G)𝐴2 , contradicting
𝔖(G)𝐴1 = 𝔖(G)𝐴2 .

Corollary 3.21. Let G ≤ Aut(𝑋, 𝜇) be an aperiodic Polish finitely full group. The
group 𝔖(G) is topologically simple if and only if G is ergodic.
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Proof. If G is ergodic, then 𝔖(G) is topologically simple by Theorem 3.20. Conversely,
suppose that G is not ergodic and let 𝐴 ⊆ 𝑋 be a G-invariant set with 𝜇(𝐴) ∉ {0, 1}.
Then 𝔖(G)𝐴 is a normal subgroup of G which is neither trivial nor equal to 𝔖(G) as a
consequence of Lemma 3.7 applied to 𝐴 and its complement.

Specifying the corollary above to L1 full groups and using Corollary 3.16, we
obtain the following result.

Corollary 3.22. Let𝐺 be a Polish normed group, and let𝐺↷ 𝑋 be an aperiodic Borel
measure-preserving action on a standard probability space (𝑋, 𝜇). The topological
derived subgroup of the L1 full group of the action is topologically simple if and only
if the action is ergodic.

3.4 Maximal norms on the derived subgroup

The purpose of this section is to establish sufficient conditions for a norm on the derived
subgroup of an induction friendly Polish finitely full group to be maximal in the sense of
Section 2.2. Our argument follows closely the one given in [41, Sec. 6.2] for amenable
graphings. The main application of Proposition 3.25 will be given in Theorem 5.5,
but we hope that the setup of this section can be useful in other contexts, such as
𝜑-integrable full groups [10].

Definition 3.23. A norm ∥·∥ on a subgroup G ≤ Aut(𝑋, 𝜇) is additive if ∥𝑇𝑆∥ =
∥𝑇 ∥ + ∥𝑆∥ for all 𝑇, 𝑆 ∈ G with disjoint supports.

The following lemma parallels [41, Lem. 6.4] and is the key to showing that the
norm on the derived subgroup is both coarsely proper and large-scale geodesic.

Lemma 3.24. Let G ≤ Aut(𝑋, 𝜇) be a finitely full Polish group, and suppose that ∥·∥
is a compatible additive norm on G. For any periodic 𝑈 ∈ G with bounded periods
and for every 𝑛 ∈ N, there are periodic elements𝑈1, . . . ,𝑈𝑛 ∈ G such that

𝑈 = 𝑈1 · · ·𝑈𝑛 and ∥𝑈𝑖 ∥ =
∥𝑈∥
𝑛

for every 1 ≤ 𝑖 ≤ 𝑛.

Proof. Let 𝑀 = ∥𝑈∥ and 𝐴 ⊆ 𝑋 be a fundamental domain for𝑈. We may identify 𝐴
with the interval [0, 𝜇(𝐴)] endowed with the Lebesgue measure. Put 𝐴𝑡 = [0, 𝑡] ∩ 𝐴,
0 ≤ 𝑡 ≤ 𝜇(𝐴), and let 𝐵𝑡 =

⋃
𝑛∈Z𝑈

𝑛 (𝐴𝑡 ) be the𝑈-saturation of 𝐴𝑡 . Note that𝑈𝐵𝑡 ∈ G
for all 𝑡 ∈ [0, 𝜇(𝐴)] since 𝐵𝑡 is 𝑈-invariant and G is finitely full, and that 𝑡 ↦→ 𝐵𝑡 is
continuous.

The map [0, 𝜇(𝐴)] ∋ 𝑡 ↦→ 𝑈𝐵𝑡 ∈ [𝑈 ] ⊆ G is thus continuous with respect to the
uniform topology on [𝑈 ], and therefore also with respect to the topology of G by
Proposition 3.5. Whence the function 𝜓 : [0, 𝜇(𝐴)] → R given by 𝜓(𝑡) =



𝑈𝐵𝑡 

 is
also continuous.
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We have 𝜓(0) = 0 and 𝜓(𝜇(𝐴)) = 𝑀, so the intermediate value theorem yields
existence of reals 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛−1 < 𝑡𝑛 = 𝜇(𝐴) such that 𝜓(𝑡𝑖) = 𝑖𝑀

𝑛
for all

𝑖 ∈ {0, . . . , 𝑛}. Set 𝐶𝑖 = 𝐵𝑡𝑖 \ 𝐵𝑡𝑖−1 for 𝑖 ∈ {1, . . . , 𝑛}. By construction, each 𝐶𝑖 is 𝑈-
invariant and 𝑋 =

⊔𝑛
𝑖=1 𝐶𝑖 . Putting 𝑈𝑖 = 𝑈𝐴𝑖 , we get 𝑈 =

∏𝑛
𝑖=1𝑈𝑖 . Finally for each

𝑖 ∈ {1, . . . , 𝑛} the equality 𝐶𝑖 = 𝐵𝑡𝑖 \ 𝐵𝑡𝑖−1 and additivity of the norm gives

𝜓(𝑡𝑖) = ∥𝑈𝐵𝑡𝑖 ∥ = ∥𝑈𝑖𝑈𝐵𝑡𝑖−1
∥ = ∥𝑈𝑖 ∥ + ∥𝑈𝐵𝑡𝑖−1

∥ = ∥𝑈𝑖 ∥ + 𝜓(𝑡𝑖−1),

hence ∥𝑈𝑖 ∥ = ∥𝑈 ∥𝑛 for all 𝑖 ≤ 𝑛, as needed.

Proposition 3.25. Let G ≤ Aut(𝑋, 𝜇) be an induction friendly Polish finitely full group
and let ∥·∥ be a compatible additive norm on it. If the set of periodic elements is dense
in 𝔇(G), then ∥·∥ is a maximal norm on 𝔇(G).

Proof. In view of Proposition A.10, it suffices to show that ∥·∥ is both large-scale
geodesic (see Definition A.8) and coarsely proper (see Definition A.9). Note that
induction friendliness yields density in 𝔇(G) of periodic automorphisms with bounded
periods.

To see that ∥·∥ is large-scale geodesic (with constant 𝐾 = 2), let us take a non-
trivial 𝑇 ∈ 𝔇(G) and pick a periodic 𝑈 ∈ 𝔇(G) with bounded periods such that

𝑇𝑈−1



 < min{2, ∥𝑇 ∥ /2}. Note that

∥𝑈∥ = ∥𝑈−1∥ = ∥𝑇−1𝑇𝑈−1∥ ≤ ∥𝑇−1∥ + ∥𝑇𝑈−1∥ ≤ 3∥𝑇 ∥/2 (3.3)

Fix 𝑛 ∈ N large enough to ensure 3∥𝑇 ∥
2𝑛 ≤ 2. By Lemma 3.24, we may decompose

𝑈 into a product of 𝑛 elements𝑈1, . . . ,𝑈𝑛 each of norm at most 3∥𝑇 ∥
2𝑛 ≤ 2. Therefore

𝑇 = (𝑇𝑈−1) ·𝑈1 · · ·𝑈𝑛,

where 𝑇𝑈−1 and each of𝑈𝑖 , 1 ≤ 𝑖 ≤ 𝑛, has norm at most 2 and, in view of Eq. (3.3),

∥𝑇𝑈−1∥ +
𝑛∑︁
𝑖=1
∥𝑈𝑖 ∥ ≤

∥𝑇 ∥
2
+ ∥𝑈∥ ≤ 2∥𝑇 ∥,

thus concluding the proof that ∥·∥ is large-scale geodesic.
We now show that ∥·∥ is coarsely proper. Fix 𝜖 > 0 and 𝑅 > 0. Let 𝑛 ∈ N be so

large that 𝑛𝜖 ≥ 𝑅 + 𝜖 . Then every element 𝑇 ∈ 𝔇(G) of norm at most 𝑅 is a product
of 𝑛 + 1 elements of norm at most 𝜖 , namely one element 𝑇𝑈−1 of norm at most 𝜖 ,
where𝑈 is periodic with bounded periods as provided by density, and𝑈 = 𝑈1 · · ·𝑈𝑛,
where each𝑈𝑖 has norm at most 𝑅+𝜖

𝑛
≤ 𝜖 as per Lemma 3.24. Thus ∥·∥ is both coarsely

proper and large-scale geodesic, and hence is maximal by Proposition A.10.

Remark 3.26. We do not have an example of an induction friendly Polish finitely full
group G for which the periodic elements are not dense in 𝔇(G). A potential candidate
might be the L1 full group of a free action of the free group on 2 generators, endowed
with the norm given by the word length with respect to the canonical generating set.



Chapter 4

Full groups of locally compact group actions

In this chapter, we narrow down the generality of the narrative and focus on actions of
locally compact Polish groups, or equivalently, of locally compact second-countable
groups. Such restrictions enlarge our toolbox in a number of ways. For instance, all
locally compact Polish group actions admit cross-sections to which the so-called
Voronoi tessellations can be associated. We use this to show in Section 4.1 a natural
density result for subsets of L1 full groups defined from dense subsets of the acting
group (Theorem 4.2 and Corollary 4.3). For the reader’s convenience, Appendix E.2
contains a concise reminder of the needed facts about tessellations.

Another key property of free1 actions of locally compact groups is the existence
of a Haar measure on each individual orbit. As we discuss in Section 4.2, elements
of the full group act by non-singular transformations and, in particular, admit the
Hopf decomposition (see Appendix C). Section 4.3 explains how these orbitwise
decompositions can be understood globally, yielding a natural generalization of the
periodic/aperiodic partition for elements of the full group of a measure-preserving
action of a discrete group. The periodic part in the latter case corresponds to the
conservative piece of the Hopf decomposition, which generally exhibits a much more
complicated dynamical behavior. We return to this in Chapters 7 and 8.

In the final Section 4.4, we connect L1 full groups to the notion of L1 orbit equiva-
lence for actions of locally compact compactly generated Polish groups.

4.1 Dense subgroups in L1 full groups

Our goal in this section is to prove that any element of the full group [𝐺 ↷ 𝑋 ] can be
approximated arbitrarily well by an automorphism that piecewise acts by elements of a
given dense subset of 𝐺.

Definition 4.1. A measure-preserving transformation 𝑇 : 𝐴→ 𝐵 between two measur-
able sets 𝐴, 𝐵 ⊆ 𝑋 is said to be 𝐻-decomposable, where 𝐻 ⊆ Aut(𝑋, 𝜇), if there exist
a measurable partition 𝐴 =

⊔
𝑘∈N 𝐴𝑘 and elements ℎ𝑘 ∈ 𝐻 such that 𝑇 ↾𝐴𝑘= ℎ𝑘 ↾𝐴𝑘

for all 𝑘 ∈ N.

1Motivated by our focus on R-flows, this monograph primarily concentrates on free actions.
We note, however, that each orbit of a Borel action of a locally compact Polish group is a
homogeneous space, since point stabilizers are necessarily closed. In particular, orbits can be
endowed with the Haar measure, even without the freeness assumption.
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The property of being 𝐻-decomposable is similar to being an element of the full
group generated by 𝐻, except that we do not require the transformation to be defined
on all of 𝑋 .

Theorem 4.2. Let 𝐺 ↷ 𝑋 be a measure-preserving action of a locally compact
Polish group. Let ∥·∥ be a compatible norm on 𝐺 with the associated metric on the
orbits 𝐷 : R𝐺 → R≥0, and let 𝐻 ⊆ 𝐺 be a dense set. For any 𝑇 ∈ [𝐺 ↷ 𝑋 ] and
any 𝜖 > 0, there exists an 𝐻-decomposable transformation 𝑆 ∈ [𝐺 ↷ 𝑋 ] such that
ess sup𝑥∈𝑋 𝐷 (𝑇𝑥, 𝑆𝑥) < 𝜖 .

Theorem 4.2 establishes the density of 𝐻-decomposable transformations in the
very strong uniform topology given by ess sup. In particular, this result also applies to
the L1 topology.

Corollary 4.3. Let𝐺↷ 𝑋 be a measure-preserving action of a locally compact Polish
group, let ∥·∥ be a compatible norm on 𝐺, and let 𝐻 ⊆ 𝐺 be a dense subgroup. The L1

full group [𝐻 ↷ 𝑋 ]1 is dense in [𝐺 ↷ 𝑋 ]1.

Remark 4.4. Theorem 4.2 is an improvement upon the conclusion of [12, Thm. 2.1],
which shows that [𝐻↷ 𝑋 ] is dense in [𝐺↷ 𝑋 ] whenever 𝐻 is a dense subgroup of𝐺.
While the proof, which we present below, establishes density in a much stronger topology
through more elementary means, we note that, as already mentioned in [12, Thm. 2.3],
their methods apply to all suitable (in the sense of [5]; see also Definition 4.7) actions
of Polish groups, whereas our approach here crucially uses local compactness of the
acting group to guarantee existence of various cross-sections.

Let C be a cross-section for a measure-preserving action 𝐺 ↷ 𝑋 , and letW be
a tessellation over C (in the sense of Appendix E.2). Let 𝜈W be the push-forward
measure (𝜋W)∗𝜇 on the cross-section, and let (𝜇𝑐)𝑐∈C be the disintegration of 𝜇 over
(𝜋W , 𝜈W) (see Appendix D and Theorem D.1, specifically). Without loss of generality,
we assume, whenever convenient, that the set 𝐻 in the statement of Theorem 4.2 is
countable.

Definition 4.5. Two Borel sets 𝐴, 𝐵 ⊆ 𝑋 are said to be
• W-proportionate if the equivalence 𝜇𝑐 (𝐴) = 0 ⇐⇒ 𝜇𝑐 (𝐵) = 0 holds for 𝜈W-

almost all 𝑐 ∈ C;
• W-equimeasurable if 𝜇𝑐 (𝐴) = 𝜇𝑐 (𝐵) for 𝜈W-almost all 𝑐 ∈ C.

For the context of Lemmas 4.6 through 4.11, we let 𝑁 denote an open symmetric
neighborhood of the identity of 𝐺, andW stands for an 𝑁-lacunary tessellation. The
following lemma relies on the key fact that for any twoW-proportionate Borel sets
𝐴, 𝐵 ⊆ 𝑁 · C, the equivalence 𝐴 ∩ (𝑁 · 𝑐) ≠ ∅ ⇐⇒ 𝐵 ∩ (𝑁 · 𝑐) ≠ ∅ holds for all
𝑐 ∈ C after changing 𝐴 and 𝐵 on a null set.
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Lemma 4.6. If 𝐴, 𝐵 ⊆ 𝑁 · C areW-proportionate Borel sets then

𝜇(𝐵 \ 𝑁2 · 𝐴) = 0.

Proof. By the defining property of the disintegration,

𝜇(𝐵 \ 𝑁2 · 𝐴) =
∫
C
𝜇𝑐 (𝐵 \ 𝑁2 · 𝐴) 𝑑𝜈W (𝑐),

and so we need to check that 𝜇𝑐 (𝐵 \ 𝑁2 · 𝐴) = 0 for 𝜈W-almost all 𝑐. Since 𝐴 and 𝐵 are
W-proportionate, it suffices to show that 𝜇𝑐 (𝐵 \ 𝑁2 · 𝐴) = 0 whenever 𝜇𝑐 (𝐴) ≠ 0. For
any 𝑐 ∈ C satisfying the latter, one necessarily has 𝑐 ∈ 𝑁 · 𝐴 (because 𝐴 ⊆ 𝑁 · C andW is
𝑁-lacunary, by assumption), and thus𝑁 · 𝑐 ⊆ 𝑁2 · 𝐴. In particular, (𝐵 \ 𝑁2 · 𝐴) ∩ 𝑁 · 𝑐 =
∅. It remains to use the inclusion 𝐵 ⊆ 𝑁 · C, which, together with the 𝑁-lacunarity of
W, guarantees that

𝜇𝑐 (𝐵 \ 𝑁2 · 𝐴) = 𝜇𝑐 ((𝐵 \ 𝑁2 · 𝐴) ∩ 𝑁 · 𝑐) = 0.

For the proof of the next lemma, we need the notion of a suitable action, introduced
by H. Becker [5, Def. 1.2.7].

Definition 4.7. A measure-preserving Borel action 𝐺 ↷ 𝑋 of a Polish group 𝐺 is
suitable if for all Borel sets 𝐴, 𝐵 ⊆ 𝑋 one of the following two options holds:

(1) for any open neighborhood of the identity 𝑀 ⊆ 𝐺 there exists 𝑔 ∈ 𝑀 such that
𝜇(𝑔𝐴 ∩ 𝐵) > 0;

(2) there exist Borel sets 𝐴′ ⊆ 𝐴, 𝐵′ ⊆ 𝐵 such that 𝜇(𝐴 \ 𝐴′) = 0 = 𝜇(𝐵 \ 𝐵′) and
an open neighborhood of the identity 𝑀 ⊆ 𝐺 such that 𝑀 · 𝐴′ ∩ 𝐵′ = ∅.

All measure-preserving actions of locally compact Polish groups are known to be
suitable (see [5, Thm. 1.2.9]).

Lemma 4.8. For all non-negligibleW-proportionate Borel sets 𝐴, 𝐵 ⊆ 𝑁 · C, there
exists an open set 𝑈 ⊆ 𝑁3 such that 𝜇(𝑔𝐴 ∩ 𝐵) > 0 for all 𝑔 ∈ 𝑈.

Proof. Let 𝐻1 = {ℎ𝑛 : 𝑛 ∈ N} be a countable dense subset of 𝑁2 = 𝑁𝑁−1, and put
𝐴1 = 𝐻1 · 𝐴. We apply the dichotomy in the definition of a suitable action to the sets
𝐴1, 𝐵 and show that item (2) cannot hold.

Indeed, suppose there exist 𝐴′1 ⊆ 𝐴1, 𝐵′ ⊆ 𝐵 satisfying

𝜇(𝐴1 \ 𝐴′1) = 0 = 𝜇(𝐵 \ 𝐵′),

and an open neighborhood of the identity 𝑀 ⊆ 𝐺 such that (𝑀 · 𝐴′1) ∩ 𝐵
′ = ∅. Set 𝐴′ =⋂

𝑛 (ℎ−1
𝑛 𝐴′1 ∩ 𝐴), and note that 𝜇(𝐴 \ 𝐴′) = 0 and (𝑀𝐻1 · 𝐴′) ∩ 𝐵′ =∅, simply because

𝐶1 · 𝐴′ ⊆ 𝐴′1. Since𝐶1 is dense in 𝑁2, we have 𝑁2 ⊆ 𝑀𝐻1 and thus (𝑁2 · 𝐴′) ∩ 𝐵′ = ∅.
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Lemma 4.6, applied to 𝐴′ and 𝐵′, guarantees that 𝜇(𝐵′ \ 𝑁2 · 𝐴′) = 0, which is possible
only when 𝜇(𝐵′) = 0, contradicting the assumption that 𝐵 is non-negligible.

We are left with the alternative of the item (1), and so there has to exist some
𝑔 ∈ 𝑁 such that 𝜇(𝑔𝐴1 ∩ 𝐵) > 0. Since 𝐴1 = 𝐻1 · 𝐴, there exists ℎ ∈ 𝐻1 such that
𝜇(𝑔ℎ𝐴 ∩ 𝐵) > 0. It remains to observe that 𝑔ℎ ∈ 𝑁3 and that 𝜇(𝑔′𝐴 ∩ 𝐵) > 0 is an
open condition on 𝑔′. This follows from the continuity in the weak topology of the
group homomorphism 𝐺 → Aut(𝑋, 𝜇) associated with the measure-preserving action
of 𝐺 on (𝑋, 𝜇) (see, for instance, [12, Lem. 1.2]).

Lemma 4.9. For any non-empty open𝑉 ⊆ 𝑁 and for any non-negligible Borel set 𝐴 ⊆ 𝑋 ,
there exists ℎ ∈ 𝐻 such that

𝜇({𝑥 ∈ 𝐴 : ℎ𝑥 ∈ 𝑉 · C and 𝜋W (𝑥) = 𝜋W (ℎ𝑥)}) > 0.

Proof. Let 𝜁 : 𝑋 →W be the Borel bĳection 𝜁 (𝑥) = (𝜋W (𝑥), 𝑥) and consider the
push-forward measure 𝜁∗𝜇, which for 𝑍 ⊆ W can be expressed as

𝜁∗𝜇(𝑍) =
∫
C
𝜇𝑐 (𝑍𝑐) 𝑑𝜈W (𝑐).

Let (ℎ𝑛)𝑛∈N be an enumeration of 𝐻 and set

𝑊𝑛 = {(𝑐, 𝑥) ∈ W : 𝜋W (𝑥) = 𝜋W (ℎ𝑛𝑥) and ℎ𝑛𝑥 ∈ 𝑉 · C}.

We claim that
⋃
𝑛𝑊𝑛 =W. Indeed, for each (𝑐, 𝑥) ∈ W the set of 𝑔 ∈ 𝐺 such that

𝑔𝑥 ∈ 𝑉 · 𝑐 is non-empty and open, hence there is ℎ𝑛 ∈ 𝐻 such that ℎ𝑛𝑥 ∈ 𝑉 · 𝑐.
Finally, 𝐴 is non-negligible by assumption, i.e., 0 < 𝜇(𝐴) = 𝜁∗𝜇(𝜁 (𝐴)), so there

exists𝑊𝑛 such that 𝜁∗𝜇(𝜁 (𝐴) ∩𝑊𝑛) > 0, which translates into the required

𝜇({𝑥 ∈ 𝐴 : ℎ𝑛𝑥 ∈ 𝑉 · C and 𝜋W (𝑥) = 𝜋W (ℎ𝑛𝑥)}) > 0.

Lemma 4.10. For all non-negligibleW-proportionate Borel sets 𝐴, 𝐵 ⊆ 𝑋 , there
exists ℎ ∈ 𝐻 such that

𝜇({𝑥 ∈ 𝐴 : ℎ𝑥 ∈ 𝐵 and 𝜋W (𝑥) = 𝜋W (ℎ𝑥)}) > 0.

Proof. The plan is to reduce the setup of this lemma to that of Lemma 4.8. Let𝑉 ⊆ 𝑁 be
a symmetric neighborhood of the identity that is furthermore small enough to guarantee
thatW is 𝑉4-lacunary. Apply Lemma 4.9 to find ℎ1 ∈ 𝐻 such that for

𝐴′ = {𝑥 ∈ 𝐴 : ℎ1𝑥 ∈ 𝑉 · C and 𝜋W (𝑥) = 𝜋W (ℎ1𝑥)}

one has 𝜇(𝐴′) > 0. Set 𝐴1 = ℎ1𝐴
′, 𝐵1 = 𝜋−1

W ({𝑐 ∈ C : 𝜇𝑐 (𝐴1) > 0}) ∩ 𝐵 and note
that 𝐴1 and 𝐵1 are non-negligibleW-proportionate sets. Moreover, 𝐴1 ⊆ 𝑉 · C by
construction.
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Repeat the same steps for 𝐵1 and find ℎ2 ∈ 𝐻 such that for

𝐵′1 = {𝑥 ∈ 𝐵1 : ℎ2𝑥 ∈ 𝑉 · C and 𝜋W (𝑥) = 𝜋W (ℎ2𝑥)}

we have 𝜇(𝐵′1) > 0. Set 𝐵2 = ℎ2𝐵
′
1 and 𝐴2 = 𝐴1 ∩ 𝜋−1

W ({𝑐 ∈ C : 𝜇𝑐 (𝐵2) > 0}). Once
again, sets 𝐴2 and 𝐵2 are non-negligible,W-proportionate and are both contained in
𝑉 · C.

We now apply Lemma 4.8 to sets 𝐴2, 𝐵2 andW, viewed as a𝑉-lacunary tessellation,
yielding an open 𝑈 ⊆ 𝑉3 such that 𝜇(𝑔𝐴2 ∩ 𝐵2) > 0 for all 𝑔 ∈ 𝑈. Note that since
𝑈 ⊆ 𝑉3 andW is, in fact, 𝑉4-lacunary, the equality 𝜋W (𝑥) = 𝜋W (𝑔𝑥) holds for all
𝑥 ∈ 𝑉 · C and 𝑔 ∈ 𝑈. We conclude that 𝜇(ℎ−1

2 𝑔ℎ1𝐴 ∩ 𝐵) > 0 for all 𝑔 ∈ 𝑈 and hence
any ℎ ∈ ℎ−1

2 𝑈ℎ1 ∩ 𝐻 satisfies the conclusion of the lemma.

A measure-preserving partial transformation𝑇 : 𝐴→ 𝐵 isW-coherent if 𝜇-almost
surely one has 𝜋W (𝑥) = 𝜋W (𝑇𝑥).

Lemma 4.11. For allW-equimeasurable Borel sets 𝐴, 𝐵 ⊆ 𝑋 , there exists aW-
coherent 𝐻-decomposable measure-preserving bĳection 𝑇 : 𝐴→ 𝐵.

Proof. Let (ℎ𝑛)𝑛∈N be an enumeration of 𝐻. Consider the set

𝐴0 =
{
𝑥 ∈ 𝐴 : ℎ0𝑥 ∈ 𝐵 and 𝜋W (𝑥) = 𝜋W (ℎ0𝑥)

}
,

and let 𝐵0 = ℎ0𝐴0. Note that the sets 𝐴 \ 𝐴0 and 𝐵 \ 𝐵0 areW-equimeasurable, so we
may continue in the same fashion and construct sets 𝐴𝑘 such that

𝐴𝑘 =

{
𝑥 ∈ 𝐴 \

⊔
𝑖<𝑘

𝐴𝑖 : ℎ𝑘𝑥 ∈ 𝐵 \
⊔
𝑖<𝑘

𝐵𝑖 and 𝜋W (𝑥) = 𝜋W (ℎ𝑘𝑥)
}
.

We define 𝑇 :
⊔
𝑘∈N 𝐴𝑘 →

⊔
𝑘∈N 𝐵𝑘 by the condition 𝑇𝑥 = ℎ𝑘𝑥 for 𝑥 ∈ 𝐴𝑘 .

Sets 𝐴 \ ⊔𝑘∈N 𝐴𝑘 and 𝐵 \ ⊔𝑘∈N 𝐵𝑘 areW-equimeasurable. If either one of them
(and thus necessarily both of them) were non-negligible, Lemma 4.10 would yields an
element ℎ ∈ 𝐻 that moves a portion of 𝐴 \ ⊔𝑘∈N 𝐴𝑘 into 𝐵 \ ⊔𝑘∈N 𝐵𝑘 , contradicting
the construction. We conclude that

𝜇(𝐴 \
⊔
𝑘∈N

𝐴𝑘) = 0 = 𝜇(𝐵 \
⊔
𝑘∈N

𝐵𝑘)

and 𝑇 is therefore as required.

Lemma 4.12. Suppose thatW is a cocompact tessellation over the cross-section C. Let
𝐴, 𝐵 ⊆ 𝑋 beW-equimeasurable Borel sets. For any 𝜖 > 0, and anyW-coherent partial
transformation 𝑇 : 𝐴→ 𝐵, there exists aW-coherent 𝐻-decomposable 𝑇 : 𝐴→ 𝐵

such that ess sup𝑥∈𝐴 𝐷 (𝑇𝑥, 𝑇𝑥) < 𝜖 .
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Proof. LetV be a 𝐾 ′-cocompact tessellation over some cross-section C′ such that the
diameter of each region inV is less than 𝜖 . SupposeW is𝐾-cocompact. By Lemma E.2,
we can find a finite partition of C′ = ⊔

𝑖≤𝑛 C′𝑖 such that each C′
𝑖

is 𝐾 ′𝐾2𝐾 ′-lacunary,
which guarantees that, for each 𝑖, everyW𝑐 intersects at most one classV𝑐′ , 𝑐′ ∈ C′𝑖 .
For each 𝑖, 𝑗 < 𝑛 set 𝐴(𝑖, 𝑗 ) = {𝑥 ∈ 𝐴 : 𝜋V (𝑥) ∈ C′𝑖 , 𝜋V (𝑇𝑥) ∈ C′𝑗 } and 𝐵 (𝑖, 𝑗 ) = 𝑇𝐴(𝑖, 𝑗 ) .
We re-enumerate sets 𝐴(𝑖, 𝑗 ) and 𝐵 (𝑖, 𝑗 ) as a sequence 𝐴𝑘 , 𝐵𝑘 , 𝑘 ≤ 𝑛2 and note that for
all 𝑥, 𝑦 ∈ 𝐴𝑘 one has

𝜋W (𝑥) = 𝜋W (𝑦) =⇒
(
𝜋V (𝑥) = 𝜋V (𝑦) and 𝜋V (𝑇𝑥) = 𝜋V (𝑇𝑦)

)
.

Moreover, sets 𝐴𝑘 and 𝑇 (𝐴𝑘) are W-equimeasurable, so Lemma 4.11 yields W-
coherent 𝐻-decomposable partial transformations 𝑇𝑘 : 𝐴𝑘 → 𝑇 (𝐴𝑘). The transforma-
tion 𝑇 : 𝐴→ 𝐵 can now be defined by the condition 𝑇𝑥 = 𝑇𝑘𝑥 whenever 𝑥 ∈ 𝐴𝑘 . It is
easy to check that 𝑇 is as claimed.

Proof of Theorem 4.2. By Proposition E.4, we have a sequence (V𝑘)𝑘 of cocompact
tessellations such that R𝐺 =

⋃
𝑘 RV𝑘 . Let 𝐴0 = {𝑥 ∈ 𝑋 : 𝜋V0 (𝑥) = 𝜋V0 (𝑇𝑥)}. Use

Lemma 4.12 to find an 𝐻-decomposable partial transformation 𝑇0 : 𝐴0 → 𝑇 (𝐴0) that
satisfies the inequality ess sup𝑥∈𝐴0

𝐷 (𝑇0𝑥, 𝑇𝑥) < 𝜖 . Set

𝐴𝑘 =

{
𝑥 ∈ 𝑋 : 𝜋V𝑘 (𝑥) = 𝜋V𝑘 (𝑇𝑥) and 𝑥 ∉

⊔
𝑙<𝑘

𝐴𝑙

}
and note that 𝐴𝑘 , 𝑘 ∈ N, form a partition of 𝑋 because R𝐺 =

⋃
𝑘 RV𝑘 . Construct partial

transformations 𝑇𝑘 : 𝐴𝑘 → 𝑇 (𝐴𝑘) via repeated applications of Lemma 4.12 to the
tessellationsV𝑘 . The element 𝑆 ∈ [𝐺 ↷ 𝑋 ] defined for 𝑥 ∈ 𝐴𝑘 by 𝑆𝑥 = 𝑇𝑘𝑥 satisfies
the conclusion of the theorem.

4.2 Orbital transformations

Let 𝐺 ↷ 𝑋 be a free measure-preserving action of a locally compact Polish group on
a standard probability space. Recall that the identification of 𝐺 with its orbits induces
the cocycle map 𝜌 : R𝐺 → 𝐺, defined by 𝜌(𝑥, 𝑔𝑥) = 𝑔. Moreover, every 𝑇 ∈ [R𝐺] has
an associated cocycle 𝜌𝑇 : 𝑋 → 𝐺 determined by the condition 𝑇 (𝑥) = 𝜌𝑇 (𝑥)𝑥 for all
𝑥 ∈ 𝑋 .

Fix a right-invariant Haar measure 𝜆 on 𝐺. Since any orbit [𝑥]R𝐺 can be identified
with the group 𝐺 via the map 𝐺 ∋ 𝑔 ↦→ 𝑔𝑥 ∈ [𝑥]R𝐺 , the measure 𝜆 can be pushed
forward through this identification to define a collection of measures (𝜆𝑥)𝑥∈𝑋 on 𝑋 .
These measures are given by 𝜆𝑥 (𝐴) = 𝜆({𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝐴}). The right invariance of 𝜆
ensures that 𝜆𝑥 depends only on the orbit [𝑥]R𝐺 and is independent of the choice of
the base point; that is, 𝜆𝑥 = 𝜆𝑦 whenever 𝑥R𝐺𝑦.
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This section focuses on two main facts: the so-called mass-transport principle,
given in Eq. (4.1) below, and the non-singularity of the transformations induced by
elements of [𝐺 ↷ 𝑋 ] onto orbits of the action, formulated in Proposition 4.13. Both of
these topics have been discussed in the literature in various related contexts, including,
for instance, [12, Appen. A] and the treatise [2]. However, we are not aware of any
specific reference from which Eq. (4.1) and Proposition 4.13 can be readily deduced.
The following derivations are therefore included for the reader’s convenience, with the
disclaimer that these results are likely to be known to experts.

The freeness of the action allows us to identify the equivalence relation R𝐺 with
𝑋 × 𝐺 via Φ : 𝑋 × 𝐺 → R𝐺 , Φ(𝑥, 𝑔) = (𝑥, 𝑔𝑥). The push-forward Φ∗(𝜇 × 𝜆) of the
product measure is denoted by 𝑀 and can equivalently be defined by

𝑀 (𝐴) =
∫
𝑋

𝜆𝑥 (𝐴𝑥) 𝑑𝜇(𝑥),

where 𝐴 ⊆ R𝐺 and 𝐴𝑥 = {𝑦 ∈ 𝑋 : (𝑥, 𝑦) ∈ 𝐴}.
In general, the flip transformation𝜎 :R𝐺→R𝐺 ,𝜎(𝑥, 𝑦) = (𝑦, 𝑥), does not preserve

the measure 𝑀 . Set Ψ : 𝑋 ×𝐺 → 𝑋 ×𝐺 to be the involution Ψ = Φ−1 ◦ 𝜎 ◦Φ, which
simplifies to Ψ(𝑥, 𝑔) = (𝑔𝑥, 𝑔−1). Following the computation as in [12, Prop. A.11],
one can easily check that Ψ∗(𝜇 × 𝜆) = 𝜇 × 𝜆, where 𝜆 is the associated left-invariant
measure, 𝜆(𝐴) = 𝜆(𝐴−1). If we define the measure 𝑀 on R𝐺 to be

𝑀 (𝐴) = Φ∗(𝜇 × 𝜆) =
∫
𝑋

𝜆𝑥 (𝐴𝑥) 𝑑𝜇(𝑥),

then 𝜎∗𝑀 = 𝑀 , and also 𝜎∗𝑀 = 𝑀 , since 𝜎−1 = 𝜎. In particular, 𝜎 is 𝑀-invariant if
and only if 𝜆 = 𝜆, i.e., 𝐺 is unimodular.

A function 𝑓 : R𝐺→ R is 𝑀-integrable if and only if 𝑋 ×𝐺 ∋ (𝑥, 𝑔) ↦→ 𝑓 (𝑥, 𝑔𝑥) is
(𝜇 × 𝜆)-integrable. Using Fubini’s theorem and noting that Φ ◦ Ψ−1 = Φ ◦ Ψ = 𝜎 ◦Φ,
we get the following chain of identities for such a function 𝑓 :∫

𝑋

∫
𝐺

𝑓 (𝑥, 𝑔𝑥) 𝑑𝜆(𝑔)𝑑𝜇(𝑥) =
∫
𝑋×𝐺

𝑓 (𝑥, 𝑔𝑥) 𝑑 (𝜇 × 𝜆) (𝑥, 𝑔)

=

∫
𝑋×𝐺

𝑓 ◦Φ 𝑑 (Ψ−1
∗ (𝜇 × 𝜆))

=

∫
𝑋×𝐺

𝑓 ◦Φ ◦ Ψ−1 𝑑 (𝜇 × 𝜆)

=

∫
𝑋×𝐺

𝑓 ◦ 𝜎 ◦Φ 𝑑 (𝜇 × 𝜆)∫
𝑋

∫
𝐺

𝑓 (𝑥, 𝑔𝑥) 𝑑𝜆(𝑔)𝑑𝜇(𝑥) =
∫
𝑋

∫
𝐺

𝑓 (𝑔𝑥, 𝑥) 𝑑𝜆(𝑔)𝑑𝜇(𝑔).

Let Δ : 𝐺 → R>0 be the left Haar modulus given for 𝑔 ∈ 𝐺 by 𝜆(𝑔𝐴) = Δ(𝑔)𝜆(𝐴).
Recall that Δ : 𝐺 → R>0 is a continuous homomorphism (see [47, Prop. 7]). The
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measures𝜆 and𝜆 belong to the same measure class, with the Radon–Nikodym derivative
𝑑𝜆
𝑑𝜆
(𝑔) = Δ(𝑔−1) for all 𝑔 ∈ 𝐺 (see [47, p. 79]). The identities above translate into the

following:∫
𝑋

∫
𝐺

𝑓 (𝑥, 𝑔 · 𝑥) 𝑑𝜆(𝑔)𝑑𝜇(𝑥) =
∫
𝑋

∫
𝐺

Δ(𝑔−1) 𝑓 (𝑔 · 𝑥, 𝑥) 𝑑𝜆(𝑔)𝑑𝜇(𝑥). (4.1)

When the group 𝐺 is unimodular, this expression attains a very symmetric form and is
known as the mass-transport principle:∫

𝑋

∫
𝐺

𝑓 (𝑥, 𝑔 · 𝑥) 𝑑𝜆(𝑔)𝑑𝜇(𝑥) =
∫
𝑋

∫
𝐺

𝑓 (𝑔 · 𝑥, 𝑥) 𝑑𝜆(𝑔)𝑑𝜇(𝑥). (4.2)

Any automorphism 𝑇 ∈ [𝐺 ↷ 𝑋 ] induces, for each 𝑥 ∈ 𝑋 , a transformation of the
𝜎-finite measure space (𝑋,𝜆𝑥). In general,𝑇 does not preserve 𝜆𝑥 ; however, it is always
non-singular, and the Radon–Nikodym derivative 𝑑𝑇∗𝜆𝑥

𝑑𝜆𝑥
can be described explicitly.

Note that the full group [𝐺↷ 𝑋 ] admits two natural actions on the equivalence relation
R𝐺: the left action 𝑙 is given by 𝑙𝑇 (𝑥, 𝑦) = (𝑇𝑥, 𝑦), and the right action 𝑟 is defined as
𝑟𝑇 (𝑥, 𝑦) = (𝑥, 𝑇 𝑦). A straightforward verification (see [12, Lem. A.9]) shows that 𝑙 is
always 𝑀-invariant. Since 𝑟𝑇 ◦ 𝜎 = 𝜎 ◦ 𝑙𝑇 , for all 𝑇 ∈ [𝐺 ↷ 𝑋 ], we have

(𝑟𝑇 )∗𝑀 = (𝑟𝑇 ◦ 𝜎)∗𝑀 = (𝜎 ◦ 𝑙𝑇 )∗𝑀 = 𝜎∗𝑀 = 𝑀.

Let Θ = Φ−1 ◦ 𝑟𝑇 ◦ Φ, i.e., Θ(𝑥, 𝑔) = (𝑥, 𝜌𝑇𝑔 (𝑥)). The equality (𝑟𝑇 )∗𝑀 = 𝑀 is
equivalent to Θ∗(𝜇 × 𝜆) = 𝜇 × 𝜆. The latter implies that for each Borel set 𝐵 ⊆ 𝐺 and
all measurable sets 𝐴 ⊆ 𝑋 , we have∫

𝐴

𝜆(𝐵) 𝑑𝜇 = (𝜇 × 𝜆) (𝐴 × 𝐵) = Θ∗(𝜇 × 𝜆) (𝐴 × 𝐵)

= (𝜇 × 𝜆)
(
{(𝑥, 𝑔) ∈ 𝑋 × 𝐺 : (𝑥, 𝜌𝑇𝑔 (𝑥)) ∈ 𝐴 × 𝐵}

)
Fubini’s theorem =

∫
𝐴

𝜆({𝑔 ∈ 𝐺 : 𝜌𝑇𝑔 (𝑥) ∈ 𝐵}) 𝑑𝜇(𝑥)

=

∫
𝐴

𝜆({𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝑇−1𝐵𝑥}) 𝑑𝜇(𝑥),

which is possible only if 𝜆({𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝑇−1𝐵𝑥}) = 𝜆(𝐵) for 𝜇-almost all 𝑥. Passing
to the measures on the orbits, this translates for each 𝐵 into 𝜆𝑥 (𝑇−1𝐵𝑥) = 𝜆𝑥 (𝐵𝑥).
If (𝐵𝑛)𝑛∈N is a countable algebra of Borel sets in 𝐺 that generates the whole Borel
𝜎-algebra, then for each 𝑥 ∈ 𝑋 , (𝐵𝑛𝑥)𝑛∈N is an algebra of Borel subsets of the orbit
[𝑥]R𝐺 , which generates the Borel𝜎-algebra on it. We have established that for 𝜇-almost
all 𝑥 ∈ 𝑋 , the two measures, 𝜆𝑥 and 𝑇∗𝜆𝑥 , coincide on each 𝐵𝑛𝑥, 𝑛 ∈ N, thus 𝜇-almost
surely 𝜆𝑥 = 𝑇∗𝜆𝑥 .



Orbital transformations 39

The equality 𝑑𝜆
𝑑𝜆
(𝑔) = Δ(𝑔−1) translates into 𝑑𝜆𝑥

𝑑𝜆𝑥
(𝑦) = Δ(𝜌(𝑥, 𝑦)−1) = Δ(𝜌(𝑦, 𝑥)),

and the Radon–Nikodym derivative 𝑑𝑇∗𝜆𝑥
𝑑𝜆𝑥

can now be computed as follows:

𝑑𝑇∗𝜆𝑥
𝑑𝜆𝑥

(𝑦) = 𝑑𝑇∗𝜆𝑥

𝑑𝑇∗𝜆𝑥
(𝑦) · 𝑑𝑇∗𝜆𝑥

𝑑𝜆𝑥
(𝑦) · 𝑑𝜆𝑥

𝑑𝜆𝑥
(𝑦)

𝑇 preserves 𝜆𝑥 =
𝑑𝑇∗𝜆𝑥

𝑑𝑇∗𝜆𝑥
(𝑦) · 𝑑𝜆𝑥

𝑑𝜆𝑥
(𝑦) = 𝑑𝜆𝑥

𝑑𝜆𝑥
(𝑇−1𝑦) · 𝑑𝜆𝑥

𝑑𝜆𝑥
(𝑦)

=

( 𝑑𝜆𝑥
𝑑𝜆𝑥
(𝑇−1𝑦)

)−1
· 𝑑𝜆𝑥
𝑑𝜆𝑥
(𝑦)

= Δ(𝜌(𝑥, 𝑇−1𝑦)−1)−1Δ(𝜌(𝑥, 𝑦)−1)
= Δ

(
𝜌(𝑥, 𝑇−1𝑦) · 𝜌(𝑦, 𝑥)

)
= Δ(𝜌𝑇−1 (𝑦)).

We summarize the content of this section into a proposition.

Proposition 4.13. Let 𝐺 be a locally compact Polish group acting freely 𝐺 ↷ 𝑋 on a
standard probability space (𝑋, 𝜇). Let 𝜆 be a right Haar measure on𝐺,Δ :𝐺→R>0 be
the corresponding Haar modulus, and let (𝜆𝑥)𝑥∈𝑋 be the family of measures obtained
by pushing 𝜆 onto orbits via the action map. Each 𝑇 ∈ [𝐺 ↷ 𝑋 ] induces a non-
singular transformation of (𝑋, 𝜆𝑥) for almost every 𝑥 ∈ 𝑋 , and moreover, one has
𝜆𝑥 (𝑇−1𝐴) =

∫
𝐴
Δ(𝜌𝑇−1 (𝑦)) 𝑑𝜆𝑥 (𝑦) for all Borel sets 𝐴 ⊆ 𝑋 . If 𝐺 is unimodular, then

𝑇∗𝜆𝑥 = 𝜆𝑥 for 𝜇-almost all 𝑥 ∈ 𝑋 .

For future reference, we isolate a simple lemma, which is an immediate consequence
of Fubini’s theorem.

Lemma 4.14. Let 𝐺 be a locally compact Polish group acting freely on a standard
probability space (𝑋, 𝜇). Let 𝜆, 𝜆, (𝜆𝑥)𝑥∈𝑋, and (𝜆𝑥)𝑥∈𝑋 be as above. For any Borel
set 𝐴 ⊆ 𝑋 , the following are equivalent:

(1) 𝜇(𝐴) = 0;
(2) 𝜆𝑥 (𝐴) = 0 for 𝜇-almost all 𝑥 ∈ 𝑋;
(3) 𝜆𝑥 (𝐴) = 0 for 𝜇-almost all 𝑥 ∈ 𝑋 .

Proof. (1) ⇐⇒ (2) Using Fubini’s Theorem on (𝑋 × 𝐺, 𝜇 × 𝜆) to rearrange the
order of quantifiers, one has:

𝜇(𝐴) = 0 ⇐⇒ ∀𝑔 ∈ 𝐺 ∀𝜇𝑥 ∈ 𝑋 𝑔𝑥 ∉ 𝐴
⇐⇒ ∀𝜇𝑥 ∈ 𝑋 ∀𝜆𝑔 ∈ 𝐺 𝑔𝑥 ∉ 𝐴 ⇐⇒ ∀𝜇𝑥 ∈ 𝑋 𝜆𝑥 (𝐴) = 0.

(2) ⇐⇒ (3) is evident, since 𝜆 and 𝜆 are equivalent measures, hence so are 𝜆𝑥 and
𝜆𝑥 for all 𝑥 ∈ 𝑋 .
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4.3 The Hopf decomposition of elements of the full group

Fix an element 𝑇 ∈ [𝐺 ↷ 𝑋 ] of the full group of a free measure-preserving action
of a locally compact Polish group 𝐺. As explained in Section 4.2, 𝑇 acts naturally in
a non-singular manner on each 𝐺-orbit. This action thus has a Hopf decomposition
(see Appendix C). We will now explain how to interpret this decomposition globally,
thereby generalizing the fact that, when 𝐺 is discrete, any element of the full group
decomposes the space into periodic and aperiodic parts.

Let C be a cocompact cross-section, and letVC be the Voronoi tessellation asso-
ciated with some proper norm on 𝐺 (see Appendix E.2). Set 𝜋C : 𝑋 → C to be the
projection map given by the condition (𝜋C (𝑥), 𝑥) ∈ VC for all 𝑥 ∈ 𝑋 . The dissipative
and conservative sets of the transformation 𝑇 are defined as follows:

𝐷𝑇 =
{
𝑥 ∈ 𝑋 : ∃𝑛 ∈ N ∀𝑘 ∈ Z such that |𝑘 | ≥ 𝑛 one has 𝜋C (𝑥) ≠ 𝜋C (𝑇 𝑘𝑥)

}
,

𝐶𝑇 =
{
𝑥 ∈ 𝑋 : ∀𝑛 ∈ N ∃𝑘1, 𝑘2 ∈ Z such that

𝑘1 ≤ −𝑛, 𝑛 ≤ 𝑘2 and 𝜋C (𝑇 𝑘1𝑥) = 𝜋C (𝑥) = 𝜋C (𝑇 𝑘2𝑥)
}
.

In plain words, the dissipative set 𝐷𝑇 consists of those points 𝑥 whose orbit has a
finite intersection with the Voronoi region of 𝑥. The conservative set 𝐶𝑇 , on the other
hand, collects all the points whose orbit is bi-recurrent in the region. We argue in
Proposition 4.16 that the sets 𝐷𝑇 and 𝐶𝑇 induce the Hopf decomposition for 𝑇 ↾[𝑥 ]R𝑇
for almost every 𝑥 ∈ 𝑋; in particular, 𝐷𝑇 ⊔𝐶𝑇 is a partition of 𝑋 , which is independent
of the choice of the cross-section C.

Lemma 4.15. The sets 𝐷𝑇 and 𝐶𝑇 partition the phase space: 𝑋 = 𝐷𝑇 ⊔ 𝐶𝑇 .

Proof. Define sets 𝑁+ and 𝑁− according to

𝑁+ = {𝑥 ∈ 𝑋 \ (𝐷𝑇 ⊔ 𝐶𝑇 ) : ∀𝑘 ≥ 1 𝜋C (𝑇 𝑘𝑥) ≠ 𝜋C (𝑥)},
𝑁− = {𝑥 ∈ 𝑋 \ (𝐷𝑇 ⊔ 𝐶𝑇 ) : ∀𝑘 ≥ 1 𝜋C (𝑇−𝑘𝑥) ≠ 𝜋C (𝑥)},

and note that 𝑋 \ (𝐷𝑇 ⊔ 𝐶𝑇 ) ⊆
⋃
𝑘∈Z 𝑇

𝑘 (𝑁+ ∪ 𝑁−). To show that 𝑋 = 𝐷𝑇 ⊔ 𝐶𝑇 it is
enough to verify that 𝜇(𝑁+) = 0 = 𝜇(𝑁−).

This is done by noting that these sets admit pairwise disjoint copies using piecewise
translations by powers of 𝑇 . In view of the fact that 𝑇 is measure-preserving, this
implies that 𝑁+ and 𝑁− are null. To be more precise, set 𝑁0

− = 𝑁− and define inductively
𝑁𝑛− = {𝑇 𝑘 (𝑥 )𝑥 : 𝑥 ∈ 𝑁𝑛−1

− }, where 𝑘 (𝑥) ≥ 1 is the smallest natural number such that
𝜋C (𝑇 𝑘 (𝑥 )𝑥) = 𝜋C (𝑥). Note that 𝑘 (𝑥) is well-defined, for otherwise 𝑥 would belong
to 𝐷𝑇 . Sets 𝑁𝑛− , 𝑛 ∈ N, are pairwise disjoint, and have the same measure since 𝑇 is
measure-preserving. We conclude that 𝜇(𝑁−) = 0. The argument for 𝜇(𝑁+) = 0 is
similar.
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Proposition 4.16 (Hopf decomposition). Let 𝐺 ↷ 𝑋 be a free measure-preserving
action of a locally compact Polish group on a standard probability space (𝑋, 𝜇).
Let 𝜆 be a right Haar measure on 𝐺 and (𝜆𝑥)𝑥∈𝑋 be the push-forward of 𝜆 onto the
orbits as described in Section 4.2. For any element 𝑇 ∈ [𝐺 ↷ 𝑋 ], the measurable 𝑇-
invariant partition 𝑋 = 𝐷𝑇 ⊔ 𝐶𝑇 defined above satisfies that for 𝜇-almost all 𝑥 ∈ 𝑋
the partition [𝑥]R𝐺 = ( [𝑥]R𝐺 ∩ 𝐷𝑇 ) ⊔ ([𝑥]R𝐺 ∩ 𝐶𝑇 ) is the Hopf decomposition for
𝑇 ↾[𝑥 ]R𝐺 on ( [𝑥]R𝐺 , 𝜆𝑥). Moreover, there is only one partition 𝑋 = 𝐷𝑇 ⊔𝐶𝑇 satisfying
this property up to null sets.

Proof. According to Proposition 4.13, we may assume that for all 𝑥 ∈ 𝑋 the map
𝑇 ↾[𝑥 ]R𝐺 : [𝑥]R𝐺 → [𝑥]R𝐺 is a non-singular transformation with respect to 𝜆𝑥 and
satisfies 𝜆𝑥 (𝑇𝐴) =

∫
𝐴
Δ(𝜌𝑇 (𝑦)) 𝑑𝜆𝑥 (𝑦) for all Borel 𝐴 ⊆ 𝑋 .

Let [𝑥]R𝐺 = 𝐷𝑥 ⊔ 𝐶𝑥 , 𝑥 ∈ 𝑋 , denote the Hopf decomposition for 𝑇 ↾[𝑥 ]R𝐺 . For
any 𝑐 ∈ C, the set

𝑊𝑐 =
{
𝑥 ∈ (VC)𝑐 : 𝑇 𝑘𝑥 ∉ (VC)𝑐 for all 𝑘 ≥ 1

}
is a wandering set and therefore𝑊𝑐 ⊆ 𝐷𝑥 up to a null set. If 𝑥 ∈ 𝐷𝑇 satisfies 𝑥 ∈ (VC)𝑐,
𝑐 ∈ C, then [𝑥]R𝐺 ∩ (VC)𝑐 is finite, and therefore [𝑥]R𝐺 ∩ (VC)𝑐 ⊆

⋃
𝑘∈Z 𝑇

𝑘𝑊𝑐,
whence also

[𝑥]R𝐺 ∩ 𝐷𝑇 ⊆
⋃

𝑐∈C∩[𝑥 ]R𝐺

⋃
𝑘∈Z

𝑇 𝑘𝑊𝑐 ⊆ 𝐷𝑥 .

Claim. We have 𝜆𝑥 ( [𝑥]R𝐺 ∩ 𝐶𝑇 ∩ 𝐷𝑥) = 0 for each 𝑥 ∈ 𝑋 .

Proof of the claim. Otherwise we can find 𝑐 ∈ C ∩ [𝑥]R𝐺 and a wandering set𝑊 ⊆
[𝑥]R𝐺 ∩ (VC)𝑐 ∩ 𝐶𝑇 of positive measure, 𝜆𝑥 (𝑊) > 0. Construct a sequence of sets
𝑊𝑛 by setting𝑊0 = 𝑊 and

𝑊𝑛 =
{
𝑇 𝑘𝑛 (𝑦) 𝑦 : 𝑦 ∈ 𝑊0 and 𝑘𝑛 (𝑦) is minimal such that

𝜋C (𝑇 𝑘𝑛 (𝑦) ) = 𝜋C (𝑦) and 𝑇 𝑘𝑛 (𝑦) 𝑦 ∉
⋃
𝑘<𝑛

𝑊𝑘

}
,

where the value of 𝑘𝑛 (𝑦) is well-defined for each 𝑦 ∈𝑊0 and 𝑛 ∈N, since all points in𝐶𝑇
return to their Voronoi domain infinitely often. Define a transformation 𝑆𝑛 : 𝑊0 →𝑊𝑛

as 𝑆𝑛 (𝑦) = 𝑇 𝑘𝑛 (𝑦) 𝑦, and note that for all 𝑛 ∈ N one has 𝜌𝑆𝑛 (𝑦) ∈ 𝜌((VC)𝑐, (VC)𝑐),
where, as earlier, 𝜌 and 𝜌𝑆𝑛 denote the cocycle maps. The region 𝜌((VC)𝑐, (VC)𝑐) is
precompact, since C is cocompact, and therefore using continuity of the Haar modulus
Δ : 𝐺 → R>0 one can pick 𝜖 > 0 such that Δ(𝜌𝑆𝑛 (𝑦)) > 𝜖 for all 𝑦 ∈ 𝑊0 and all 𝑛 ∈ N.

Since 𝑆𝑛 is composed of powers of 𝑇 , Proposition 4.13 ensures that

𝜆𝑥 (𝑆𝑛𝑊0) =
∫
𝑊0

Δ(𝜌𝑆𝑛 (𝑦)) 𝑑𝜆𝑥 (𝑦),
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whence 𝜆𝑥 (𝑆𝑛𝑊0) ≥ 𝜖𝜆𝑥 (𝑊0) for each 𝑛 ∈ N. We now arrive at a contradiction, as
𝑊𝑛, 𝑛 ∈ N, form a pairwise disjoint infinite family of subsets of (VC)𝑐 whose mea-
sure is uniformly bounded away from zero by 𝜖𝜆𝑥 (𝑊0), which is impossible, since
𝜆𝑥 ((VC)𝑐) < ∞ by cocompactness of C. This finishes the proof of the claim. □claim

We have established by now that 𝐷𝑇 ∩ [𝑥]R𝐺 ⊆ 𝐷𝑥 and, up to a null set, 𝐶𝑇 ∩
[𝑥]R𝐺 ⊆ 𝐶𝑥 by the claim above. Finally, 𝜇(𝑋 \ (𝐷𝑇 ⊔𝐶𝑇 )) = 0 implies via Lemma 4.14
𝜆𝑥 ((𝐷𝑇 ∩ [𝑥]R𝐺 ) ⊔ (𝐶𝑇 ∩ [𝑥]R𝐺 )) = 0 for 𝜇-almost all 𝑥 ∈ 𝑋 , and therefore

𝜆𝑥 ((𝐷𝑇 ∩ [𝑥]R𝐺 )△𝐷𝑥) = 0 = 𝜆𝑥 ((𝐶𝑇 ∩ [𝑥]R𝐺 )△𝐶𝑥)

𝜇-almost surely. Sets 𝐷𝑇 and 𝐶𝑇 thus satisfy the conclusion of the proposition.
For the uniqueness part of the proposition, suppose 𝐷𝑇 , 𝐶𝑇 and 𝐷′

𝑇
, 𝐶′
𝑇

are two
partitions of 𝑋 such that

𝜆𝑥 (𝐷𝑇△𝐷𝑥) = 0 = 𝜆𝑥 (𝐷′𝑇△𝐷𝑥) and 𝜆𝑥 (𝐶𝑇△𝐶𝑥) = 0 = 𝜆𝑥 (𝐶′𝑇△𝐶𝑥)

for 𝜇-almost all 𝑥 ∈ 𝑋 . One therefore also has∀𝜇𝑥 ∈ 𝑋 𝜆𝑥 (𝐷𝑇△𝐷′𝑇 ) = 0 = 𝜆𝑥 (𝐶𝑇△𝐶′𝑇 ),
and hence 𝜇(𝐷𝑇△𝐷′𝑇 ) = 0 and 𝜇(𝐶𝑇△𝐶′𝑇 ) = 0 by Lemma 4.14.

We end this section with a natural definition which will be useful for analyzing
elements of the full group.

Definition 4.17. Let 𝐺 ↷ 𝑋 be a free measure-preserving action of a locally compact
Polish group on a standard probability space (𝑋, 𝜇), and let 𝑇 ∈ [𝐺 ↷ 𝑋]. Consider
the 𝑇-invariant partition 𝑋 = 𝐷𝑇 ⊔ 𝐶𝑇 provided by the Hopf decomposition of 𝑇 as
per the previous proposition. We say that 𝑇 is dissipative when 𝐷𝑇 = 𝑋 and that 𝑇 is
conservative when 𝐶𝑇 = 𝑋 .

When 𝐺 is discrete, observe that 𝑇 is dissipative if and only if it is aperiodic (all its
orbits are infinite), and that 𝑇 is conservative if and only if it is periodic (all its orbits
are finite).

Example 4.18. Let us give a general example of dissipative elements of the full group.
Let 𝐺 𝛼

↷ 𝑋 be a free measure-preserving action of a locally compact Polish group on
a standard probability space (𝑋, 𝜇). If 𝑔 ∈ 𝐺 generates a discrete infinite subgroup,
then the element of the full group 𝛼(𝑔) is dissipative. Indeed, the action of 𝛼(𝑔) on
each orbit is isomorphic to the 𝑔-action by left translation on 𝐺 endowed with its right
Haar measure, which is dissipative since it admits a Borel fundamental domain and
has only infinite orbits. For instance, if 𝐺 = R, such a domain is given by the interval
[0, 𝑔) (or (𝑔, 0], if 𝑔 is negative).

In Chapter 7, we build an interesting example of a conservative element in the full
group of any free measure-preserving flow: its action on each orbit is actually ergodic,
and its cocycle is bounded.
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4.4 L1 full groups and L1 orbit equivalence

We now restrict ourselves to the setup where the acting group 𝐺 is locally compact
Polish and compactly generated, endowed with a maximal compatible norm ∥·∥ (the
existence of such a norm for locally compact Polish group is equivalent to being
compactly generated, see [52, Cor. 2.8 and Thm. 2.53]). For such a group, as explained
in Section 2.2, it makes sense to talk about the associated L1 full group by endowing
the group with a maximal norm.

The following definition is the natural extension of the notion of L1 orbit equivalence
to the locally compact case, stated in terms of full groups.

Definition 4.19. Let 𝛼 and 𝛽 be the respective measure-preserving actions of two
locally compact Polish compactly generated groups 𝐺 and 𝐻 on a standard probability
space (𝑋, 𝜇). We say that 𝛼 and 𝛽 are L1 orbit equivalent when there is a measure-
preserving transformation 𝑆 ∈ Aut(𝑋, 𝜇) such that for all 𝑔 ∈ 𝐺 and all ℎ ∈ 𝐻,

𝑆𝛼(𝑔)𝑆−1 ∈ [𝐻 𝛽
↷ 𝑋]1 and 𝑆−1𝛽(ℎ)𝑆 ∈ [𝐺 𝛼

↷ 𝑋]1.

In other words, up to conjugating 𝛼 by 𝑆, we have that the image of 𝛼 is contained in
the L1 full group of 𝛽, and the image of 𝛽 is contained in the L1 full group of 𝛼.

We now show that L1 full groups do remember actions up to L1 orbit equivalence
as abstract groups. This is done by finding a spatial realization of the isomorphism
between the full groups. Such techniques originated in the work of H. Dye [15] and
have been greatly generalized by D. H. Fremlin [18, 384D]. We recall that a subgroup
𝐺 of Aut(𝑋, 𝜇) is said to have many involutions if for any non-trivial measurable
𝐴 ⊆ 𝑋 there exists a non-trivial involution𝑈 ∈ 𝐺 such that supp𝑈 ⊆ 𝐴. The group of
quasi-measure-preserving transformations of (𝑋, 𝜇) is denoted by Aut∗(𝑋, 𝜇).

Theorem 4.20 (Fremlin). Let 𝐺, 𝐻 be subgroups of Aut(𝑋, 𝜇) with many involutions.
For any isomorphism 𝜓 : 𝐺 → 𝐻 there exists 𝑆 ∈ Aut∗(𝑋, 𝜇) such that 𝜓(𝑇) = 𝑆𝑇𝑆−1

for all 𝑇 ∈ 𝐺.

Proposition 4.21. If the L1 full groups of two ergodic measure-preserving actions of
locally compact compactly generated Polish groups are isomorphic as abstract groups,
then the two actions are L1 orbit equivalent.

Proof. Denote by 𝐺 𝛼
↷ and 𝐻

𝛽
↷ the two actions on the same standard probability

space (𝑋, 𝜇). Since the L1 full groups of ergodic actions have many involutions (see,
for example, Lemma 3.7), any isomorphism 𝜓 : [𝐺 𝛼

↷ 𝑋 ]1 → [𝐻
𝛽
↷ 𝑋 ]1 admits a

spatial realization by some 𝑆 ∈ Aut∗(𝑋, 𝜇). The Radon–Nikodym derivative of 𝑆∗𝜇
with respect to 𝜇 is easily seen to be preserved by every element of [𝐻 𝛽

↷ 𝑋 ]1, and
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hence must be constant by ergodicity. We conclude that 𝑆 ∈ Aut(𝑋, 𝜇), and therefore
by the definition the actions 𝛼 and 𝛽 are L1 orbit equivalent.

Remark 4.22. Similarly to the finitely generated case [41, Sec. 8.1], one could define
L1 full orbit equivalence between actions as equality of L1 full groups up to conjugacy,
which is a strengthening of L1 orbit equivalence (indeed the latter only requires inclusion
of each acting group in the L1 full group of the other acting group). It would be
interesting to have examples of actions which are L1 orbit equivalent, but not L1 fully
orbit equivalent.

We end this section by showing that L1 orbit equivalence is equivalent to a stronger
definition where we ask that, up to conjugating 𝛼 by 𝑆, we moreover have that, on a full
measure set 𝑋0 ⊆ 𝑋 , the 𝛼 and 𝛽 orbits coincide. This will be a direct consequence of the
following proposition. The proof of this proposition is the same as that of [11, Prop. 3.8]
which was not stated in the level of generality we need. Since it is short, we reproduce
it here. We emphasize that when the acting groups are not discrete, the full measure set
𝑋0 may very well fail to be 𝛼-invariant or 𝛽-invariant. In particular, when we say that
the orbits coincide on 𝑋0 we simply mean that they induce the same partition on 𝑋0.

Proposition 4.23. Let 𝐺 and 𝐻 be two locally compact Polish groups acting in a
Borel measure-preserving manner on a standard probability space (𝑋, 𝜇), denote by 𝛼
the 𝐺-action and suppose that 𝛼(𝐺) ≤ [𝐻 ↷ 𝑋]. Then there is a full measure Borel
subset 𝑋0 ⊆ 𝑋 such that

R𝐺 ∩ (𝑋0 × 𝑋0) ⊆ R𝐻 .

Proof. Let 𝜆 be the Haar measure on 𝐺. Since 𝛼(𝐺) ≤ [𝐻 ↷ 𝑋], for all 𝑔 ∈ 𝐺 and
almost all 𝑥 ∈ 𝑋 , we have 𝑔𝑥 ∈ 𝐻𝑥. By Fubini’s theorem, this implies that the Borel set

𝑋0 = {𝑥 ∈ 𝑋 : for 𝜆-almost all 𝑔 ∈ 𝐺, we have 𝑔𝑥 ∈ 𝐻𝑥}

has full measure. Now let 𝑥 ∈ 𝑋0, and let 𝑔1 ∈ 𝐺 be such that 𝑔1𝑥 ∈ 𝑋0. We want to
show that 𝑔1𝑥 ∈ 𝐻𝑥.

Since 𝑥 and 𝑔1𝑥 are in 𝑋0, the sets

𝐴 = {𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝐻𝑥} and 𝐵 = {𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝐻𝑔1𝑥}

have full measure and so 𝐴 ∩ 𝐵 has full measure. Take 𝑔 ∈ 𝐴 ∩ 𝐵, and note that
𝑔𝑥 ∈ 𝐻𝑥 ∩ 𝐻𝑔1𝑥, so the two orbits 𝐻𝑥 and 𝐻𝑔1𝑥 intersect, hence 𝑔1𝑥 ∈ 𝐻𝑥.

Corollary 4.24. Let 𝐺 and 𝐻 be compactly generated locally compact Polish groups,
and let ∥·∥𝐺 and ∥·∥𝐻 be maximal norms on 𝐺 and 𝐻, respectively. Two measure-
preserving actions of 𝐺 and 𝐻 on a standard probability space (𝑋, 𝜇) are L1 orbit
equivalent if and only if they can be conjugated so as to share the same orbits on a
full measure Borel subset 𝑋0 ⊆ 𝑋 , i.e., R𝐺 ∩ (𝑋0 × 𝑋0) = R𝐻 ∩ (𝑋0 × 𝑋0), and there
exist Borel maps 𝛾𝐺 : 𝐺 × 𝑋0 → 𝐻 and 𝛾𝐻 : 𝐻 × 𝑋0 → 𝐺 such that:
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(1) for all 𝑥 ∈ 𝑋0, 𝑔 · 𝑥 = 𝛾𝐺 (𝑔, 𝑥) · 𝑥 and ℎ · 𝑥 = 𝛾𝐻 (ℎ, 𝑥) · 𝑥 whenever 𝑔𝑥 ∈ 𝑋0
and ℎ𝑥 ∈ 𝑋0;

(2)
∫
𝑋0
∥𝛾𝐺 (𝑔, 𝑥)∥𝐻 𝑑𝜇(𝑥) < +∞ and

∫
𝑋0
∥𝛾𝐻 (ℎ, 𝑥)∥𝐺 𝑑𝜇(𝑥) < +∞ for all 𝑔 ∈ 𝐺

and all ℎ ∈ 𝐻.

Proof. We may assume that the actions𝐺↷ 𝑋 and𝐻↷ 𝑋 are Borel. By the definition
of L1 full groups, the conditions stated in the corollary are sufficient to establish L1

orbit equivalence. Conjugating the two actions, we may also assume that they share
the same full group. Since the L1 full groups contain the acting groups, we can apply
Proposition 4.23 twice to obtain a full measure Borel subset 𝑋0 ⊆ 𝑋 on which the
orbits of the two actions coincide.

Let F (𝐺) and F (𝐻) denote the Effros Borel spaces associated with 𝐺 and 𝐻,
respectively. The orbit equivalence relations R𝐺 and R𝐻 are Borel, and consequently,
the maps

𝐺 × 𝑋0 ∋ (𝑔, 𝑥) ↦→ {ℎ ∈ 𝐻 : 𝑔𝑥 = ℎ𝑥} ∈ F (𝐻),
𝐻 × 𝑋0 ∋ (ℎ, 𝑥) ↦→ {𝑔 ∈ 𝐺 : ℎ𝑥 = 𝑔𝑥} ∈ F (𝐺)

are also Borel [6, Thm. 7.1.2]. Note that {ℎ ∈ 𝐻 : 𝑔𝑥 = ℎ𝑥} ≠ ∅whenever 𝑔𝑥 ∈ 𝑋0, and
similarly, {𝑔 ∈ 𝐺 : ℎ𝑥 = 𝑔𝑥} ≠ ∅ provided that ℎ𝑥 ∈ 𝑋0. By applying the Kuratowski–
Ryll-Nardzewski selectors [31, 12.13], we can find Borel maps 𝛾𝐺 and 𝛾𝐻 that satisfy
item (1) and the inequalities

∥𝛾𝐺 (𝑔, 𝑥)∥𝐻 < 𝐷𝐻 (𝑥, 𝑔𝑥) + 1, ∥𝛾𝐻 (ℎ, 𝑥)∥𝐺 < 𝐷𝐺 (𝑥, ℎ𝑥) + 1,

where 𝐷𝐻 and 𝐷𝐺 are the metrics induced on the orbits by the respective actions. The
integrability condition (2) now follows from the assumption that the actions have been
conjugated to satisfy 𝐺 ≤ [𝐻 ↷ 𝑋 ]1 and 𝐻 ≤ [𝐺 ↷ 𝑋 ]1.

We will demonstrate in the final chapter that there exist free ergodic R-flows that
are not L1 orbit equivalent. This result will be established by connecting L1 orbit
equivalence to flip Kakutani equivalence. In the discrete amenable setting, a key result
due to T. Austin shows that entropy is preserved under L1 orbit equivalence [3].

Question 4.25. Let 𝐺 be an amenable non-discrete non-compact compactly generated
locally compact Polish group. Are there free measure-preserving ergodic actions of 𝐺
which are not L1 orbit equivalent?





Chapter 5

Derived L1 full groups for locally compact amenable
groups

Given a measure-preserving action of a Polish normed group (𝐺, ∥·∥) on (𝑋, 𝜇), the
derived L1 full group 𝔇( [𝐺 ↷ 𝑋 ]1) of the action is, by definition, the (topologi-
cal) derived subgroup of the L1 full group [𝐺 ↷ 𝑋 ]1. Recall that this means that
𝔇( [𝐺 ↷ 𝑋 ]1) is the closure in [𝐺 ↷ 𝑋 ]1 of the subgroup generated by commutators,
i.e., elements of the form 𝑇𝑈𝑇−1𝑈−1, where 𝑇,𝑈 ∈ [𝐺 ↷ 𝑋 ]1. Provided the𝐺-action
is aperiodic, the latter can be described as a subgroup of [𝐺 ↷ 𝑋 ]1 in three different
ways, using the fact that [𝐺 ↷ 𝑋 ]1 is induction friendly, as explained in Section 3.2
(see Corollary 3.16):
• 𝔇( [𝐺 ↷ 𝑋 ]1) is the closure of the group generated by involutions;
• 𝔇( [𝐺 ↷ 𝑋 ]1) is the closure of the group generated by 3-cycles;
• 𝔇( [𝐺 ↷ 𝑋 ]1) is the closure of the group generated by periodic elements.
In particular, all periodic elements of [𝐺 ↷ 𝑋 ]1 actually belong to 𝔇( [𝐺 ↷ 𝑋 ]1)
(see Lemma 3.11 for the proof of this specific statement).

Compared to the previous chapter, we impose one further restriction on the acting
group, and consider actions of a locally compact amenable Polish normed group
(𝐺, ∥·∥). Appendix G of [7] contains an excellent review of amenability for both
general topological groups and locally compact groups. As before, we fix a measure-
preserving action𝐺↷ 𝑋 on a standard probability space (𝑋, 𝜇), and let𝐷 : R𝐺→R≥0

denote the family of metrics induced onto the orbits by the norm. To ensure our results
encompass both the non-compactly generated case and the situation in which the L1

full group coincides with the entire full group of the action (as in [12]), we do not
impose the condition that the norm be either proper or maximal. In particular, the norm
may be bounded, which in turn implies that the metric 𝐷 on the orbits is also bounded.

In Section 5.1, we construct a dense increasing chain of subgroups in𝔇( [𝐺↷ 𝑋 ]1).
This dense chain is utilized in the subsequent sections. In Section 5.2, we show that the
amenability of the group 𝐺 is reflected in the whirly amenability of 𝔇( [𝐺 ↷ 𝑋 ]1).
Meanwhile, in Section 5.3, we prove, by a Baire category argument, that𝔇( [𝐺↷ 𝑋 ]1)
contains a dense 2-generated subgroup.
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5.1 Dense chain of subgroups

An equivalence relation R ⊆ R𝐺 is said to be uniformly bounded if there is 𝑀 > 0
and 𝑋 ′ ⊆ 𝑋 such that 𝜇(𝑋 \ 𝑋 ′) = 0 and sup(𝑥1 ,𝑥2 ) ∈R′ 𝐷 (𝑥1, 𝑥2) ≤ 𝑀, where R′ =
R ∩ 𝑋 ′ × 𝑋 ′.

Lemma 5.1. Let (𝐺, ∥·∥) be a locally compact amenable Polish normed group acting
on a standard probability space (𝑋, 𝜇). There exists a sequence of cross-sections C𝑛,
𝑛 ∈ N, and tessellationsW𝑛 over C𝑛 such that for all 𝑛 ∈ N

(1) RW𝑛
⊆ RW𝑛+1 and

⋃
𝑘∈N RW𝑘

= R𝐺 (up to a null set);
(2) RW𝑛

is uniformly bounded.

Proof. Let C be a cocompact cross-section, VC be the Voronoi tessellation over C,
𝜋VC : 𝑋 → C be the associated reduction, and 𝜈 = (𝜋VC )∗𝜇 be the push-forward
measure on C. Recall that RVC is uniformly bounded since C is cocompact. Let 𝐸 be
the equivalence relation obtained by restricting R𝐺 onto C. By a theorem of A. Connes,
J. Feldman, and B. Weiss [13], 𝐸 is hyperfinite on an invariant set of 𝜈-full measure.
Throwing away a 𝐺-invariant null set, we may write 𝐸 =

⋃
𝑛 𝐸𝑛, where (𝐸𝑛)𝑛∈N is an

increasing sequence of Borel equivalence relations with finite classes. For 𝑚, 𝑛 ∈ N,
define 𝐴𝑛,𝑚 to be the set of points in the cross-section whose 𝐸𝑛-class is bounded in
diameter by 𝑚:

𝐴𝑛,𝑚 =
{
𝑐 ∈ C : 𝐷 (𝑐1, 𝑐2) ≤ 𝑚 for all 𝑐1, 𝑐2 ∈ C such that 𝑐1𝐸𝑛𝑐 and 𝑐2𝐸𝑛𝑐

}
.

Note that the sets 𝐴𝑛,𝑚 are 𝐸𝑛-invariant, nested, and
⋃
𝑚 𝐴𝑛,𝑚 = C for every 𝑛 ∈ N.

Pick 𝑚𝑛 so large as to ensure 𝜈(C \ 𝐴𝑛,𝑚𝑛 ) < 2−𝑛 and let 𝐵𝑛 =
⋂
𝑘≥𝑛 𝐴𝑘,𝑚𝑘 . The sets

𝐵𝑛 are 𝐸𝑛-invariant, increasing, and lim𝑛 𝜈(𝐵𝑛) = 𝜈(C). Define equivalence relations
𝐹𝑛 on C by setting 𝑐1𝐹𝑛𝑐2 whenever 𝑐1 = 𝑐2 or 𝑐1, 𝑐2 ∈ 𝐵𝑛 and 𝑐1𝐸𝑛𝑐2. Note that
𝐷 (𝑐1, 𝑐2) ≤ 𝑚𝑛 whenever 𝑐1𝐹𝑛𝑐2. Let C𝑛 ⊆ C be a Borel transversal for 𝐹𝑛 and define
W𝑛 = {(𝑐, 𝑥) ∈ C𝑛 × 𝑋 : 𝑐𝐹𝑛𝜋VC (𝑥)}. It is straightforward to check that eachW𝑛 is a
tessellation over C𝑛, and the equivalence relations RW𝑛

satisfy the conclusions of the
lemma.

The equivalence relations RW𝑛
produced by Lemma 5.1 give rise to a nested chain

of groups [RW0 ] ≤ [RW1 ] ≤ · · ·. Some basic facts about such groups can be found
in Appendix E.2. The following lemma establishes that such a chain is dense in the
derived L1 full group.

Lemma 5.2. Let (𝐺, ∥·∥) be a locally compact amenable Polish normed group acting
on a standard probability space (𝑋, 𝜇) and let (R𝑛)𝑛∈N be a sequence of equivalence
relations as in Lemma 5.1. If the action is aperiodic, then the union

⋃
𝑛 [R𝑛] is contained

in the derived L1 full group 𝔇( [𝐺 ↷ 𝑋 ]1) and is dense therein.
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Proof. By definition, [R𝑛 ] is a subgroup of [R𝐺 ]. Since equivalence relations R𝑛 are
uniformly bounded, we actually have [R𝑛 ] ≤ [𝐺 ↷ 𝑋 ]1, and the topology induced by
the L1 metric on [R𝑛 ] coincides with the topology induced from [R𝐺 ]. Moreover, in
view of Proposition D.7, [R𝑛 ] is topologically generated by periodic transformations,
so we actually have [R𝑛 ] ≤ 𝔇( [𝐺 ↷ 𝑋 ]1) as a consequence of Lemma 3.11 and
Corollary 3.16.

It remains to verify that the union
⋃
𝑛 [R𝑛 ] is dense in 𝔇( [𝐺 ↷ 𝑋 ]1). To this end,

recall that by Corollary 3.16, the derived L1 full group 𝔇( [𝐺 ↷ 𝑋 ]1) is topologically
generated by involutions. So let𝑈 ∈𝔇( [𝐺↷ 𝑋 ]1) be an involution and set 𝑋𝑛 = {𝑥 ∈ 𝑋 :
(𝑥,𝑈 (𝑥)) ∈ R𝑛}, 𝑛 ∈ N. Note that 𝑋𝑛 is𝑈-invariant since𝑈 is an involution. Moreover,
𝜇(𝑋𝑛) → 1 as

⋃
𝑛R𝑛 =R𝐺 , and thus the induced transformations𝑈𝑋𝑛 ∈ [R𝑛 ] converge

to𝑈 in the topology of [𝐺 ↷ 𝑋 ]1. We conclude that
⋃
𝑛 [R𝑛 ] is dense in the derived

L1 full group.

Corollary 5.3. Let (𝐺, ∥·∥) be a locally compact amenable Polish normed group
acting on a standard probability space (𝑋, 𝜇). Suppose that almost every orbit of the
action is uncountable. There exists a chain 𝐻0 ≤ 𝐻1 ≤ · · · ≤ 𝔇( [𝐺 ↷ 𝑋 ]1) of closed
subgroups such that

⋃
𝑛 𝐻𝑛 is dense in 𝔇( [𝐺 ↷ 𝑋 ]1), and each 𝐻𝑛 is isomorphic

to L0(𝑌𝑛, 𝜈𝑛,Aut( [0, 1], 𝜆)) for some standard Lebesgue space (𝑌𝑛, 𝜈𝑛). If, moreover,
each orbit of the action has measure zero, then one can assume that all (𝑌𝑛, 𝜈𝑛) are
atomless and each 𝐻𝑛 is isomorphic to L0( [0, 1], 𝜆,Aut( [0, 1], 𝜆)).

Proof. Apply Lemmas 5.1 and 5.2 to get a dense chain of subgroups [R0 ] ≤ [R1 ] ≤
· · · ≤ 𝔇( [𝐺 ↷ 𝑋 ]1) and use Corollary E.9 to deduce that each [R𝑛 ] has the desired
form.

Corollary 5.4. Let (𝐺, ∥·∥) be a locally compact amenable Polish normed group
acting on a standard probability space (𝑋, 𝜇). If the action is aperiodic, then the set of
periodic elements is dense in the derived L1 full group 𝔇( [𝐺 ↷ 𝑋 ]1).

Proof. Consider a chain of subgroups [R𝑛 ] given by Lemma 5.2. Periodic elements are
dense in these groups for their natural topology (see Proposition D.7 and the discussion
preceding it). These topologies are compatible with the standard Borel structure of
Aut(𝑋, 𝜇) induced by the weak topology and therefore must refine the L1 topology by
the standard automatic continuity arguments [6, Sec. 1.6]. Hence, periodic elements
are dense in all of 𝔇( [𝐺 ↷ 𝑋 ]1), as claimed.

Corollary 5.4, together with Proposition 3.25, shows that the L1 norm is maximal
on derived L1 full groups of aperiodic measure-preserving actions of locally compact
amenable Polish normed groups (see Section 2.2 for a brief reminder on the maximality
of norms). In particular, such groups are boundedly generated by [52, Thm. 2.53].
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Theorem 5.5. Let (𝐺, ∥·∥) be a locally compact amenable Polish normed group acting
on a standard probability space (𝑋, 𝜇). If the action is aperiodic, then the L1 norm is
maximal on the derived L1 full group 𝔇( [𝐺 ↷ 𝑋 ]1).

We do not know if the amenability hypothesis can be removed, even when 𝐺 is
discrete and the action is free.

5.2 Whirly amenability

Lemma 5.2 is a powerful tool to deduce various dynamical properties of derived L1 full
groups. Recall that a Polish group 𝐺 is said to be whirly amenable if it is amenable
and, for any continuous action of 𝐺 on a compact space, any invariant measure is
supported on the set of fixed points of the action. In particular, each such action has to
have some fixed points, so whirly amenable groups are extremely amenable, meaning
that all their continuous actions on compact spaces have fixed points.

Proposition 5.6. Let R be a smooth measurable equivalence relation on a standard
Lebesgue space (𝑋, 𝜇). If 𝜇 is atomless, then the full group [R ] is whirly amenable.

Proof. In view of Proposition D.6, the full group [R ] is isomorphic to

L0( [0, 1], 𝜆,Aut( [0, 1], 𝜆)) 𝜖0 × Aut( [0, 1], 𝜆)𝜅0 ×
∏
𝑛≥1

L0( [0, 1], 𝜆,𝔖𝑛) 𝜖0 ,

where 𝔖𝑛 is the group of permutations of an 𝑛-element set, and 𝜖𝑛 ∈ {0, 1}, 𝜅0 ≤ ℵ0.
Since a product of whirly amenable groups is whirly amenable, it suffices to show that
the groups appearing in the decomposition above, namely L0( [0, 1], 𝜆,Aut( [0, 1], 𝜆)),
Aut( [0, 1], 𝜆), and L0( [0, 1], 𝜆,𝔖𝑛), 𝑛 ≥ 1, are whirly amenable.

The group Aut( [0, 1], 𝜆) is whirly amenable by [22] (it is, in fact, a so-called Levy
group). Finally, we apply a theorem of V. Pestov and F. M. Schneider [50], which asserts
that a group L0( [0,1],𝜆,𝐺) is whirly amenable if and only if𝐺 is amenable. This readily
implies the whirly amenability of L0( [0,1], 𝜆,𝔖𝑛) and L0( [0,1], 𝜆,Aut( [0,1], 𝜆)).

Remark 5.7. The assumption of 𝜇 being atomless cannot be omitted in the proposition
above. Indeed, [R ] will factor onto 𝔖𝑛 for some 𝑛 ≥ 2, as long as an R-class contains
at least 2 atoms of 𝜇 of the same measure. However, if all 𝜇-atoms within each R-class
have distinct measures, then the restriction of [R ] onto the atomic part of 𝑋 is trivial,
which suffices to conclude the whirly amenability of the group [R ].

Theorem 5.8. Let 𝐺 ↷ 𝑋 be a measure-preserving action of an amenable locally
compact Polish normed group on a standard probability space (𝑋, 𝜇). If the action
is aperiodic, then the derived L1 full group 𝔇( [𝐺 ↷ 𝑋 ]1) is whirly amenable. In
particular, [𝐺 ↷ 𝑋 ]1 is amenable.
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Proof. Lemma 5.2 shows that 𝔇( [𝐺 ↷ 𝑋 ]1) has an increasing dense chain of sub-
groups 𝐻𝑛 of the form [R𝑛 ], where R𝑛 are smooth measurable equivalence relations
on 𝑋 . Proposition 5.6 applies and shows that the groups 𝐻𝑛 are whirly amenable. The
latter is sufficient to conclude the whirly amenability of𝔇( [𝐺↷ 𝑋 ]1), as any invariant
measure for the action of the derived group is also invariant for the induced 𝐻𝑛-actions.
Hence, it has to be supported on the intersection of the fixed points of all 𝐻𝑛, which
coincides with the set of fixed points for the action of 𝔇( [𝐺 ↷ 𝑋 ]1).

The fact that [𝐺 ↷ 𝑋 ]1 is amenable now follows from the fact that every abelian
group is amenable and that every amenable extension of an amenable group must itself
be amenable (for instance, see [7, Prop. G.2.2]).

Remark 5.9. Note that, in general, [𝐺 ↷ 𝑋 ]1 is not extremely amenable. For flows, it
factors onto R via the index map (see Chapter 6). Since R admits continuous actions
on compact spaces without fixed points, [R ↷ 𝑋 ]1 is not extremely amenable (and in
particular, it is not whirly amenable) for any free measure-preserving flow.

Corollary 5.10. Let 𝐺 ↷ 𝑋 be a free measure-preserving action of a unimodular
locally compact Polish group on a standard probability space (𝑋, 𝜇). The following
are equivalent:

(1) 𝐺 is amenable.
(2) [𝐺 ↷ 𝑋 ]1 is amenable.
(3) The derived L1 full group 𝔇( [𝐺 ↷ 𝑋 ]1) is amenable.
(4) The derived L1 full group 𝔇( [𝐺 ↷ 𝑋 ]1) is extremely amenable.
(5) The derived L1 full group 𝔇( [𝐺 ↷ 𝑋 ]1) is whirly amenable.

Proof. We established the implication (1) =⇒ (5) in Theorem 5.8. The chain of impli-
cations (5) =⇒ (4) =⇒ (3) is straightforward, and (3) =⇒ (2) follows from the stability
of amenability under group extensions, which was already discussed in Theorem 5.8.

For the last implication (2) =⇒ (1), first recall that the orbit full group of the
action is generated by involutions. It follows that the orbit full group is topologically
generated by involutions whose cocycles are integrable (actually, one can even ask that
the cocycles are bounded). In particular, the L1 full group [𝐺 ↷ 𝑋 ]1 is dense in the
orbit full group, and so, assuming (2), we conclude that the orbit full group [𝐺 ↷ 𝑋 ]
is amenable. The amenability of 𝐺 then follows from [12, Thm. 5.1].

Remark 5.11. We have to require unimodularity to apply [12, Thm. 5.1]. It seems likely
that the unimodularity hypothesis can be dropped in this result, but we do not pursue
this question further.
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5.3 Topological generators

We now concern ourselves with the question of determining the topological rank of
derived L1 full groups. Our approach will be based on the dense chain of subgroups
established in Corollary 5.3, and the first step is to study the topological rank of the
group L0( [0, 1],Aut( [0, 1])).

Let (𝑌, 𝜈) and (𝑍, 𝜆) be standard Lebesgue spaces. Consider the product space
𝑌 × 𝑍 equipped with the product measure 𝜈 × 𝜆 and let R be the product of the discrete
equivalence relation on 𝑌 and the anti-discrete on 𝑍 ; in other words, (𝑦1, 𝑧1)R(𝑦2, 𝑧2)
if and only if 𝑦1 = 𝑦2. As discussed in Appendix D, the following two groups are one
and the same:

(1) the full group [R ];
(2) the topological group L0(𝑌, 𝜈,Aut(𝑍, 𝜆)).

In particular, we may and do endow [R ] with the Polish group topology induced by its
natural identification with L0(𝑌, 𝜈,Aut(𝑍, 𝜆)).

Suppose additionally that (𝑍, 𝜆) is atomless. Pick a hyperfinite ergodic measure-
preserving equivalence relation 𝐸 on (𝑍, 𝜆). We claim that APER(𝑍) ∩ [𝐸 ] is dense
in Aut(𝑍, 𝜆), where APER(𝑍) stands for the collection of aperiodic automorphisms
of 𝑍 . Indeed, first note that by [32, Prop. 3.1], the full group [𝐸 ] is weakly dense in
Aut(𝑍, 𝜆). Let us then pick any aperiodic 𝑇 ∈ [𝐸 ]. It follows from [32, Thm. 2.4] that
the Aut(𝑍, 𝜆)-conjugacy class of 𝑇 is weakly dense in Aut(𝑋, 𝜆). By the continuity
of the conjugacy action and weak density, the [𝐸 ]-conjugacy class of 𝑇 is weakly
dense as well, which proves our claim since this conjugacy class is clearly contained in
APER(𝑍) ∩ [𝐸 ].

Now setR0 = id𝑌 × 𝐸 to be the equivalence relation on𝑌 × 𝑍 given by the condition
(𝑦1, 𝑧1)R0(𝑦2, 𝑧2) whenever 𝑦1 = 𝑦2 and 𝑧1𝐸𝑧2. A standard application of the Jankov–
von Neumann uniformization theorem yields the following lemma.

Lemma 5.12. APER(𝑌 × 𝑍) ∩ [R0 ] is dense in [R ] ≃ L0(𝑌, 𝜈,Aut( [0, 1], 𝜆)).

Our first goal is to establish that the topological rank of [R ] is 2. We do so by
first verifying this under the assumption that (𝑌, 𝜈) is atomless and then deducing the
general case.

We say that a Polish group𝐺 is generically 𝑘-generated, where 𝑘 ∈ N, if the set of
𝑘-tuples (𝑔1, . . . , 𝑔𝑘) ∈ 𝐺𝑘 that generate a dense subgroup of 𝐺 is dense in 𝐺𝑘 . Note
that the set of such tuples is always a 𝐺 𝛿 set, so if 𝐺 is generically 𝑘-generated, then a
comeager set of 𝑘-tuples generates a dense subgroup of 𝐺.

Proposition 5.13. Suppose that (𝑌, 𝜈) is atomless. The Polish group [R ] is generically
2-generated.
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Proof. By [39, Thm 5.1], the set of pairs

(𝑆, 𝑇) ∈ (APER(𝑌 × 𝑍) ∩ [R0 ]) × [R0 ]

such that ⟨𝑆, 𝑇⟩ = [R0 ] is dense 𝐺 𝛿 for the uniform topology. In view of Lemma 5.12,
this implies that [R ] is generically 2-generated.

Lemma 5.14. For all Polish groups 𝐺 and 𝐻, one has

rk(𝐺 × 𝐻) ≥ max{rk(𝐺), rk(𝐻)}.

If 𝐺 × 𝐻 is generically 𝑘-generated, then so are 𝐺 and 𝐻 as well.

Proof. The inequality on ranks is immediate from the trivial observation that if
⟨(𝑔1, ℎ1), . . . , (𝑔𝑘 , ℎ𝑘)⟩ is dense in 𝐺 × 𝐻, then ⟨𝑔1, . . . , 𝑔𝑘⟩ is dense in 𝐺 and
⟨ℎ1, . . . , ℎ𝑘⟩ is dense in 𝐻.

Suppose 𝐺 × 𝐻 is generically 𝑘-generated. Pick an open set𝑈 ⊆ 𝐺𝑘 and note that
𝑈 × 𝐻𝑘 corresponds to an open subset of (𝐺 × 𝐻)𝑘 via the isomorphism (𝐺 × 𝐻)𝑘 ≃
𝐺𝑘 ×𝐻𝑘 . Since𝐺 ×𝐻 is generically 𝑘-generated, there is a tuple (𝑔𝑖 , ℎ𝑖)𝑘𝑖=1 ∈ (𝐺 ×𝐻)

𝑘

that generates a dense subgroup and (𝑔𝑖 , ℎ𝑖)𝑘𝑖=1 ∈𝑈 × 𝐻
𝑘 . We conclude that (𝑔𝑖)𝑘𝑖=1 ∈𝑈

generates a dense subgroup of 𝐺, and the lemma follows.

Lemma 5.15. For any Polish group 𝐺

rk(L0( [0, 1], 𝜆, 𝐺)) = rk
(
L0( [0, 1], 𝜆, 𝐺) × 𝐺N) .

If L0( [0, 1], 𝜆, 𝐺) is generically 𝑘-generated for some 𝑘 ∈ N, then so is the group
L0( [0, 1], 𝜆, 𝐺) × 𝐺N.

Proof. In view of Lemma 5.14, rk(L0( [0, 1], 𝜆, 𝐺)) ≤ rk
(
L0( [0, 1], 𝜆, 𝐺) ×𝐺N) , and

since the group 𝐺 is separable, we only need to consider the case when the rank
rk(L0( [0, 1], 𝜆, 𝐺)) is finite.

It is notationally convenient to shrink the interval and work with the group

L0( [0, 1/2], 𝜆, 𝐺) × 𝐺N

instead, as it can naturally be viewed as a closed subgroup of L0( [0, 1], 𝜆, 𝐺) via the
identification 𝑓 × (𝑔𝑖)𝑖∈N ↦→ 𝜁 , where

𝜁 (𝑡) =
{
𝑓 (𝑡) if 0 ≤ 𝑡 < 1/2,
𝑔𝑖 if 1 − 2−𝑖−1 ≤ 𝑡 < 1 − 2−𝑖−2 for 𝑖 ∈ N.

Pick families (𝜉𝑙)𝑙∈N dense in L0( [0, 1/2], 𝜆, 𝐺), and (ℎ𝑚)𝑚∈N dense in 𝐺.
Let us call a function 𝛼 : N → N a multi-index if 𝛼(𝑖) = 0 for all but finitely

many 𝑖 ∈ N. We use N<N to denote the set of all multi-indices. Given 𝛼 ∈ N<N, we
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define ℎ𝛼 = (ℎ𝛼(𝑖) )𝑖∈N ∈ 𝐺N. Note that {ℎ𝛼 : 𝛼 ∈ N<N} is dense in 𝐺N, and thus
{𝜉𝑙 × ℎ𝛼 : 𝑙 ∈ N, 𝛼 ∈ N<N} is a dense family in L0( [0, 1/2], 𝜆, 𝐺) × 𝐺N.

Pick a tuple 𝑓1, . . . , 𝑓𝑘 ∈ L0( [0, 1], 𝜆,𝐺) that generates a dense subgroup. For each
pair (𝑙, 𝛼) ∈ N × N<N, there exists a sequence of reduced words (𝑤𝑙,𝛼𝑛 )𝑛∈N in the free
group on 𝑘 generators such that 𝑤𝑙,𝛼𝑛 ( 𝑓1, . . . , 𝑓𝑘) converges to 𝜉𝑙 × ℎ𝛼 in measure. By
passing to a subsequence, we may assume that 𝑤𝑙,𝛼𝑛 ( 𝑓1, . . . , 𝑓𝑘) → 𝜉𝑙 × ℎ𝛼 pointwise
almost surely. In other words, the set

𝑃𝑙,𝛼 =
{
𝑡 ∈ [0, 1] : 𝑤𝑙,𝛼𝑛 ( 𝑓1, . . . , 𝑓𝑘) (𝑡) → (𝜉𝑙 × ℎ𝛼) (𝑡)

}
has Lebesgue measure 1 for each (𝑙, 𝛼) ∈ N × N<N, and hence so does the set

𝑃 =
⋂
𝑙∈N

⋂
𝛼∈N<N

𝑃𝑙,𝛼.

Pick some 𝑡 𝑗 ∈ 𝑃 ∩ [1 − 2− 𝑗−1, 1 − 2− 𝑗−2), 𝑗 ∈ N, and set

𝑓𝑖 (𝑡) =
{
𝑓𝑖 (𝑡) for 0 ≤ 𝑡 < 1/2,
𝑓𝑖 (𝑡 𝑗) for 1 − 2− 𝑗−1 ≤ 𝑡 < 1 − 2− 𝑗−2 for 𝑗 ∈ N.

Elements 𝑓𝑖 naturally belong to L0( [0,1/2],𝜆,𝐺) ×𝐺N, and we claim that they generate
a dense subgroup therein, witnessing rk(L0( [0, 1/2], 𝜆, 𝐺) × 𝐺N) ≤ 𝑘 . To this end,
recall that 𝑤𝑙,𝛼𝑛 ( 𝑓1, . . . , 𝑓𝑘) → 𝜉𝑙 × ℎ𝛼 pointwise almost surely. In particular,

𝑤𝑙,𝛼𝑛 ( 𝑓1, . . . , 𝑓𝑘) ↾[0,1/2]→ 𝜉𝑙 × ℎ𝛼 ↾[0,1/2]

in measure and, for each 𝑗 ∈ N,

𝑤𝑙,𝛼𝑛 ( 𝑓1, . . . , 𝑓𝑘) (𝑡 𝑗) → (𝜉𝑙 × ℎ𝛼) (𝑡 𝑗) = ℎ𝛼( 𝑗 )

is guaranteed by choosing 𝑡 𝑗 ∈ 𝑃. We conclude that

𝑤𝑙,𝛼𝑛 ( 𝑓1, . . . , 𝑓𝑘) → 𝜉𝑙 × ℎ𝛼

in L0( [0, 1/2], 𝜆, 𝐺) × 𝐺N, and therefore

rk(L0( [0, 1/2], 𝜆, 𝐺) × 𝐺N) ≤ 𝑘.

Finally, suppose that L0( [0, 1], 𝜆, 𝐺) is generically 𝑘-generated. Choose open
sets 𝑈𝑖 ⊆ L0( [0, 1/2], 𝜆, 𝐺) × 𝐺N,1 ≤ 𝑖 ≤ 𝑘 . Shrinking them if necessary, we may
assume that all𝑈𝑖 have the form𝑈𝑖 = 𝐴

𝑖
0 × 𝐴

𝑖
1 × · · · × 𝐴

𝑖
𝑛 × 𝐺N, where 𝐴𝑖0 is open in

L0( [0, 1/2], 𝜆, 𝐺), and 𝐴𝑖
𝑗
, 𝑗 ≥ 1, are open in 𝐺.

Pick 𝑉𝑖 ⊆ L0( [0, 1], 𝜆, 𝐺), 1 ≤ 𝑖 ≤ 𝑘 , to consist of those functions 𝑓 satisfying
𝑓 | [0,1/2] ∈ 𝐴0 and 𝑓 (𝑡) ∈ 𝐴 𝑗 for all 𝑡 ∈ [1 − 2− 𝑗−1, 1 − 2− 𝑗−2), 1 ≤ 𝑗 ≤ 𝑛. Note that
𝑉𝑖 ∩ L0( [0, 1/2], 𝜆, 𝐺) × 𝐺N = 𝑈𝑖 .
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Since L0( [0, 1], 𝜆, 𝐺) is assumed to be generically 𝑘-generated, there is a tuple
( 𝑓1, . . . , 𝑓𝑘) generating a dense subgroup in L0( [0, 1], 𝜆, 𝐺) such that 𝑓𝑖 ∈ 𝑉𝑖 for each
𝑖. Running the above construction, we get a tuple

( 𝑓1, . . . , 𝑓𝑘) ∈ L0( [0, 1/2], 𝜆, 𝐺) × 𝐺N

such that 𝑓𝑖 ∈𝑈𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , whence L0( [0,1/2], 𝜆,𝐺) ×𝐺N is generically 𝑘-generated.

Lemma 5.15 remains valid if we take the product with a finite power of 𝐺, which
follows from Lemma 5.14.

Corollary 5.16. For any Polish group 𝐺 and any 𝑚 ∈ N, one has

rk(L0( [0, 1], 𝜆, 𝐺)) = rk(L0( [0, 1], 𝜆, 𝐺)) × 𝐺𝑚.

If rk(L0( [0, 1], 𝜆, 𝐺)) is generically 𝑘-generated for some 𝑘 ∈ N, then so is the group
L0( [0, 1], 𝜆, 𝐺) × 𝐺𝑚.

We may now strengthen Proposition 5.13 by dropping the assumption on (𝑌, 𝜈)
being atomless.

Proposition 5.17. Let (𝑌, 𝜈) be a standard Lebesgue space and (𝑍, 𝜆) be a standard
probability space. The Polish group L0(𝑌, 𝜈,Aut(𝑍, 𝜆)) is generically 2-generated.

Proof. Let 𝑌𝑎 be the set of atoms of 𝑌 , put 𝑌0 = 𝑌 \ 𝑌𝑎 and 𝜈0 = 𝜈 ↾𝑌0 . The group
L0(𝑌, 𝜈,Aut(𝑍, 𝜆)) is naturally isomorphic to

L0(𝑌0, 𝜈0,Aut(𝑍, 𝜆)) × Aut(𝑍, 𝜆) |𝑌𝑎 | .

An application of Proposition 5.13 together with Lemma 5.15 or Corollary 5.16 (depend-
ing on whether 𝑌𝑎 is infinite or not) finishes the proof.

Proposition 5.18. Let 𝐺 be a Polish group and let 𝐻0 ≤ 𝐻1 ≤ · · · ≤ 𝐺 be a dense
chain of Polish subgroups,

⋃
𝑛 𝐻𝑛 = 𝐺. If each 𝐻𝑛 is generically 𝑘-generated, then 𝐺

is generically 𝑘-generated.

Proof. We need to show that for any open 𝑈 ⊆ 𝐺𝑘 and any open 𝑉 ⊆ 𝐺 there is a
tuple (𝑔1, . . . , 𝑔𝑘) ∈ 𝑈 such that ⟨𝑔1, . . . , 𝑔𝑘⟩ ∩𝑉 ≠ ∅. Since groups 𝐻𝑛 are nested and⋃
𝑛 𝐻𝑛 is dense in 𝐺, there is 𝑛 so large that𝑈 ∩ 𝐻𝑘𝑛 ≠ ∅ and 𝑉 ∩ 𝐻𝑛 ≠ ∅. It remains

to use the fact that 𝐻𝑛 is generically 𝑘-generated to find the required tuple.

Theorem 5.19. Let 𝐺 ↷ 𝑋 be a measure-preserving action of a locally compact
amenable Polish normed group on a standard probability space (𝑋, 𝜇). If almost every
orbit of the action is uncountable, then the derived L1 full group 𝔇( [𝐺 ↷ 𝑋 ]1) is
generically 2-generated and has topological rank 2.
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Proof. In view of Corollary 5.3, there is a chain of subgroups

𝐻0 ≤ 𝐻1 ≤ · · · ≤ 𝔇( [𝐺 ↷ 𝑋 ]1),
⋃
𝑛

𝐻𝑛 = 𝔇( [𝐺 ↷ 𝑋 ]1),

where each 𝐻𝑛 is isomorphic to L0(𝑌𝑛, 𝜈𝑛,Aut( [0, 1], 𝜆)) for some standard Lebesgue
space (𝑌𝑛, 𝜈𝑛). By Proposition 5.17, every 𝐻𝑛 is generically 2-generated, and we may
apply Proposition 5.18 to conclude that 𝔇( [𝐺 ↷ 𝑋 ]1) is generically 2-generated.
In particular, its topological rank is at most 2. To see that its topological rank is
actually equal to 2, simply note that 𝔇( [𝐺 ↷ 𝑋 ]1) is not abelian (e.g., by the proof of
Proposition 3.9).

The assumption for orbits to be uncountable is essential, and Theorem 5.19 is in
striking contrast to the dynamical interpretation of the topological rank of derived L1

full groups for actions of discrete groups. As shown in [41, Thm. 4.3], given an aperiodic
measure-preserving action of a finitely generated group Γ ↷ 𝑋 , the topological rank
of 𝔇( [Γ ↷ 𝑋 ]1) is finite if and only if the action has finite Rokhlin entropy.



Chapter 6

The index map for L1 full groups of flows

We now turn our attention to flows, i.e., measure-preserving actions of R. Since the
group of reals is locally compact, amenable, unimodular, and, of course, Polish, all of the
results in the previous chapters apply to R-flows. A much more in-depth understanding
of L1 full groups of flows is possible and is based on the existence of the so-called
index map, which we define and investigate in this chapter. This map is a continuous
homomorphism from the L1 full group of the flow to the additive group of reals, which
can be thought of as measuring the average shift distance. When the flow is ergodic,
such averages are the same across orbits. By taking the ergodic decomposition of the
flow F , we can adopt a slightly more general vantage point and view the index map I
as a homomorphism into the L1 space of functions on the space of invariant measures
(E, 𝑝), I : [F ]1 → L1(E, 𝑝,R).

Understanding the kernel of the index map is a task of fundamental importance.
We will subsequently identify kerI with the topological derived subgroup of [F ]1
(Theorem 10.1). This will allow us to describe the abelianizations of L1 full groups of
flows and estimate the number of their topological generators.

It has already been mentioned that any element 𝑇 of a full group of a flow induces
Lebesgue measure-preserving transformations on orbits (Section 4.2). When 𝑇 fur-
thermore belongs to the L1 full group, these transformations are special—they leave
“half-lines” invariant up to a set of finite measure. Such transformations form the so-
called commensurating group. Let us therefore begin with a more formal treatment
of this group, which has already appeared in the literature before, for instance in [51].

6.1 Self-commensurating automorphisms of a subset

Consider an infinite measure space (𝑍, 𝜆). We say that two measurable sets 𝐴, 𝐵 ⊆ 𝑍
are commensurate if the measure of their symmetric difference is finite, 𝜆(𝐴△𝐵) < ∞.
The relation of being commensurate is an equivalence relation, and all sets of finite
measure fall into a single class. Note also that if 𝐴 and 𝐵 are both commensurate to
some 𝐶, then so is the intersection 𝐴 ∩ 𝐵; in other words, all equivalence classes of
commensurability are closed under finite intersections.

Let ℭ(𝐵) denote the set of all measurable 𝐴 ⊆ 𝑍 that are commensurate to 𝐵. Fix
some𝑌 ⊆ 𝑍 and consider the semigroup of measure-preserving transformations between
elements ofℭ(𝑌 ). More precisely, let Iso★(𝑌,𝜆) be the set of measure-preserving partial
bĳections𝑇 : 𝐴→ 𝐵 between sets 𝐴, 𝐵 ∈ℭ(𝑌 ), which we call the self-commensurating
semigroup of (𝑌, 𝜆).
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Recall that we denote the domain of 𝑇 as dom𝑇 and its range as rng𝑇 . For partial
transformations 𝑆 : 𝐴→ 𝐵 and 𝑇 : 𝐴′→ 𝐵′, the composition 𝑇 ◦ 𝑆 has a domain given
by 𝐴 ∩ 𝑆−1(𝐴′). As always, we identify two maps if they differ only on a null set. Since
the classes of commensurability are closed under finite intersections, the set Iso★(𝑌, 𝜆)
forms a semigroup with respect to composition.

This semigroup carries a natural equivalence relation: 𝑇 ∼ 𝑆 whenever the transfor-
mations disagree on a set of finite measure, 𝜆({𝑥 : 𝑇𝑥 ≠ 𝑆𝑥}) < ∞. This equivalence
is, moreover, a congruence, i.e., if 𝑇1 ∼ 𝑆1 and 𝑇2 ∼ 𝑆2, then 𝑇1 ◦ 𝑇2 ∼ 𝑆1 ◦ 𝑆2. One
may therefore push the semigroup structure from Iso★(𝑌, 𝜆) onto the set of equivalence
classes, which we denote by Aut★(𝑌, 𝜆). An important observation is that Aut★(𝑌, 𝜆) is
a group. Indeed, the identity corresponds to the map 𝑥 ↦→ 𝑥 on𝑌 , and for a representative
𝑇 ∈ Iso★(𝑌,𝜆), its inverse inside Aut★(𝑌,𝜆) is, naturally, given by𝑇−1 : rng𝑇→ dom𝑇 .
We call Aut★(𝑌, 𝜆) the self-commensurating automorphism group of 𝑌 .

The self-commensurating semigroup admits an important homomorphism into the
reals, I : Iso★(𝑌, 𝜆) → R, called the index map and defined by

I(𝑇) = 𝜆(dom𝑇 \ rng𝑇) − 𝜆(rng𝑇 \ dom𝑇).

Lemma 6.1. For all 𝑇 ∈ Iso★(𝑌, 𝜆), the index map satisfies the following:
(1) if 𝐴 ∈ ℭ(𝑌 ) is such that dom𝑇 ⊆ 𝐴 and rng𝑇 ⊆ 𝐴, then

I(𝑇) = 𝜆(𝐴 \ rng𝑇) − 𝜆(𝐴 \ dom𝑇);

(2) if 𝑇 ′ ∈ Iso★(𝑌, 𝜆) is a restriction of 𝑇 ′, that is 𝑇 ′ = 𝑇 ↾dom𝑇 ′ , then I(𝑇 ′) =
I(𝑇).

Proof. (1) If 𝐴 ⊆ 𝑍 is commensurate to 𝑌 and dom𝑇 ⊆ 𝐴, rng𝑇 ⊆ 𝐴, then

I(𝑇) = 𝜆(dom𝑇 \ rng𝑇) − 𝜆(rng𝑇 \ dom𝑇)
= 𝜆(𝐴 \ rng𝑇) − 𝜆(𝐴 \ (dom𝑇 ∪ rng𝑇))
− (𝜆(𝐴 \ dom𝑇) − 𝜆(𝐴 \ (dom𝑇 ∪ rng𝑇)))

= 𝜆(𝐴 \ rng𝑇) − 𝜆(𝐴 \ dom𝑇).

(2) If 𝑇 ′ ∈ Iso★(𝑌, 𝜆) is a restriction of 𝑇 , then

𝑇 (dom𝑇 \ dom𝑇 ′) = rng𝑇 \ rng𝑇 ′.

Thus, for any 𝐴 ∈ ℭ(𝑌 ) containing both dom𝑇 and rng𝑇 , item (1) implies

I(𝑇) = 𝜆(𝐴 \ dom𝑇) − 𝜆(𝐴 \ rng𝑇)
= 𝜆(𝐴 \ dom𝑇 ′) − 𝜆(dom𝑇 \ dom𝑇 ′) − (𝜆(𝐵 \ rng𝑇 ′) − 𝜆(rng𝑇 \ rng𝑇 ′))
= 𝜆(𝐴 \ dom𝑇 ′) − 𝜆(𝐴 \ rng𝑇 ′) = I(𝑇 ′),

where the equality 𝜆(dom𝑇 \ dom𝑇 ′) = 𝜆(rng𝑇 \ rng𝑇 ′) is based on𝑇 being measure-
preserving.
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Proposition 6.2. The index map I : Iso★(𝑌, 𝜆) → R is a homomorphism. Moreover,
if 𝑇, 𝑆 ∈ Iso★(𝑌, 𝜆) are equivalent, 𝑇 ∼ 𝑆, then I(𝑇) = I(𝑆).

Proof. In view of Lemma 6.1(2), to check that I(𝑇1 ◦ 𝑇2) = I(𝑇1) + I(𝑇2), we may
pass to restrictions of these transformations and assume that rng𝑇2 = dom𝑇1. Pick
a set 𝐴 ∈ ℭ(𝑌 ) large enough to contain the domains and ranges of 𝑇1 and 𝑇2. By
Lemma 6.1(1),

I(𝑇1 ◦ 𝑇2) = 𝜆(𝐴 \ rng𝑇1) − 𝜆(𝐴 \ dom𝑇2)
= 𝜆(𝐴 \ rng𝑇1) − 𝜆(𝐴 \ dom𝑇1) + 𝜆(𝐴 \ rng𝑇2) − 𝜆(𝐴 \ dom𝑇2)
= I(𝑇1) + I(𝑇2).

For the moreover part, suppose that 𝑇, 𝑆 ∈ Iso★
𝑌
(𝑌, 𝜆) are equivalent. Let𝑈 be the

restriction of 𝑇 and 𝑆 onto the set {𝑥 : 𝑇𝑥 = 𝑆𝑥}. Using Lemma 6.1(2) once again, we
get I(𝑇) = I(𝑈) = I(𝑆). Hence, the index map is invariant under the equivalence
relation ∼.

The proposition above implies that the index map respects the relation ∼, and hence
gives rise to a map from Aut★(𝑌, 𝜆) to the reals.

Corollary 6.3. The index map factors to a group homomorphism

I : Aut★(𝑌, 𝜆) → R.

6.2 The commensurating automorphism group

Let us again consider an infinite measure space (𝑍, 𝜆) and 𝑌 ⊆ 𝑍 a measurable subset.
We now define the commensurating automorphism group of 𝑌 in 𝑍 as the group of
all measure-preserving transformations 𝑇 ∈ Aut(𝑍, 𝜆) such that 𝜆(𝑌△𝑇 (𝑌 )) < ∞. We
denote this group by Aut𝑌 (𝑍, 𝜆).

Every𝑇 ∈Aut𝑌 (𝑍,𝜆) naturally gives rise to an element of Aut★(𝑌,𝜆) by considering
its restriction 𝑇 ↾𝑌 . The following lemma shows that in this case we may use any other
set 𝐴 commensurate to 𝑌 instead without changing the corresponding element of the
commensurating group.

Lemma 6.4. Let 𝑇 ∈ Aut(𝑍, 𝜆) be a measure-preserving automorphism. If 𝑇 ↾𝐴∈
Iso★(𝑌,𝜆) for some 𝐴 ∈ ℭ(𝑌 ), then𝑇 ↾𝐵∈ Iso★(𝑌,𝜆) and 𝑇 ↾𝐵∼ 𝑇 ↾𝐴 for all 𝐵 ∈ ℭ(𝑌 ).

Proof. Since commensuration is an equivalence relation and 𝐴 is commensurate to 𝑌 ,
the assumption 𝑇 ↾𝐴∈ Iso★(𝑌, 𝜆) is equivalent to 𝜆(𝐴△𝑇 (𝐴)) < ∞. Moreover, given
𝐵 ∈ ℭ(𝑌 ), we only need to show that 𝜆(𝐵△𝑇 (𝐵)) is finite in order to conclude that
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𝑇 ↾𝐵∈ Iso★(𝑌, 𝜆). So we compute

𝜆(𝐵△𝑇 (𝐵)) =𝜆(𝐵 \ 𝑇 (𝐵)) + 𝜆(𝑇 (𝐵) \ 𝐵)
≤𝜆(𝐴 \ 𝑇 (𝐴)) + 𝜆(𝐵 \ 𝐴) + 𝜆(𝑇 (𝐴 \ 𝐵))

+ 𝜆(𝑇 (𝐴) \ 𝐴) + 𝜆(𝐴 \ 𝐵) + 𝜆(𝑇 (𝐵 \ 𝐴))
=𝜆(𝐴△𝑇 (𝐴)) + 2𝜆(𝐴△𝐵) < ∞.

Thus, the measure 𝜆(𝐵△𝑇 (𝐵)) is finite. Hence 𝑇 ↾𝐵∈ Iso★(𝑌, 𝜆) for all 𝐵 ∈ ℭ(𝑌 ).
Finally, 𝑇 ↾𝐴∼ 𝑇 ↾𝐵, since these transformations agree on 𝐴 ∩ 𝐵.

To summarize, if 𝑇 ↾𝐴∈ Iso★(𝑌, 𝜆) for some 𝐴 ∈ ℭ(𝑌 ), then all restrictions 𝑇 ↾𝐵,
𝐵 ∈ ℭ(𝑌 ), are pairwise equivalent. Hence, they correspond to the same element 𝑇 ↾𝑌∈
Aut★(𝑌, 𝜆). According to Proposition 6.2, the index I(𝑇 ↾𝑌 ) of this element can be
computed as I(𝑇 ↾𝑌 ) = 𝜆(𝐵 \ 𝑇 (𝐵)) − 𝜆(𝐵 \ 𝑇−1(𝐵)) for any 𝐵 ∈ ℭ(𝑌 ).

6.3 Index map on L1 full groups of R-flows

Let F = R ↷ 𝑋 be a free measure-preserving Borel flow, let [F ]1 be the associated
L1 full group, where we endow R with the standard Euclidean norm, and let 𝑇 ∈ [F ]1.
The action of 𝑟 ∈ R upon 𝑥 ∈ 𝑋 is denoted additively by 𝑥 + 𝑟 . Recall that the cocycle
of 𝑇 is denoted by 𝜌𝑇 : 𝑋 → R and is defined by the equality 𝑇 (𝑥) = 𝑥 + 𝜌𝑇 (𝑥) for
all 𝑥 ∈ 𝑋 . We are going to argue that, on every orbit, 𝑇 induces a measure-preserving
transformation that belongs to the commensurate group of R≥0, when the orbit is
identified with the real line.

Consider the function 𝑓 : RF → {−1, 0, 1} defined by

𝑓 (𝑥, 𝑦) =


1 if 𝑥 < 𝑦 < 𝑇 (𝑥),
−1 if 𝑇 (𝑥) < 𝑦 < 𝑥,
0 otherwise.

One can think of 𝑓 as a “charge function” that spreads charge +1 over each interval
(𝑥, 𝑇 (𝑥)) and −1 over (𝑇 (𝑥), 𝑥). Note that we have both∫

R
𝑓 (𝑥, 𝑥 + 𝑟) 𝑑𝜆(𝑟) = 𝜌𝑇 (𝑥) and

∫
R
| 𝑓 (𝑥, 𝑥 + 𝑟) | 𝑑𝜆(𝑟) = |𝜌𝑇 (𝑥) | .

Since 𝑇 belongs to the L1 full group, its cocycle is integrable, which means that 𝑓 is
𝑀-integrable (see Section 4.2). By the mass-transport principle, the following integrals
are equal and finite:∫

𝑋

∫
R
| 𝑓 (𝑥, 𝑥 + 𝑟) | 𝑑𝜆(𝑟)𝑑𝜇(𝑥) =

∫
𝑋

∫
R
| 𝑓 (𝑥 + 𝑟, 𝑥) | 𝑑𝜆(𝑟)𝑑𝜇(𝑥).
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In particular, the integral
∫
R | 𝑓 (𝑥 + 𝑟, 𝑥) | 𝑑𝜆(𝑟) is finite for almost all 𝑥.

Let 𝑇𝑥 ∈ Aut(R, 𝜆) denote the transformation induced by 𝑇 onto the orbit of 𝑥
obtained by identifying the origin of the real line with 𝑥, which is measure-preserving
by Proposition 4.13. One can reinterpret the integral

∫
R | 𝑓 (𝑥 + 𝑟, 𝑥) | 𝑑𝜆(𝑟) as follows:∫

R
| 𝑓 (𝑥 + 𝑟, 𝑥) | 𝑑𝜆(𝑟) = 𝜆

(
R≥0 \ 𝑇𝑥 (R≥0)

)
+ 𝜆

(
𝑇𝑥 (R≥0) \ R≥0)

= 𝜆(R≥0 △ 𝑇𝑥 (R≥0)).

In particular, 𝑇𝑥 ↾R≥0 belongs to the commensurating group of R≥0. Observe that we
also have ∫

R
𝑓 (𝑥 + 𝑟, 𝑥) 𝑑𝜆(𝑟) = 𝜆

(
R≥0 \ 𝑇𝑥 (R≥0)

)
− 𝜆

(
𝑇𝑥 (R≥0) \ R≥0) ,

which is equal to the index of 𝑇𝑥 ↾R≥0 . By Section 6.2, I(𝑇𝑥 ↾R≥0) = I(𝑇𝑦 ↾R≥0)
whenever 𝑥RF𝑦. For any 𝑇 ∈ [F ]1, we therefore have an F -invariant measurable map
ℎ𝑇 : 𝑋 → R given by ℎ𝑇 (𝑥) =

∫
R 𝑓 (𝑥 + 𝑟, 𝑥) 𝑑𝜆(𝑟). Note that for any F -invariant set

𝑌 ⊆ 𝑋 , the mass-transport principle yields∫
𝑌

𝜌𝑇 (𝑥) 𝑑𝜇(𝑥) =
∫
𝑌

ℎ𝑇 (𝑥) 𝑑𝜇(𝑥). (6.1)

Let (E, 𝑝), 𝑋 ∋ 𝑥 ↦→ 𝜈𝑥 ∈ E, be the ergodic decomposition of (𝑋, 𝜇, F ) (see
Appendix E.1). Since the map ℎ𝑇 is F -invariant, it produces a map ℎ̃𝑇 : E → R via
ℎ̃(𝜈) = ℎ(𝑥) for any 𝑥 such that 𝜈 = 𝜈𝑥 or, equivalently, via

ℎ̃𝑇 (𝜈) =
∫
𝑋

∫
R
𝑓 (𝑥 + 𝑟, 𝑥) 𝑑𝜆(𝑟)𝑑𝜈(𝑥).

Note also that∫
E

��ℎ̃𝑇 (𝜈)�� 𝑑𝑝(𝜈) ≤ ∫
𝑋

∫
R
| 𝑓 (𝑥 + 𝑟, 𝑥) | 𝑑𝜆(𝑟)𝑑𝜇(𝑥) =

∫
𝑋

|𝜌𝑇 (𝑥) | 𝑑𝜇(𝑥), (6.2)

thus ℎ̃𝑇 ∈ L1(E, 𝑝,R). We can now define the index map of a (possibly non-ergodic)
flow as a function I : [F ]1 → L1(E, 𝑝,R).

Definition 6.5. Let F = R ↷ 𝑋 be a free measure-preserving flow on a standard
probability space (𝑋, 𝜇); let also (E, 𝑝) be the space of F -invariant ergodic probability
measures, where 𝑝 is the probability measure yielding the disintegration of 𝜇. The
index map is the function I : [F ]1 → L1(E, 𝑝,R) given by

I(𝑇) (𝜈) = ℎ̃𝑇 (𝜈) =
∫
𝑋

∫
R
𝑓 (𝑥 + 𝑟, 𝑥) 𝑑𝜆(𝑟)𝑑𝜈(𝑥).
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Proposition 6.6. For any free measure-preserving flow F = R ↷ 𝑋 , the index map
I : [F ]1 → L1(E, 𝑝,R) is a continuous and surjective homomorphism. Furthermore,
its kernel consists of all 𝑇 ∈ [F ]1 satisfying, for almost all 𝑦 ∈ 𝑋 ,

𝜆𝑦 ({𝑥 ∈ supp𝑇 : 𝑥 < 𝑦 ≤ 𝑇𝑥}) = 𝜆𝑦 ({𝑥 ∈ supp𝑇 : 𝑇𝑥 < 𝑦 ≤ 𝑥}). (6.3)

Proof. The index map is a homomorphism, since, as we have discussed earlier, ℎ𝑇 (𝑥) is
equal to the index of 𝑇𝑥 ↾R≥0 . Continuity follows from the fact that I is 1-Lipschitz as a
direct consequence of Eq. (6.2). To see surjectivity, pick any ℎ̃ ∈ L1(E, 𝑝,R) and view
it as a map ℎ : 𝑋 → R via the identification ℎ(𝑥) = ℎ̃(𝜈𝑥). Define the automorphism
𝑇 ∈ Aut(𝑋, 𝜇) by 𝑇 (𝑥) = 𝑥 + ℎ(𝑥). It is straightforward to check that 𝑇 ∈ [F ]1 and
I(𝑇) = ℎ.

Finally, according to the definition of the index map, the kernel is the set of all
𝑇 ∈ [F ]1 for which, almost everywhere in 𝑋 , the condition ℎ𝑇 (𝑦) = 0 holds. By the
definition of ℎ𝑇 and the charge function 𝑓 , this translates to the relationship

𝜆𝑦 ({𝑥 ∈ supp𝑇 : 𝑥 < 𝑦 < 𝑇𝑥}) = 𝜆𝑦 ({𝑥 ∈ supp𝑇 : 𝑇𝑥 < 𝑦 < 𝑥}).

Since 𝜆𝑦 is atomless, the above equality is equivalent to the desired condition.

The quotient group [F ]1/kerI naturally inherits the quotient norm given by

∥𝑇 kerI∥1 = inf
𝑆∈ker I

∥𝑇𝑆∥1 .

By Proposition 6.6, the index map induces an isomorphism between [F ]1/kerI and
L1(E, 𝑝,R). We argue that this isomorphism is, in fact, an isometry.

Proposition 6.7. The index mapI induces an isometric isomorphism from [F ]1/kerI
onto L1(E, 𝑝,R), where the former is endowed with the quotient norm and the latter
bears the usual L1 norm.

Proof. Since
∫
𝑋
|ℎ𝑇 (𝑥) | 𝑑𝜇(𝑥) =

∫
E | ℎ̃𝑇 (𝜈) | 𝑑𝑝(𝜈), it suffices to show that for all 𝑇 ∈

[F ]1
inf

𝑆∈ker I
∥𝑇𝑆∥1 =

∫
𝑋

|ℎ𝑇 | 𝑑𝜇.

Let 𝑇 ∈ [F ]1. We first show the inequality inf
𝑆∈ker I

∥𝑇𝑆∥1 ≥
∫
𝑋

|ℎ𝑇 | 𝑑𝜇.

Pick any 𝑆 ∈ kerI. For any F -invariant measurable 𝑌 ⊆ 𝑋 ,
∫
𝑌
𝜌𝑆 𝑑𝜇 = 0 and∫

𝑌

𝜌𝑇𝑆 𝑑𝜇 =

∫
𝑌

𝜌𝑇 (𝑆(𝑥)) 𝑑𝜇(𝑥) +
∫
𝑌

𝜌𝑆 (𝑥) 𝑑𝜇(𝑥) =
∫
𝑌

𝜌𝑇 𝑑𝜇 =

∫
𝑌

ℎ𝑇 𝑑𝜇,

where we rely on Eq. (6.1) and 𝑆 being measure-preserving. Consider the F -invariant
sets

𝑌<0 = {𝑥 ∈ 𝑋 : ℎ𝑇 (𝑥) < 0} and 𝑌 ≥0 = {𝑥 ∈ 𝑋 : ℎ𝑇 (𝑥) ≥ 0}.
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The norm ∥𝑇𝑆∥1 can be estimated from below as follows.

∥𝑇𝑆∥1 =

∫
𝑋

|𝜌𝑇𝑆 | 𝑑𝜇 =

∫
𝑌<0
|𝜌𝑇𝑆 | 𝑑𝜇 +

∫
𝑌 ≥0
|𝜌𝑇𝑆 | 𝑑𝜇

≥
����∫
𝑌<0

𝜌𝑇𝑆 𝑑𝜇

���� + ����∫
𝑌 ≥0

𝜌𝑇𝑆 𝑑𝜇

����
=

����∫
𝑌<0

ℎ𝑇 𝑑𝜇

���� + ����∫
𝑌 ≥0

ℎ𝑇 𝑑𝜇

����
= −

∫
𝑌<0

ℎ𝑇 𝑑𝜇 +
∫
𝑌 ≥0

ℎ𝑇 𝑑𝜇 =

∫
𝑋

|ℎ𝑇 | 𝑑𝜇.

We conclude that
inf

𝑆∈ker I
∥𝑇𝑆∥1 ≥

∫
𝑋

|ℎ𝑇 | 𝑑𝜇.

For the other direction, consider a transformation 𝑇 ′ defined by 𝑇 ′ (𝑥) = 𝑥 + ℎ𝑇 (𝑥);
note that𝑇 ′ ∈ [F ]1, 𝜌𝑇 ′ (𝑥) = ℎ𝑇 ′ (𝑥) = ℎ𝑇 (𝑥) for all 𝑥 ∈ 𝑋 , and𝑇−1𝑇 ′ ∈ kerI. Therefore

inf
𝑆∈ker I

∥𝑇𝑆∥1 ≤


𝑇𝑇−1𝑇 ′




1 = ∥𝑇 ′∥1 =

∫
𝑋

|ℎ𝑇 ′ | 𝑑𝜇 =

∫
𝑋

|ℎ𝑇 | 𝑑𝜇,

and the desired equality of norms follows.

Using similar reasoning, we obtain the following characterization of the L1 full
group and the index map, where for all 𝑇 ∈ [RF], we let 𝑟𝑇 be the measure-preserving
transformation of (RF , 𝑀) given by 𝑟𝑇 (𝑥, 𝑦) = (𝑥, 𝑇 (𝑦)) (see Section 4.2).

Proposition 6.8. Let F = R ↷ 𝑋 be a free measure-preserving R-flow. Consider the
set R≥0 = {(𝑥, 𝑦) ∈ RF : 𝑥 ≥ 𝑦}. Then for every 𝑇 ∈ [R ↷ 𝑋], we have

∥𝑇 ∥1 = 𝑀

(
R≥0 △ 𝑟𝑇 (R≥0)

)
.

In particular, the L1 full group of F can be seen as the commensurating group of R≥0

inside the full group of R. Moreover, in the ergodic case, the index of 𝑇 as defined
above is equal to its index as a commensurating transformation of the set R≥0 in the
sense of Section 6.1.

Proof. Through the identification (𝑥, 𝑡) ↦→ (𝑥, 𝑥 + 𝑡), the measure-preserving transfor-
mation 𝑟𝑇 is acting on 𝑋 × R as id𝑋 × 𝑇𝑥 , and the set R≥0 becomes 𝑋 × R≥0. We then
have

𝑀 (R≥0 △ 𝑟𝑇 (R≥0)) =
∫
𝑋

𝜆(R≥0 △ (𝑇𝑥 (R≥0))) 𝑑𝜇(𝑥)

=

∫
𝑋

|𝜌𝑇 | 𝑑𝜇
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by the mass-transport principle, which yields the conclusion, since by the definition of
the norm ∥𝑇 ∥1 =

∫
𝑋
|𝜌𝑇 | 𝑑𝜇.

The moreover part follows from a similar computation.

Remark 6.9. The full group of R embeds via 𝑇 ↦→ 𝑟𝑇 into the group of measure-
preserving transformations of (R, 𝑀). One could use this and the fact that the com-
mensurating automorphism group of R≥0 is a Polish group in order to give another
proof that L1 full groups of measure-preserving R-flows are themselves Polish.



Chapter 7

Orbitwise ergodic bounded elements of full groups

The purpose of this chapter is to contrast some of the differences in the dynamics of the
elements of full groups of Z-actions and those arising from R-flows. Let 𝑆 ∈ [Z ↷ 𝑋 ]
be an element of the full group of a measure-preserving aperiodic transformation, and let
𝜌𝑆𝑘 : 𝑋→ Z be the cocycle associated with 𝑆𝑘 for 𝑘 ∈ Z. Since Z is a discrete group, the
conservative part in the Hopf decomposition for 𝑆 (see Appendix C) reduces to the set
of periodic orbits. In particular, an aperiodic 𝑆 ∈ [Z ↷ 𝑋 ] has to be dissipative, hence
|𝜌𝑆𝑘 (𝑥) | → ∞ as 𝑘 →∞. When 𝑆 belongs to the L1 full group of the action, a theorem
of R. M. Belinskaja [8, Thm. 3.2] strengthens this conclusion and asserts that for almost
all 𝑥 in the dissipative component of 𝑆, either 𝜌𝑆𝑘 (𝑥) → +∞ or 𝜌𝑆𝑘 (𝑥) → −∞.

Given an arbitrary free measure-preserving flow R ↷ 𝑋 , we construct an example
of an aperiodic 𝑆 ∈ [R↷ 𝑋 ]1 for which the signs in {𝜌𝑆𝑘 (𝑥) : 𝑘 ∈ N} keep alternating
indefinitely for almost all 𝑥 ∈ 𝑋 . In fact, we present a transformation that acts ergodically
on each orbit of the flow (in particular, it is conservative and globally ergodic as soon
as the flow is ergodic). Moreover, we ensure it has a uniformly bounded cocycle. Our
argument uses a variant of the well-known cutting and stacking construction adapted
for infinite measure spaces. Additional technical difficulties arise from the necessity to
work across all orbits of the flow simultaneously. The transformation will arise as a
limit of special partial transformations we call castles, which we now define.

The pseudo full group of the flow is the set of injective Borel maps 𝜑 : dom 𝜑→
rng 𝜑 between Borel sets dom 𝜑 ⊆ 𝑋 , rng 𝜑 ⊆ 𝑋 , for which there exists a countable
Borel partition (𝐴𝑛)𝑛∈N of the domain dom 𝜑 and a countable family of reals (𝑡𝑛)𝑛∈N
such that 𝜑(𝑥) = 𝑥 + 𝑡𝑛 for every 𝑥 ∈ 𝐴𝑛. Such maps are measure-preserving isomor-
phisms between (dom 𝜑, 𝜇 ↾dom 𝜑) and (rng 𝜑, 𝜇 ↾rng 𝜑), in other words they are partial
transformations. The support of 𝜑 is the set

supp 𝜑 = {𝑥 ∈ dom 𝜑 : 𝜑(𝑥) ≠ 𝑥} ∪ {𝑥 ∈ rng 𝜑 : 𝜑−1(𝑥) ≠ 𝑥}.

Given 𝜑 in the pseudo full group and a Borel set 𝐴 ⊆ 𝑋 , we let

𝜑(𝐴) = {𝜑(𝑥) : 𝑥 ∈ 𝐴 ∩ dom 𝜑}.

In particular, 𝜑(𝐴) = ∅ if 𝐴 is disjoint from dom 𝜑. A castle is an element 𝜑 of the
pseudo full group of the flow such that for 𝐵 = dom 𝜑 \ rng 𝜑 the sequence (𝜑𝑘 (𝐵))𝑘∈N
consists of pairwise disjoint subsets which cover its support. Since 𝜑 is measure-
preserving, for almost every 𝑥 ∈ 𝐵 there is 𝑘 ∈ N such that 𝜑𝑘 (𝑥) ∉ dom 𝜑. It follows
that 𝜑−1 is also a castle. The set 𝐵 is called the basis of the castle, and the basis of
its inverse 𝐶 is called its ceiling, which is equal to rng 𝜑 \ dom 𝜑. Observe that if two
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castles have disjoint supports, then their union is also a castle. We denote by ®𝜑 : 𝐵→ 𝐶

the element of the pseudo full group which takes every element of the basis of 𝜑 to the
corresponding element of the ceiling.

Remark 7.1. Equivalently, one could define a castle as an element 𝜑 of the pseudo full
group which induces a graphing consisting of finite segments only (see [33, Sec. 17]
for the definition of a graphing). It induces a partial order ≤𝜑 defined by 𝑥 ≤𝜑 𝑦 if and
only if there is 𝑘 ∈ N such that 𝑦 = 𝜑𝑘 (𝑥). The basis of the castle is the set of minimal
elements, while the ceiling is the set of maximal ones. Finally, ®𝜑 is the map which
takes a minimal element to the unique maximal element above it.

Theorem 7.2. Let R↷ 𝑋 be a free measure-preserving flow. There exists 𝑆 ∈ [R↷ 𝑋 ]
that acts ergodically on every orbit of the flow and whose cocycle is bounded by 4.
Moreover, the signs in {𝜌𝑆𝑘 (𝑥) : 𝑘 ∈ N} keep changing indefinitely for almost all 𝑥 ∈ 𝑋 .

Proof. Fix a free measure-preserving flow R ↷ 𝑋 , and let C ⊂ 𝑋 be a cross-section.
We recall some notation from Section 1.2.4. Since C is lacunary, for any 𝑐 ∈ C, the

function gapC (𝑐) =min{𝑟 > 0 : 𝑐 + 𝑟 ∈ C} is well-defined. This gives the first return map
𝜎C : C → C via 𝜎C (𝑐) = 𝑐 + gapC (𝑐), which is Borel. There is also a natural bĳective
correspondence between 𝑋 and the set {(𝑐, 𝑡) ∈ C × R≥0 : 𝑐 ∈ C, 0 ≤ 𝑡 < gapC (𝑐)}.
Let 𝜆C𝑐 be the “Lebesgue measure” on 𝑐 + [0, gapC (𝑐)) given by

𝜆C𝑐 (𝐴) = 𝜆({𝑟 ∈ R : 0 ≤ 𝑟 < gapC (𝑐), 𝑐 + 𝑟 ∈ 𝐴}).

The measure 𝜇 on 𝑋 can then be disintegrated as 𝜇(𝐴) =
∫
C 𝜆
C
𝑐 (𝐴) 𝑑𝜈(𝑐) for some

finite (but not necessarily probability) measure 𝜈 on C, as explained at the end of
Section 1.2.4.

Let (C𝑛)𝑛∈N be a vanishing sequence of markers—a sequence of nested cross-
sections C1 ⊃ C2 ⊃ C3 · · · with an empty intersection:

⋂
𝑛∈N C𝑛 = ∅. We may arrange

C1 to be such that gapC1
(𝑐) ∈ (2, 3) for all 𝑐 ∈ C1. Put

C0 = {𝑐 + 𝑘 : 𝑐 ∈ C1, 𝑘 ∈ {0, 1, 2}}

and 𝑌 = C1 + [0, 2). Note that 𝜇(𝑋 \ 𝑌 ) ≤ 1
3 . Our first goal is to define an element 𝜑

of the pseudo full group with domain and range equal to 𝑌 such that for almost every
𝑥 ∈ 𝑌 , the action of 𝜑 on the intersection of the orbit of 𝑥 with 𝑌 is ergodic and has a
cocycle bounded by 3. It will then be easy to modify 𝜑 to an element of the full group
whose action on each orbit of the flow is ergodic at the cost of increasing the cocycle
bound to 4.

Our first partial transformation 𝜑 will arise as the limit of a sequence of castles
(𝜑𝑛)𝑛∈N, with each 𝜑𝑛 belonging to the pseudo full group of RC𝑛 . We also use another
family of castles (𝜓𝑛)𝑛∈N which allows us to extend 𝜑𝑛 by “going back” from its ceiling
to its basis while keeping the cocycle bound (this is our main adjustment compared to
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the usual cutting and stacking procedure). Both sequences of castles will have their
cocycles bounded by 3. Here are the basic constraints that these sequences have to
satisfy:

(1) for all 𝑛 ≥ 1, 𝑌 = supp 𝜑𝑛 ⊔ supp𝜓𝑛;
(2) for all 𝑛 ≥ 1, 𝜑𝑛+1 extends 𝜑𝑛;
(3) 𝜇(supp𝜓𝑛) tends to 0 as 𝑛 tends to +∞.

The bases and ceilings of (𝜑𝑛)𝑛∈N and (𝜓𝑛)𝑛∈N will satisfy additional constraints
that will enable us to make the induction work and ensure ergodicity on each orbit
of the flow. In order to specify these constraints properly, we introduce the following
notation.

Each orbit of the flow comes with the linear order < inherited from R via 𝑥 < 𝑦 if
and only if 𝑦 = 𝑥 + 𝑡 for some 𝑡 > 0. Set 𝜅C𝑛 (𝑥) to be the minimum of the intersection
of C𝑛 with the cone {𝑦 ∈ 𝑋 : 𝑦 ≥ 𝑥}.

Let D1 = C1 + 2 ⊆ C0 and D𝑛 be the set of those 𝑥 ∈ D1 which are maximal in
𝜅−1
C𝑛 (𝑐) among points of D1 for some 𝑐 ∈ C𝑛; in other words,

D𝑛 = {𝑥 ∈ D1 : (𝑥, 𝜅C𝑛 (𝑥)) ∩ C0 = ∅}.

Note that by construction, the distance between 𝑥 and 𝜅C𝑛 (𝑥) is less than 1 for each
𝑥 ∈ D𝑛. Let 𝜄𝑛 be the map C𝑛 → D𝑛 which assigns to 𝑐 ∈ C𝑛 the <-least element of
D𝑛 that is greater than 𝑐.

C1

C2

D1 C1 D1 C1 D1

D2

C1

C2

D1 C1

D2

D1 C1

C2

Figure 7.1. An example of cross-sections C0 (all points), C1 (dots of size and above), C2 (marked
as ) and D1, D2.

The bases and ceilings of 𝜑𝑛 and 𝜓𝑛 are as follows:

• the basis of 𝜑𝑛 is 𝐴𝑛 = C𝑛 +
[
0, 1

2𝑛

)
;

• the ceiling of 𝜑𝑛 is 𝐵𝑛 = D𝑛 +
[
− 1

2 −
1

2𝑛 ,−
1
2

)
;

• the basis of 𝜓𝑛 is 𝐸𝑛 = D𝑛 +
[
− 1

2 ,−
1
2 +

1
2𝑛

)
;

• the ceiling of 𝜓𝑛 is 𝐹𝑛 = C𝑛 +
[ 1

2 ,
1
2 +

1
2𝑛

)
.

Furthermore, we impose two translation conditions, which help us to preserve the
above concrete definitions of the bases and ceilings at the inductive step when we
construct 𝜑𝑛+1 and 𝜓𝑛+1:
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• ®𝜑𝑛 (𝑐 + 𝑡) = 𝜄𝑛 (𝑐) + 𝑡 − 1
2 −

1
2𝑛 for all 𝑐 ∈ C𝑛 and all 𝑡 ∈

[
0, 1

2𝑛

)
.

• ®𝜓𝑛 (𝑑 + 𝑡) = 𝜄−1
𝑛 (𝑑) + 𝑡 + 1 for all 𝑑 ∈ D𝑛 and all 𝑡 ∈

[
− 1

2 ,−
1
2 +

1
2𝑛

)
.

The first step of the construction consists of the castle 𝜑1 : 𝑥 ↦→ 𝑥 + 1, which has
basis 𝐴1 = C1 + [0, 1

2 ) and ceiling 𝐵1 = D1 + [−1,− 1
2 ), and the castle 𝜓1 : 𝑥 ↦→ 𝑥 − 1

with basis 𝐸1 = D1 + [− 1
2 , 0) and ceiling 𝐹1 = C1 + [ 12 , 1).

We now concentrate on the induction step: suppose 𝜑𝑛 and 𝜓𝑛 have been built for
some 𝑛 ≥ 1; let us construct 𝜑𝑛+1 and 𝜓𝑛+1.

The strategy is to split the bases of 𝜑𝑛 and𝜓𝑛 into two equal intervals and “interleave”
the “two halves” of 𝜑𝑛 with “one half” of 𝜓𝑛 followed by “gluing” adjacent ceilings
and bases within the same C𝑛+1 segment (see Figure 7.2). To this end, we introduce
two intermediate castles 𝜑̃𝑛 and 𝜓̃𝑛 that will ensure that 𝜑𝑛+1 “wiggles” more than 𝜑𝑛,
yielding ergodicity of the final transformation.

Define two new half-measure subsets of the bases 𝐴𝑛 and 𝐸𝑛 respectively:

• 𝐴1
𝑛 = C𝑛 +

[
0, 1

2𝑛+1

)
;

• 𝐸0
𝑛 = D𝑛 +

[
− 1

2 +
1

2𝑛+1 ,−
1
2 +

1
2𝑛

)
;

and let
𝐵0
𝑛 = ®𝜑𝑛 (𝐴1

𝑛) = D𝑛 +
[
−1

2
− 1

2𝑛
,−1

2
− 1

2𝑛+1

)
,

and
𝐹0
𝑛 = ®𝜓𝑛 (𝐸0

𝑛) = C𝑛 +
[
1
2
+ 1

2𝑛+1
,
1
2
+ 1

2𝑛

)
,

where the two equalities are consequences of the translation conditions. Let 𝐺𝑛 be the
𝜓𝑛-saturation of 𝐸0

𝑛, and note that the restriction of 𝜓𝑛 to 𝐺𝑛 is a castle with support
𝐺𝑛, whose basis is 𝐸0

𝑛 and whose ceiling is 𝐹0
𝑛 . Finally, let

𝐴0
𝑛 = 𝐴𝑛 \ 𝐴1

𝑛 = C𝑛 +
[

1
2𝑛+1

,
1
2𝑛

)
.

We define the partial transformation 𝜉𝑛 : 𝐵0
𝑛 ⊔ 𝐹0

𝑛→ 𝐸0
𝑛 ⊔ 𝐴0

𝑛 to be used for “gluing
together” 𝜑𝑛 and the restriction of 𝜓𝑛 to 𝐺𝑛:
• 𝜉𝑛 (𝑏) = 𝑏 + 3

2𝑛+1 ∈ 𝐸
0
𝑛 for all 𝑏 ∈ 𝐵0

𝑛 and

• 𝜉𝑛 ( 𝑓 ) = 𝑓 − 1
2 ∈ 𝐴

0
𝑛 for all 𝑓 ∈ 𝐹0

𝑛 .
Set 𝜑̃𝑛 = 𝜑𝑛 ⊔ 𝜉𝑛 ⊔ 𝜓𝑛↾𝐺𝑛 , whereas 𝜓̃𝑛 is simply the restriction of 𝜓𝑛 onto the com-
plement of 𝐺𝑛. Observe that 𝜑̃𝑛 has basis 𝐴1

𝑛 and ceiling

𝐵1
𝑛 = 𝐵𝑛 \ 𝐵0

𝑛 = D𝑛 +
[
−1

2
− 1

2𝑛+1
,−1

2

)
,
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while 𝜓̃𝑛 has basis

𝐸1
𝑛 = 𝐸𝑛 \ 𝐸0

𝑛 = D𝑛 +
[
−1

2
,−1

2
+ 1

2𝑛+1

)
and ceiling

𝐹1
𝑛 = 𝐹𝑛 \ 𝐹0

𝑛 = C𝑛 +
[
1
2
,
1
2
+ 1

2𝑛+1

)
.

We continue to have 𝑌 = supp 𝜑̃𝑛 ⊔ supp 𝜓̃𝑛, but the support of 𝜓̃𝑛 is half the support
of 𝜓𝑛, meaning that 𝜇(supp 𝜓̃𝑛) = 1

2 𝜇(supp𝜓𝑛).

𝐴𝑛 𝐵𝑛

𝐵0
𝑛

𝐵1
𝑛

−→
𝜑𝑛

𝐹𝑛 ←−
𝜓𝑛

𝐹𝑛

𝐴𝑛 𝐵𝑛−→
𝜑𝑛

𝐹𝑛 ←−
𝜓𝑛

𝐸𝑛

𝐴1
𝑛

𝐴0
𝑛

𝐹0
𝑛

𝐹1
𝑛

𝐸0
𝑛

𝐸1
𝑛

𝜉𝑛 𝜉𝑛

𝐴1
𝑛

𝐴0
𝑛

𝐵0
𝑛

𝐵1
𝑛

𝐹0
𝑛

𝐹1
𝑛

𝐸0
𝑛

𝐸1
𝑛

𝜉𝑛 𝜉𝑛

𝜉′𝑛

𝜉′′𝑛

Figure 7.2. Inductive step.

The ceiling of 𝜑̃𝑛 is equal to 𝐵1
𝑛 = D𝑛 +

[
− 1

2 −
1

2𝑛+1 ,−
1
2

)
, whereas we need the

ceiling of 𝜑𝑛+1 to be equal to 𝐵𝑛+1 = D𝑛+1 +
[
− 1

2 −
1

2𝑛+1 ,−
1
2

)
. We obtain the required

𝜑𝑛+1 and 𝜓𝑛+1 out of 𝜑̃𝑛 and 𝜓̃𝑛, respectively, by “passing through each element of
C𝑛 \ C𝑛+1 ”.

Note thatD𝑛+1 is equal to the set of 𝑑 ∈ D𝑛 such that 𝜅C𝑛 (𝑑) ∈ C𝑛+1. Each 𝑥 ∈ 𝐵1
𝑛 \

𝐵𝑛+1 can be written uniquely as 𝑥 = 𝑑 + 𝑡 where 𝑑 ∈ D𝑛 \ D𝑛+1 and 𝑡 ∈
[
− 1

2 −
1

2𝑛+1 ,−
1
2

)
.

Set
𝜉′𝑛 (𝑥) = 𝜅C𝑛 (𝑑) + 𝑡 +

1
2
+ 1

2𝑛+1
,

and note that 𝜉′𝑛 (𝑥) belongs to (C𝑛 \ C𝑛+1) +
[
0, 1

2𝑛+1

)
= 𝐴1

𝑛 \ 𝐴𝑛+1, hence 𝜉′𝑛 is a
measure-preserving bĳection from 𝐵1

𝑛 \ 𝐵𝑛+1 onto 𝐴1
𝑛 \ 𝐴𝑛+1.

The transformation 𝜑𝑛+1 is set to be 𝜑̃𝑛 ⊔ 𝜉′𝑛, and we claim that it is a castle with
basis 𝐴𝑛+1 and ceiling 𝐵𝑛+1. This amounts to showing that for all 𝑥 ∈ 𝐴𝑛+1, there is
𝑘 ∈ N such that 𝜑𝑘

𝑛+1(𝑥) is not defined. Pick 𝑥 ∈ 𝐴𝑛+1 and write it as 𝑐0 + 𝑡 for some
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𝑐0 ∈ C𝑛+1 and 𝑡 ∈ [0, 1
2𝑛+1 ). Let 𝑐1 be the successor of 𝑐0 in C𝑛, which we suppose is

not an element of C𝑛+1. By the construction of 𝜑̃𝑛 and 𝜉′𝑛, there is 𝑘 ∈ N such that
𝜉′𝑛 (𝜑̃𝑘𝑛 (𝑥)) ∈ 𝑐′ + [0, 1

2𝑛+1 ), which means that 𝜑𝑘+1
𝑛+1(𝑥) ∈ 𝑐

′ + [0, 1
2𝑛+1 ). Iterating this

argument, we eventually find 𝑘0, 𝑝 ∈ N such that 𝜑𝑘0
𝑛+1(𝑥) ∈ 𝑐𝑝 + [0,

1
2𝑛+1 ) for some

𝑐𝑝 ∈ C𝑛 such that the successor 𝑐𝑝+1 of 𝑐𝑝 in C𝑛 belongs to C𝑛+1. By the definition
of 𝜑̃𝑛, we must have some 𝑙 ∈ N such that 𝜑𝑘0+𝑙

𝑛+1 (𝑥) = 𝜑̃
𝑙
𝑛 (𝜑

𝑘0
𝑛+1(𝑥)) ∈ 𝐵𝑛+1, whereas

𝜑
𝑘0+𝑙+1
𝑛+1 (𝑥) is not defined. Thus, 𝜑𝑛+1 is indeed a castle.

The extension 𝜓𝑛+1 of 𝜓̃𝑛 is defined similarly by connecting adjacent segments
of 𝐹1

𝑛 and 𝐸1
𝑛 by a translation. More specifically, each 𝑥 ∈ 𝐹1

𝑛 \ 𝐹𝑛+1 can be written
uniquely as 𝑥 = 𝑐 + 𝑡 for some 𝑐 ∈ C𝑛 \ C𝑛+1 and 𝑡 ∈ [ 12 ,

1
2 +

1
2𝑛+1 ). The restriction of 𝜅C𝑛

toD𝑛 is a bĳectionD𝑛→C𝑛. We denote its inverse by 𝑝𝑛 and let 𝜉′′𝑛 (𝑥) = 𝑝𝑛 (𝑐) + 𝑡 − 1.
The map 𝜓𝑛+1 = 𝜓̃𝑛 ⊔ 𝜉′′𝑛 can be checked to be a castle with basis 𝐸𝑛+1 and ceiling
𝐹𝑛+1 as desired. It also follows that the translation conditions continue to be satisfied
by both 𝜑𝑛+1 and 𝜓𝑛+1.

The transformations 𝜑𝑛 extend each other, so 𝜑 =
⋃
𝑛 𝜑𝑛 is an element of the pseudo

full group supported on 𝑌 = supp 𝜑𝑛 ⊔ supp𝜓𝑛. Note also that

𝜇(supp𝜓𝑛+1) = 𝜇(supp𝜓𝑛)/2,

and therefore dom 𝜑 = 𝑌 = rng 𝜑. We claim that 𝜑, seen as a measure-preserving
transformation of 𝑌 , induces an ergodic measure-preserving transformation on (𝑦 +
R) ∩ 𝑌 for almost all 𝑦 ∈ 𝑌 , where 𝑦 + R is endowed with the Lebesgue measure.
This follows from the fact that 𝜑 induces a rank-one transformation of the infinite
measure space (𝑦 + R) ∩ 𝑌 : for all Borel 𝐴 ⊆ (𝑦 + R) ∩ 𝑌 of finite Lebesgue measure
and all 𝜖 > 0, there are 𝐵 ⊆ (𝑦 + R) ∩𝑌 , 𝑘 ∈ N, and a subset 𝐹 ⊆ {0, . . . , 𝑘} such that
𝐵, 𝜑(𝐵), . . . , 𝜑𝑘 (𝐵) are pairwise disjoint and

𝜆(𝐴 △ (
⊔
𝑓 ∈𝐹

𝜑 𝑓 (𝐵))) < 𝜖.

Indeed, at each step 𝑛 for every 𝑐 ∈ C𝑛, the iterates of 𝑐 + [0, 1
2𝑛 ) by the restriction of

𝜑𝑛 to the interval [𝑐, 𝜄𝑛 (𝑐)) are disjoint “intervals of size 2−𝑛”, i.e., sets of the form
𝑡 + [0, 1

2𝑛 ), and these iterates cover a proportion 1 − 1
2𝑛 of [𝑐, 𝜄𝑛 (𝑐)) (the rest of this

interval being [𝑐, 𝜄𝑛 (𝑐)) ∩ supp𝜓𝑛).
It remains to extend 𝜑 supported on 𝑌 to a measure-preserving transformation 𝑆

with supp 𝑆 = 𝑋 . Let 𝑍 = 𝑋 \ 𝑌 be the leftover set,

𝑍 = {𝑐 + 𝑡 : 𝑐 ∈ C1 : 2 ≤ 𝑡 < gapC1
(𝑐)},

and put
𝑍 ′ = {𝑐 + 𝑡 : 𝑐 ∈ C1, 2 − gapC1

(𝑐) ≤ 𝑡 < 2}.

Figure 7.3 illustrates an interval between 𝑐 ∈ C1 and 𝑐′ = 𝜎C1 (𝑐). Within this gap, 𝑍
corresponds to [𝑐 + 2, 𝑐 + 2 + gapC1

(𝑐)), and 𝑍 ′ is an interval of the exact same length
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adjacent to it on the left. Note that 𝑍 ′ ⊆ 𝑌 by construction. Let 𝜂 : 𝑍 ′→ 𝑍 be the natural
translation map, 𝜂(𝑥) = 𝑥 + gapC1

(𝑐) for all 𝑥 ∈ 𝑍 ′ satisfying 𝑥 ∈ 𝑐 + [0, gapC1
(𝑐)).

Observe that 𝜂 is a measure-preserving bĳection, and its cocycle is bounded by 1.

· · ·
𝑐 𝑐′

𝑍𝑍 ′

𝜑
𝑆

Figure 7.3. Construction of the transformation 𝑆.

We now rewire the orbits of 𝜑 and define 𝑆 : 𝑋 → 𝑋 as follows (see Figure 7.3):

𝑆(𝑥) =


𝜑(𝑥) if 𝑥 ∉ 𝑍 ∪ 𝑍 ′;
𝜂(𝑥) if 𝑥 ∈ 𝑍 ′;
𝜑(𝜂−1(𝑥)) if 𝑥 ∈ 𝑍.

It is straightforward to verify that 𝑆 is a free measure-preserving transformation,
and the distance 𝐷 (𝑥, 𝑆𝑥) ≤ 4 for all 𝑥 ∈ 𝑋 because |𝜌𝜑 (𝑥) | ≤ 3 and |𝜌𝜂 (𝑥) | ≤ 1 for
all 𝑥 in their domains. Note that for every 𝑦 ∈ 𝑌 , the intersection of the 𝑆-orbit with
𝑌 coincides with its 𝜑-orbit. Since 𝜑 is ergodic on each orbit of the flow intersected
with 𝑌 , and considering that 𝑋 = 𝑌 ⊔ 𝑍 and 𝑆−1(𝑍) ⊆ 𝑌 , it follows that 𝑆 is ergodic
on every orbit of the flow. Therefore, 𝑆 satisfies the conclusion of the theorem.

Remark 7.3. The bound 4 in the formulation of Theorem 7.2 is of no significance, as
by rescaling the flow, it can be replaced with any 𝜖 > 0.





Chapter 8

Conservative and intermitted transformations

Interesting dynamics of conservative transformations is present only in the non-discrete
case, as it reduces to periodicity for countable group actions. Chapter 7 provides an
illustrative construction of a conservative automorphism and shows that they exist in
L1 full groups of all free flows. The present chapter is devoted to the study of such
elements. The central role is played by the concept of an intermitted transformation,
which is related to the notion of induced transformation. Using this tool, we show that all
conservative elements of [R ↷ 𝑋 ]1 can be approximated by periodic automorphisms,
and hence belong to the derived L1 full group of R ↷ 𝑋; see Corollary 8.8.

Throughout the chapter, we fix a free measure-preserving flow R ↷ 𝑋 on a stan-
dard Lebesgue space (𝑋, 𝜇). Given a cross-section C ⊂ 𝑋 , recall that we defined an
equivalence relation RC by declaring 𝑥RC𝑦 whenever there is 𝑐 ∈ C such that both 𝑥
and 𝑦 belong to the gap between 𝑐 and 𝜎C (𝑐). More formally, 𝑥RC𝑦 if there is 𝑐 ∈ C
such that 𝜌(𝑐, 𝑥) ≥ 0, 𝜌(𝑐, 𝑦) ≥ 0 and 𝜌(𝑥, 𝜎C (𝑐)) > 0, 𝜌(𝑦, 𝜎C (𝑐)) > 0. Such an
equivalence relation is smooth.

Now let 𝑇 ∈ [R ↷ 𝑋 ] be a conservative transformation. Under the action of 𝑇 ,
almost every point returns to its RC-class infinitely often, which suggests the idea of
the first return map.

Definition 8.1. The intermitted transformation 𝑇RC : 𝑋 → 𝑋 is defined by

𝑇RC𝑥 = 𝑇
𝑛(𝑥 )𝑥, where 𝑛(𝑥) = min{𝑛 ≥ 1 : 𝑥RC𝑇𝑛(𝑥 )𝑥}.

The map 𝑇RC is well-defined, since 𝑇 is conservative, and it preserves the measure
𝜇, since 𝑇RC belongs to the full group of 𝑇 .

Remark 8.2. The concept of an intermitted transformation 𝑇𝐸 makes sense for any
equivalence relation 𝐸 for which the intersection of any orbit of 𝑇 with any 𝐸-class is
either empty or infinite. In particular, intermitted transformations can be considered for
any conservative 𝑇 ∈ [𝐺 ↷ 𝑋 ] in a full group of a locally compact group action. For
instance, with a cocompact cross-section C we can associate an equivalence relation
of lying in the same cell of the Voronoi tessellation (see Appendix E.2). Such an
equivalence relation does have the aforementioned transversal property, and hence the
intermitted transformation is well-defined.

Note also the following connection with the more familiar construction of the
induced transformation. Let 𝑇 ∈ Aut(𝑋, 𝜇), and let 𝐴 ⊆ 𝑋 be a set of positive measure.
Recall that the induced transformation 𝑇𝐴 ∈ Aut(𝑋, 𝜇) is supported on the set 𝐴 and is
defined for 𝑥 ∈ 𝐴 by 𝑇𝐴𝑥 = 𝑇𝑛(𝑥 )𝑥, where 𝑛(𝑥) = min{𝑛 ≥ 1 : 𝑇𝑛𝑥 ∈ 𝐴}. DefineA to



74 Conservative and intermitted transformations

be the equivalence relation with two classes: 𝐴 and 𝑋 \ 𝐴. The induced transformations
𝑇𝐴 and 𝑇𝑋\𝐴 commute and satisfy 𝑇𝐴 ◦ 𝑇𝑋\𝐴 = 𝑇A .

The next lemma forms the core of this chapter. It shows that the operation of
taking an intermitted transformation does not increase the norm. As we discuss later
in Remark 8.5, the analog of this statement is false even for R2-flows, which perhaps
justifies the technical nature of the argument.

Lemma 8.3. Let 𝑇 ∈ [R↷ 𝑋 ]1 be a conservative automorphism, and let C be a cross-
section. Let also𝑌 be the set of points where𝑇 and 𝑇RC differ:𝑌 = {𝑥 ∈ 𝑋 : 𝑇𝑥 ≠ 𝑇RC𝑥}.
One has

∫
𝑌
|𝜌𝑇RC | 𝑑𝜇 ≤

∫
𝑌
|𝜌𝑇 | 𝑑𝜇.

Proof. By the definition of 𝑌 , for any 𝑥 ∈ 𝑌 , the arc from 𝑥 to 𝑇𝑥 crosses at least one
point of C. We may therefore represent |𝜌𝑇 (𝑥) | as the sum of the distance from 𝑥 to
the first point of C along the arc plus the rest of the arc. More formally, for 𝑥 ∈ 𝑋 , let
𝜋C (𝑥) be the unique 𝑐 ∈ C such that 𝑥 ∈ 𝑐 + [0, gapC (𝑐)). Define 𝛼 : 𝑌 → R≥0 by

𝛼(𝑥) =
{
|𝜌(𝑥, 𝜎C (𝜋C (𝑥))) |, if 𝜌(𝑥, 𝑇𝑥) > 0,
|𝜌(𝑥, 𝜋C (𝑥)) | if 𝜌(𝑥, 𝑇𝑥) < 0.

Note that 𝛼(𝑥) ≤ |𝜌𝑇 (𝑥) |, and set 𝛽(𝑥) = |𝜌𝑇 (𝑥) | − 𝛼(𝑥), so that∫
𝑌

|𝜌𝑇 | 𝑑𝜇 =

∫
𝑌

𝛼 𝑑𝜇 +
∫
𝑌

𝛽 𝑑𝜇.

For instance, in the context of Figure 8.1, 𝛼(𝑥4) = 𝜌(𝑥4, 𝑐2) and 𝛽(𝑥4) = 𝜌(𝑐2, 𝑥5). Let
us partition 𝑌 = 𝑌 ′ ⊔ 𝑌 ′′, where

𝑌 ′ =
{
𝑥 ∈ 𝑌 : 𝜌(𝑥, 𝑇𝑥) and 𝜌(𝑥, 𝑇RC𝑥) have the same sign or 𝑇RC𝑥 = 𝑥

}
,

and 𝑌 ′′ = 𝑌 \𝑌 ′ consists of those 𝑥 ∈ 𝑌 for which the signs of 𝜌(𝑥,𝑇𝑥) and 𝜌(𝑥,𝑇RC𝑥)
are different. For example, referring to the same figure, 𝑥0 ∈ 𝑌 ′′, while 𝑥2 ∈ 𝑌 ′.

To prove the lemma, it is enough to show two inequalities:∫
𝑌 ′
|𝜌𝑇RC (𝑥) | 𝑑𝜇(𝑥) ≤

∫
𝑌

𝛼(𝑥) 𝑑𝜇(𝑥), (8.1)∫
𝑌 ′′
|𝜌𝑇RC (𝑥) | 𝑑𝜇(𝑥) ≤

∫
𝑌

𝛽(𝑥) 𝑑𝜇(𝑥). (8.2)

Eq. (8.1) is straightforward, since the equality of signs of 𝜌(𝑥, 𝑇𝑥) and 𝜌(𝑥, 𝑇RC𝑥)
implies that 𝑇RC𝑥 is closer than 𝑥 to the point 𝑐 ∈ C, which is crossed by the arc from
𝑥 to 𝑇𝑥. For example, the point 𝑥2 in Figure 8.1 satisfies

|𝜌𝑇RC (𝑥2) | = 𝜌(𝑥2, 𝑥4) ≤ 𝜌(𝑥2, 𝑐2) = 𝛼(𝑥2).
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Thus |𝜌𝑇RC (𝑥) | ≤ 𝛼(𝑥) for all 𝑥 ∈ 𝑌 ′, and so∫
𝑌 ′
|𝜌𝑇RC | 𝑑𝜇 ≤

∫
𝑌 ′
𝛼 𝑑𝜇 ≤

∫
𝑌

𝛼 𝑑𝜇,

which establishes (8.1). The other inequality will require a bit more work.
For 𝑥 ∈ 𝑌 ′′, let 𝑁 (𝑥) ≥ 1 be the smallest integer such that the sign of 𝜌(𝑥,𝑇𝑁 (𝑥 )+1𝑥)

is opposite to that of 𝜌𝑇 (𝑥). In less formal terms, 𝑁 (𝑥) is the smallest integer such that
the arc from 𝑇𝑁 (𝑥 )𝑥 to 𝑇𝑁 (𝑥 )+1𝑥 jumps over 𝑥. In particular, points 𝑇 𝑘𝑥, 1 ≤ 𝑘 ≤ 𝑁 (𝑥),
are all on the same side relative to 𝑥, while 𝑇𝑁 (𝑥 )+1𝑥 is on the other side of it. We
consider the map 𝜂 : 𝑌 ′′→ 𝑋 given by 𝜂(𝑥) = 𝑇𝑁 (𝑥 )𝑥. The properties of this map will
be crucial for establishing the inequality (8.2), so let us provide some explanations first.

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4𝑥0 𝑥1 𝑥2 𝑥3𝑥4 𝑥5𝑥6 𝑥7𝑥8 𝑥9

Figure 8.1. Dynamics of a conservative orbit.

Consider once again Figure 8.1, which shows a partial orbit of a point 𝑥0 for
𝑥𝑖 = 𝑇

𝑖𝑥0 up to 𝑖 ≤ 9 and several points 𝑐𝑖 ∈ C. First, as we have already noted before,
𝑥0 ∈ 𝑌 , since ¬𝑥0RC𝑥1; moreover, 𝑥0 ∈ 𝑌 ′′, since 𝑥9 = 𝑇RC𝑥0 is to the left of 𝑥0, while
𝑥1 is to the right of it, so 𝜌(𝑥0, 𝑥1) and 𝜌(𝑥0, 𝑥9) have opposite signs. Also, 𝑁 (𝑥0) = 7,
because 𝑥8 is the first point in the orbit to the left of 𝑥0, thus 𝜂(𝑥0) = 𝑥7. In general, we
have 𝑇𝑁 (𝑥 )+1𝑥 ≠ 𝑇RC𝑥. However, the equality 𝑇𝑁 (𝑥 )+1𝑥 = 𝑇RC𝑥 holds when 𝑥 ∈ 𝑌 ′′
and the points 𝑇𝑁 (𝑥 )+1𝑥 and 𝑥 are RC-equivalent.

The next point in the orbit 𝑥1 is not in 𝑌 , whereas 𝑥2 ∈ 𝑌 but 𝑥2 ∉ 𝑌 ′′, because
𝑇RC𝑥2 = 𝑥4 and both 𝜌(𝑥2, 𝑥3) and 𝜌(𝑥2, 𝑥4) are positive. The point 𝑥3 belongs to 𝑌 ′′
and has 𝑁 (𝑥3) = 1 with 𝜂(𝑥3) = 𝑥4. The points 𝑥4, 𝑥5, 𝑥6 are in 𝑌 , but whether any of
them are elements of 𝑌 ′′ is not clear from Figure 8.1, as the orbit segment is too short
to clarify the values of 𝑇RC𝑥𝑖 , 𝑖 = 4, 5, 6. However, if 𝑥4, 𝑥5, 𝑥6 happen to lie in 𝑌 ′′, then
𝑁 (𝑥5) = 1 with 𝜂(𝑥5) = 𝑥6, and 𝑁 (𝑥4) = 3, 𝑁 (𝑥6) = 1, 𝜂(𝑥4) = 𝜂(𝑥6) = 𝑥7 = 𝜂(𝑥0). In
particular, the function 𝑥 ↦→ 𝜂(𝑥) is not necessarily one-to-one, but we are going to
argue that it is always finite-to-one.
Claim 1. If 𝑥, 𝑦 ∈ 𝑌 ′′ are distinct points such that 𝜂(𝑥) = 𝜂(𝑦), then ¬𝑥RC𝑦.

Proof of the claim. Suppose 𝑥, 𝑦 ∈ 𝑌 ′′ satisfy 𝜂(𝑥) = 𝜂(𝑦). The definition of 𝜂 implies
that 𝑥 and 𝑦 must belong to the same orbit of 𝑇 , and we may assume without loss of
generality that 𝑦 = 𝑇 𝑘0𝑥 for some 𝑘0 ≥ 1. If the orbit of 𝑥 and 𝑦 is aperiodic, it implies
that 𝑁 (𝑥) > 𝑘0 and 𝑁 (𝑦) + 𝑘0 = 𝑁 (𝑥), 𝑁 (𝑦) ≥ 1. However, even if the orbit is periodic,
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either 𝑁 (𝑦) + 𝑘0 = 𝑁 (𝑥) for the smallest positive integer 𝑘0 such that 𝑦 = 𝑇 𝑘0𝑥 or
𝑁 (𝑥) + 𝑘 ′0 = 𝑁 (𝑦) for the smallest positive integer 𝑘 ′0 such that 𝑥 = 𝑇 𝑘′0 𝑦. Interchanging
the roles of 𝑥 and 𝑦 if necessary, we may therefore assume that 𝑁 (𝑦) + 𝑘0 = 𝑁 (𝑥) holds
for some 𝑘0 ≥ 1, 𝑇 𝑘0𝑥 = 𝑦, regardless of the type of orbit we consider.

Suppose 𝑥 and 𝑦 are RC-equivalent. Let 𝑘 ≥ 1 be the smallest natural number for
which 𝑥 and 𝑇 𝑘𝑥 are RC-equivalent. By the assumption 𝑥RC𝑦 and the choice of 𝑘0 we
have 𝑘 ≤ 𝑘0 < 𝑁 (𝑥). By the definition of 𝑁 (𝑥), all points 𝑇 𝑖𝑥, 1 ≤ 𝑖 ≤ 𝑁 (𝑥), are on
the same side of 𝑥. In particular, this applies to 𝑇𝑥 and 𝑇 𝑘𝑥, which shows that 𝜌(𝑥,𝑇𝑥)
and 𝜌(𝑥, 𝑇RC𝑥) have the same sign, thus 𝑥 ∉ 𝑌 ′′. □claim

The above claim implies that the function 𝑥 ↦→ 𝜂(𝑥) is finite-to-one, for the arc from
𝜂(𝑥) to 𝑇𝜂(𝑥) intersects only finitely many RC-equivalence classes, and the preimage
of 𝜂(𝑥) picks at most one point from each such class. Note also that 𝜂(𝑥) ∈ 𝑌 for all
𝑥 ∈ 𝑌 ′′, but 𝜂(𝑥) may not be an element of𝑌 ′′. Among the RC-equivalence classes that
the arc from 𝜂(𝑥) to 𝑇𝜂(𝑥) crosses, two are special: the intervals that contain 𝑇𝜂(𝑥)
and 𝜂(𝑥), respectively. Our goal will be to bound the sum of |𝜌𝑇RC (𝑥) | over the points
𝑥 with the same 𝜂(𝑥) value by 𝛽(𝜂(𝑥)) (see Claim 3 below). For a typical point 𝑥, we
can bound |𝜌𝑇RC (𝑥) | simply by the length of the interval of its RC-class. For example,
Figure 8.1 does not specify 𝑇RC𝑥4, but we can be sure that |𝜌𝑇RC (𝑥4) | ≤ 𝜌(𝑐1, 𝑐2). In
view of Claim 1, such an estimate comes close to showing that the sum of |𝜌𝑇RC (𝑥) |
over 𝑥 with the same image 𝜂(𝑥) is bounded by |𝜌(𝜂(𝑥),𝑇𝜂(𝑥)) |. It merely comes close
due to the two special RC-classes mentioned above, where our estimate needs to be
improved. The next claim shows that one of these special cases is of no concern as 𝑥 is
never RC-equivalent to 𝜂(𝑥).
Claim 2. For all 𝑥 ∈ 𝑌 ′′, we have ¬𝑥RC𝜂(𝑥).

Proof of the claim. Suppose, towards a contradiction, that 𝑥RC𝜂(𝑥), and let 𝑘 ≥ 1 be
the smallest integer for which 𝑥RC𝑇 𝑘 (𝑥); in particular,𝑇RC𝑥 = 𝑇 𝑘𝑥. Note that 𝑘 ≤ 𝑁 (𝑥)
by the assumption, and by the definition of 𝑁 (𝑥), 𝜌(𝑇 𝑘𝑥, 𝑥) has the same sign as 𝜌𝑇 (𝑥),
whence 𝑥 ∉ 𝑌 ′′. □claim

Pick some 𝑦 ∈ 𝑌 with non-empty preimage 𝜂−1(𝑦), and let 𝑧1, . . . , 𝑧𝑛 ∈ 𝑌 ′′ be all
the elements in 𝜂−1(𝑦). For instance, in the situation depicted in Figure 8.1, we may
have 𝑛 = 3 and 𝑧1 = 𝑥0, 𝑧2 = 𝑥4, 𝑧3 = 𝑥6, and 𝑦 = 𝑥7. The following claim unlocks the
path toward the inequality (8.2).
Claim 3. In the above notation,

∑𝑛
𝑖=1 |𝜌𝑇RC (𝑧𝑖) | ≤ 𝛽(𝑦).

Proof of the claim. Recall that the arc from 𝑦 to 𝑇𝑦 crosses at least one point in C. If
𝑐 ∈ C is the closest to 𝑦 among such points, then 𝛽(𝑦) is defined to be |𝜌(𝑐, 𝑇 𝑦) |. For
instance, in the notation of Figure 8.1, 𝛽(𝑥7) = |𝜌(𝑐4, 𝑥8) |. Each point 𝑧𝑖 is located
under the arc from 𝑦 to 𝑇𝑦, and by Claim 2, no point 𝑧𝑖 belongs to the interval from 𝑐

to 𝑦. In the language of our concrete example, no point 𝑧𝑖 can be between 𝑐4 and 𝑥7.
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As discussed before, |𝜌𝑇RC (𝑥) | is always bounded by the length of the gap to which
𝑥 belongs. This is sufficient to prove the claim if no 𝑧𝑖 is equivalent to 𝑇𝑦, as in this
case the whole RC-equivalence class of every 𝑧𝑖 is fully contained under the interval
between 𝑐 and 𝑇𝑦, and distinct 𝑧𝑖 represent distinct RC-classes by Claim 1. This is the
situation depicted in Figure 8.1, and our argument boils down to the inequalities

|𝜌𝑇RC (𝑥0) | + |𝜌𝑇RC (𝑥4) | + |𝜌𝑇RC (𝑥5) | ≤ |𝜌(𝑐0, 𝑐1) | + |𝜌(𝑐1, 𝑐2) | + |𝜌(𝑐2, 𝑐3) |
≤ |𝜌(𝑐0, 𝑐4) | ≤ 𝛽(𝑥7).

Suppose there is some 𝑧𝑖 such that 𝑧𝑖RC𝑇𝑦. By Claim 1, such 𝑧𝑖 must be unique,
and we assume without loss of generality that 𝑧1RC𝑇𝑦. For example, this situation
would occur if in Figure 8.1 𝑇𝑥7 were equal to 𝑥9. Let 𝑐′ be the first element of C over
which goes the arc from 𝑧1 to𝑇𝑧1 (it would be the point 𝑐1 in Figure 8.1). It is enough to
show that |𝜌𝑇RC (𝑧1) | ≤ |𝜌(𝑇RC 𝑧1, 𝑐

′) |, as we can use the previous estimate for all other
|𝜌𝑇RC (𝑧𝑖) |, 𝑖 ≥ 2. Note that 𝑇RC 𝑧1 = 𝑇𝑦, and 𝑧1 ∈ 𝑌 ′′ by assumption, which implies
that the signs of 𝜌(𝑧1, 𝑇RC 𝑧1) and 𝜌(𝑧1, 𝑐′) are different. The latter is equivalent to
saying that 𝑧1 is between 𝑇RC 𝑧1 and 𝑐′, i.e., |𝜌(𝑇RC 𝑧1, 𝑐′) | = |𝜌𝑇RC (𝑧1) | + |𝜌(𝑧1, 𝑐

′) |,
and the claim follows. □claim

We are now ready to finish the proof of this lemma. We have already shown
that 𝜂 is finite-to-one, so let 𝑌 ′′𝑛 ⊆ 𝑌 ′′, 𝑛 ≥ 1, be such that 𝑥 ↦→ 𝜂(𝑥) is 𝑛-to-one on
𝑌 ′′𝑛 . Let 𝑅𝑛 = 𝜂(𝑌 ′′𝑛 ), and recall that 𝑅𝑛 ⊆ 𝑌 . The sets 𝑅𝑛 are pairwise disjoint. Let
𝜙𝑘,𝑛 : 𝑅𝑛→ 𝑌 ′′𝑛 , 1 ≤ 𝑘 ≤ 𝑛, be Borel bĳections that pick the 𝑘th point in the preimage:
𝑌 ′′𝑛 =

⊔𝑛
𝑖=1 𝜙𝑘,𝑛 (𝑅𝑛). Note that the maps 𝜙𝑘,𝑛 : 𝑅𝑛→ 𝜙𝑘,𝑛 (𝑅𝑛) are measure-preserving,

since they belong to the pseudo full group of 𝑇 , and
∑𝑛
𝑘=1 |𝜌𝑇RC (𝜙𝑘,𝑛 (𝑥)) | ≤ 𝛽(𝑥) for

all 𝑥 ∈ 𝑅𝑛 by Claim 3. One now has∫
𝑌 ′′𝑛

|𝜌𝑇RC (𝑥) | 𝑑𝜇(𝑥) =
𝑛∑︁
𝑘=1

∫
𝜙𝑘,𝑛 (𝑅𝑛 )

|𝜌𝑇RC (𝑥) | 𝑑𝜇(𝑥)

∵ 𝜙𝑛,𝑘 are measure-preserving =

∫
𝑅𝑛

𝑛∑︁
𝑘=1
|𝜌𝑇RC (𝜙

−1
𝑘,𝑛 (𝑥)) | 𝑑𝜇(𝑥)

∵ Claim 3 ≤
∫
𝑅𝑛

𝛽(𝑥) 𝑑𝜇(𝑥).

Summing these inequalities over 𝑛, we get∫
𝑌 ′′
|𝜌𝑇RC (𝑥) | 𝑑𝜇(𝑥) =

∞∑︁
𝑛=1

∫
𝑌 ′′𝑛

|𝜌𝑇RC (𝑥) | 𝑑𝜇(𝑥)

≤
∞∑︁
𝑛=1

∫
𝑅𝑛

𝛽(𝑥) 𝑑𝜇(𝑥) ≤
∫
𝑌

𝛽(𝑥) 𝑑𝜇(𝑥),
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where the last inequality is based on the fact that the sets 𝑅𝑛 are pairwise disjoint. This
finishes the proof of the inequality (8.2) as well as the lemma.

Several important facts follow easily from Lemma 8.3. For one, it implies that for
any cross-section C, the intermitted transformation 𝑇RC belongs to [R ↷ 𝑋 ]1. In fact,
we have the following inequality on the norms.

Corollary 8.4. For any intermitted transformation 𝑇RC , one has ∥𝑇RC ∥1 ≤ ∥𝑇 ∥1.

Proof. By the definition of the set 𝑌 in Lemma 8.3, 𝜌𝑇RC (𝑥) = 𝜌𝑇 (𝑥) for all 𝑥 ∉ 𝑌 ,
hence ∫

𝑋

|𝜌𝑇RC | 𝑑𝜇 =

∫
𝑋\𝑌
|𝜌𝑇RC | 𝑑𝜇 +

∫
𝑌

|𝜌𝑇RC | 𝑑𝜇

∵ Lemma 8.3 ≤
∫
𝑋\𝑌
|𝜌𝑇 | 𝑑𝜇 +

∫
𝑌

|𝜌𝑇 | 𝑑𝜇 =

∫
𝑋

|𝜌𝑇 | 𝑑𝜇,

which shows ∥𝑇RC ∥1 ≤ ∥𝑇 ∥1.

Remark 8.5. As we discussed in Remark 8.2, the concept of an intermitted transfor-
mation applies more broadly than the case of one-dimensional flows. We mention,
however, that the analog of Lemma 8.3 and Corollary 8.4 does not hold even for free
measure-preserving R2-flows. Consider an annulus depicted in Figure 8.2a and let 𝑇
be the rotation by an angle 𝛼 around the center of this annulus. Let the equivalence
relation 𝐸 consist of two classes, each composing half of the ring. For a point 𝑥 such
that ¬𝑥𝐸𝑇𝑥, 𝑇𝐸𝑥 will be close to the other side of the class. It is easy to arrange the
parameters (the angle 𝛼 and the radii of the annulus) so that ∥𝜌𝑇𝐸 (𝑥)∥ > ∥𝜌𝑇 (𝑥)∥ for
all 𝑥 such that 𝑇𝑥 ≠ 𝑇𝐸𝑥.

...

𝛼

𝑇

𝑥

𝑇𝐸𝑥

(a) (b)

Figure 8.2. Construction of a conservative transformation 𝑇 with ∥𝑇𝐸 ∥1 > ∥𝑇 ∥1.

Every free measure-preserving flow R2 ↷ 𝑋 admits a tiling of its orbits by rect-
angles. The transformation 𝑇 ∈ [R2 ↷ 𝑋 ]1 can be defined similarly to Figure 8.2a



Conservative and intermitted transformations 79

on each rectangle of the tiling by splitting each tile into two equivalence classes as
in Figure 8.2b. The resulting transformation 𝑇 will have bounded orbits and satisfy
∥𝑇𝐸 ∥1 > ∥𝑇 ∥1 relative to the equivalence relation 𝐸 whose classes are the half tiles.

When the gaps in a cross-section C are large, 𝑥 and 𝑇𝑥 will often be RC-equivalent,
and it is therefore natural to expect that 𝑇RC will be close to 𝑇 . This intuition is indeed
valid, and the following approximation result is the most important consequence of
Lemma 8.3.

Lemma 8.6. Let 𝑇 ∈ [R ↷ 𝑋 ]1 be a conservative transformation. For any 𝜖 > 0,
there exists 𝑀 such that for any cross-section C with gapC (𝑐) ≥ 𝑀 for all 𝑐 ∈ C, one
has ∥𝑇 ◦ 𝑇−1

RC ∥1 < 𝜖 .

Proof. Let 𝐴𝐾 = {𝑥 ∈ 𝑋 : |𝜌𝑇 (𝑥) | ≥ 𝐾}, 𝐾 ∈ R≥0, be the set of points whose cocycle
is at least 𝐾 in absolute value. Since 𝑇 ∈ [R ↷ 𝑋 ]1, we may pick 𝐾 ≥ 1 so large that∫
𝐴𝐾
|𝜌𝑇 | 𝑑𝜇 < 𝜖/4. Pick any real 𝑀 such that 2𝐾2/𝑀 < 𝜖/4. We claim that it satisfies

the conclusion of the lemma. To verify this, we pick a cross-section C with all gaps
having a size of at least 𝑀 . Set as before 𝑌 = {𝑥 ∈ 𝑋 : 𝑇𝑥 ≠ 𝑇RC𝑥}. Since

𝑇 ◦ 𝑇−1

RC




1 =

∫
𝑌

𝐷 (𝑇𝑥, 𝑇RC𝑥) 𝑑𝜇(𝑥),

our task is to estimate this integral. This can be done in a rather crude way. We can
simply use the triangle inequality 𝐷 (𝑇𝑥, 𝑇RC𝑥) ≤ |𝜌𝑇 (𝑥) | + |𝜌𝑇RC (𝑥) |, and deduce∫

𝑌

𝐷 (𝑇𝑥, 𝑇RC𝑥) 𝑑𝜇(𝑥) ≤
∫
𝑌

|𝜌𝑇 | 𝑑𝜇 +
∫
𝑌

|𝜌𝑇RC | 𝑑𝜇 ≤ 2
∫
𝑌

|𝜌𝑇 | 𝑑𝜇,

where the last inequality is based on Lemma 8.3.
It remains to show that

∫
𝑌
|𝜌𝑇 | 𝑑𝜇 < 𝜖/2. Let 𝑋 = {𝑐 + [𝐾, gapC (𝑐) − 𝐾] : 𝑐 ∈ C}

be the region that leaves out intervals of length 𝐾 on both sides of each point in C. Note
that for any 𝑥 ∈ 𝑋 \ 𝐴𝐾 one has 𝑥RC𝑇𝑥 and thus 𝑇RC𝑥 = 𝑇𝑥 for such points. Therefore,
𝑌 ⊆ 𝐴𝐾 ⊔ 𝐵𝐾 , where 𝐵𝐾 = 𝑋 \ (𝑋 ∪ 𝐴𝐾 ), and thus∫

𝑌

|𝜌𝑇 | 𝑑𝜇 ≤
∫
𝐴𝐾

|𝜌𝑇 | 𝑑𝜇 +
∫
𝐵𝐾

|𝜌𝑇 | 𝑑𝜇 < 𝜖/4 + 𝐾 · 2𝐾/𝑀 < 𝜖/2.

Lemma 8.7. Let 𝑇 ∈ [R↷ 𝑋 ]1 be a conservative transformation. For any 𝜖 > 0 there
exists a periodic transformation 𝑃 ∈ [𝑇 ] such that ∥𝑇 ◦ 𝑃−1∥1 < 𝜖 .

Proof. By Lemma 8.6, we can find a cocompact cross-section C such that ∥𝑇 ◦𝑇−1
RC ∥ <

𝜖/2. Let 𝑀̃ be an upper bound for gaps in C. Recall that the cocycle |𝜌𝑇RC (𝑥) | is
uniformly bounded by 𝑀̃ , and, in fact, the same is true for any element in the full group



80 Conservative and intermitted transformations

of 𝑇RC . In particular, we may use Rokhlin’s lemma to find a periodic 𝑃 ∈ [𝑇RC ] such
that ∥𝑇RC ◦ 𝑃−1∥ < 𝜖/2𝑀̃ , and conclude that ∥𝑇RC ◦ 𝑃−1∥1 < 𝜖/2. We therefore have

∥𝑇 ◦ 𝑃−1∥1 ≤ ∥𝑇 ◦ 𝑇−1
RC ∥1 + ∥𝑇RC ◦ 𝑃

−1∥1 < 𝜖.

Corollary 8.8. If 𝑇 ∈ [R ↷ 𝑋 ]1 is conservative, then 𝑇 belongs to the derived L1 full
group 𝔇( [R ↷ 𝑋 ]1). In particular, its index satisfies I(𝑇) = 0.

Proof. By Lemma 8.7, every conservative transformation 𝑇 ∈ [R ↷ 𝑋 ]1 lies in the
closed subgroup generated by the periodic elements. This subgroup is equal to the
derived L1 full group 𝔇( [R↷ 𝑋 ]1) by Corollary 3.16. Since the range of I is abelian,
its kernel contains all commutators, and thus 𝔇( [R ↷ 𝑋 ]1) ⊆ kerI.



Chapter 9

Dissipative and monotone transformations

The previous chapter studied conservative transformations, whereas this one concen-
trates on dissipative ones. Our goal will be to show that any dissipative 𝑇 ∈ [R ↷ 𝑋 ]1
of index I(𝑇) = 0 belongs to the derived subgroup 𝔇( [R ↷ 𝑋 ]1). Recall that con-
versely, every element of the (topological) derived group 𝔇( [R↷ 𝑋 ]1) has index zero
since the index map is a continuous group homomorphism taking values in an abelian
topological group. We begin by describing some general aspects of the dynamics of
dissipative automorphisms.

Recall that according to Proposition 4.16, any transformation𝑇 ∈ [R↷ 𝑋 ] induces
a 𝑇-invariant partition of the phase space 𝑋 = 𝐶𝑇 ⊔ 𝐷𝑇 such that 𝑇 |𝐶𝑇 is conservative
and 𝑇 |𝐷𝑇 is dissipative. Formally speaking, a transformation is said to be dissipative
if the partition trivializes to 𝐷𝑇 = 𝑋 . For the purpose of this chapter, it is, however,
convenient to widen this notion just a bit by allowing 𝑇 to have fixed points.

Definition 9.1. A transformation 𝑇 ∈ [R ↷ 𝑋 ] is said to be dissipatively supported
if 𝐷𝑇 = supp𝑇 , where 𝐷𝑇 is the dissipative element of the Hopf decomposition for 𝑇 .

9.1 Orbit limits and monotone transformations

We begin by showing that the dynamics of dissipatively supported transformations in
L1 full groups of R-flows is similar to those in L1 full groups of Z-actions. We do so by
establishing an analog of R. M. Belinskaja’s result [8, Thm. 3.2]. Recall that a sequence
of reals is said to have an almost constant sign if all but finitely many elements of the
sequence have the same sign.

Proposition 9.2. Let 𝑆 be a measure-preserving transformation of the real line that
commensurates the set R− . Suppose that 𝑆 is dissipatively supported. Then for almost
all 𝑥 ∈ R, the sequence of reals (𝑆𝑘 (𝑥) − 𝑥)𝑘∈N has an almost constant sign.

Proof. Let 𝑄 be the set of reals 𝑥 such that the sequence (𝑆𝑘 (𝑥) − 𝑥)𝑘∈N does not
have an almost constant sign. Assume, to the contrary, that 𝑄 has positive measure.
Since 𝑆 is dissipative, we can find a Borel wandering set 𝐴 ⊆ R for 𝑆 that intersects
𝑄 non-trivially. All the translates of 𝑄′ = 𝑄 ∩ 𝐴 are disjoint, and for all 𝑥 ∈ 𝑄′, the
sequence (𝑆𝑘 (𝑥) − 𝑥)𝑘∈N does not have an almost constant sign.

Since 𝑆 is dissipatively supported, for almost all 𝑥 ∈ 𝑄′, the sequence of absolute
values ( |𝑆𝑘 (𝑥) |)𝑘∈N tends to +∞ (see Proposition C.4). In particular, there are infinitely
many points 𝑦 in the 𝑆-orbit of 𝑥 such that 𝑦 < 0 but 𝑆(𝑦) > 0. Because the map
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𝑄′ × Z→ R, which sends (𝑥, 𝑘) to 𝑆𝑘 (𝑥), is measure-preserving, it follows that the
set of 𝑦 < 0 such that 𝑆(𝑦) > 0 has infinite measure. This contradicts the fact that 𝑆
commensurates the set R− .

Corollary 9.3. Let𝑇 ∈ [R↷ 𝑋 ]1 be dissipatively supported. For almost all 𝑥 ∈ supp𝑇 ,
the sequence (𝜌(𝑥, 𝑇 𝑘 (𝑥)))𝑘∈N has an almost constant sign.

Proof. Let 𝑇 ∈ [R ↷ 𝑋 ]1. For all 𝑥 ∈ 𝑋 , denote by 𝑇𝑥 the measure-preserving trans-
formation of R induced by 𝑇 on the R-orbit of 𝑥. By the proof of Proposition 6.8, the
integral ∫

𝑋

𝜆(R≥0 △ (𝑇𝑥 (R≥0))) 𝑑𝜇(𝑥)

is finite. In particular, for almost every 𝑥 ∈ 𝑋 , the transformation 𝑇𝑥 commensurates
the set R≥0. The conclusion now follows directly from the previous proposition.

For any dissipatively supported transformation in an L1 full group of a free locally
compact Polish group action and for almost every 𝑥 ∈ 𝑋 , 𝜌(𝑥,𝑇𝑛𝑥) → ∞ as 𝑛→∞, in
the sense that 𝜌(𝑥, 𝑇𝑛𝑥) eventually escapes any compact subset of the acting group. In
the context of flows, Corollary 9.3 strengthens this statement and implies that 𝜌(𝑥,𝑇𝑛𝑥)
must converge to either +∞ or −∞.

Corollary 9.4. If 𝑇 ∈ [R ↷ 𝑋 ]1 is dissipatively supported, then for almost every
point 𝑥 ∈ supp𝑇 , either lim

𝑛→∞
𝜌(𝑥, 𝑇𝑛𝑥) = +∞ or lim

𝑛→∞
𝜌(𝑥, 𝑇𝑛𝑥) = −∞.

In view of this corollary, there is a canonical 𝑇-invariant decomposition of supp𝑇
into “positive” and “negative” orbits.

Definition 9.5. Let 𝑇 ∈ [R ↷ 𝑋 ]1 be a dissipatively supported automorphism. Its
support is partitioned into ®𝑋 ⊔ ®𝑋 , where

®𝑋 =
{
𝑥 ∈ supp𝑇 : lim

𝑛→∞
𝜌(𝑥, 𝑇𝑛𝑥) = +∞

}
,

®𝑋 =
{
𝑥 ∈ supp𝑇 : lim

𝑛→∞
𝜌(𝑥, 𝑇𝑛𝑥) = −∞

}
.

The set ®𝑋 is said to be positive evasive, and ®𝑋 is negative evasive.

According to Corollary 9.3, for almost every 𝑥 ∈ supp𝑇 , eventually either all 𝑇𝑛𝑥
are to the right of 𝑥 or all are to the left of it. There are points 𝑥 for which the adverb
“eventually” can, in fact, be dropped.

Corollary 9.6. Let 𝑇 ∈ [R ↷ 𝑋 ]1 be a dissipatively supported transformation, and
let

®𝐴 = {𝑥 ∈ ®𝑋 : 𝜌(𝑥, 𝑇𝑛𝑥) > 0 for all 𝑛 ≥ 1},
®𝐴 = {𝑥 ∈ ®𝑋 : 𝜌(𝑥, 𝑇𝑛𝑥) < 0 for all 𝑛 ≥ 1}.

The set 𝐴 = ®𝐴 ⊔ ®𝐴 is a complete section for 𝑇 |supp𝑇 .
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Proof. We need to show that almost every orbit of 𝑇 intersects 𝐴. Let 𝑥 ∈ supp𝑇 and
suppose for definiteness that 𝑥 ∈ ®𝑋 . Since lim𝑛→∞ 𝜌(𝑥, 𝑇𝑛𝑥) = +∞, we can define
𝑛0 = max{𝑛 ∈ N : 𝜌(𝑥, 𝑇𝑛𝑥) ≤ 0}, and then 𝑇𝑛0𝑥 ∈ ®𝐴.

Definition 9.7. A dissipatively supported transformation 𝑇 ∈ [R ↷ 𝑋 ]1 is monotone
if 𝜌(𝑥, 𝑇𝑥) > 0 for almost all 𝑥 ∈ ®𝑋 , and 𝜌(𝑥, 𝑇𝑥) < 0 for almost all 𝑥 ∈ ®𝑋 .

Corollary 9.8. Let 𝑇 ∈ [R ↷ 𝑋 ]1 be a dissipatively supported transformation. There
is a complete section 𝐴 ⊆ supp𝑇 and a periodic transformation 𝑃 ∈ [R ↷ 𝑋 ]1 ∩ [𝑇 ]
such that 𝑇 = 𝑃 ◦ 𝑇𝐴 and 𝑇𝐴 is monotone.

Proof. Take 𝐴 to be as in Corollary 9.6 and note that 𝑃 = 𝑇 ◦ 𝑇−1
𝐴

is periodic and
satisfies the conclusions of the corollary.

As we discussed at the beginning of the chapter, our goal is to show that the kernel of
the index map coincides with the derived subgroup of [R↷ 𝑋 ]1. Note that if𝑇 = 𝑃 ◦𝑇𝐴
is as above, then I(𝑇) = I(𝑇𝐴), and coupled with the results of Chapter 8, it will suffice
to show that all monotone transformations of index zero belong to 𝔇( [R↷ 𝑋 ]1). This
will be the focus of the rest of this chapter and will take some effort to achieve, but the
main strategy is to show that such transformations can be approximated by periodic
transformations, which is the content of Theorem 9.16 below.

9.2 Arrival and departure sets

Throughout the rest of this chapter, we fix a cross-section C ⊂ 𝑋 and a monotone
transformation 𝑇 ∈ [R ↷ 𝑋 ]1.

Let us recall a few definitions and facts from Section 1.2.4. The lacunarity of C
provides the gap function gapC : C → (0, +∞), and the induced map 𝜎C : C → C
taking 𝑐 to 𝑐 + gapC (𝑐), whose orbits are the intersections of the flow’s orbits with C.
We let 𝜆C𝑐 be the Lebesgue measure on 𝑐 + [0, gapC (𝑐)) given by

𝜆C𝑐 (𝐴) = 𝜆({𝑡 ∈ [0, gapC (𝑐)) : 𝑐 + 𝑡 ∈ 𝐴}).

The measure 𝜇 can be disintegrated as 𝜇(𝐴) =
∫
C 𝜆
C
𝑐 (𝐴) 𝑑𝜈(𝑐) for some finite (but

not necessarily probability) measure 𝜈 on C. Finally, we use the convenient notation
𝐴(𝑐) = 𝐴 ∩

(
𝑐 + [0, gapC (𝑐)

)
= 𝐴 ∩ [𝑐]RC . Note that 𝜆𝑐 (𝐴(𝑐)) = 𝜆𝐶𝑐 (𝐴) for all 𝑐 ∈ C,

where 𝜆𝑐 denotes the Lebesgue measure on the whole orbit of 𝑐.
We now introduce some essential additional terminology concerning our fixed

monotone transformation 𝑇 ∈ [R ↷ 𝑋 ]1. The arrival set 𝐴C is the set of the first
visitors toRC classes: 𝐴C = {𝑥 ∈ supp𝑇 : ¬𝑥RC𝑇−1𝑥}. Analogously, the departure set
𝐷C is defined to be 𝐷C = {𝑥 ∈ supp𝑇 : ¬𝑥RC𝑇𝑥}. We also let ®𝐴C denote 𝐴C ∩ ®𝑋 and
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𝑐 𝑐′

𝑥 ∈ ®𝐴C 𝑇4𝑥 ∈ ®𝐷C
𝑡C (𝑥) = 4

Figure 9.1. Arrival and departure sets.

®𝐴C = 𝐴C ∩ ®𝑋; likewise for ®𝐷C and ®𝐷C . Note that 𝑇 (𝐷C) = 𝐴C , and thus 𝑇−1(𝐴C) =
𝐷C . There is, however, another useful map from 𝐴C onto 𝐷C .

We define the transfer value 𝑡C : 𝐴C → N by the condition

𝑡C (𝑥) = min{𝑛 ≥ 0 : 𝑇𝑛𝑥 ∈ 𝐷C}

and the transfer function 𝜏C : 𝐴C → 𝐷C is defined to be 𝜏C (𝑥) = 𝑇 𝑡C (𝑥 )𝑥. Note that
𝜏C is measure-preserving. The transfer value introduces a partition of the arrival set
𝐴C =

⊔
𝑛∈N 𝐴

𝑛
C , where 𝐴𝑛C = 𝑡−1

C (𝑛). By applying the transfer function, we also obtain
a partition for the departure set: 𝐷C =

⊔
𝑛∈N 𝐷

𝑛
C , where 𝐷𝑛C = 𝜏C (𝐴𝑛C).

In plain words, 𝑡C (𝑥) + 1 is the number of points in [𝑥]R𝑇 ∩ [𝑥]RC . Therefore if
𝜆C𝑐 (𝐴𝑛C) ≥ 𝜆

C
𝑐 (𝐴𝑚C ) for some 𝑛 ≥ 𝑚 then also 𝜆C𝑐 ( [𝐴𝑛C]R𝑇 ) ≥ 𝜆

C
𝑐 ( [𝐴𝑚C ]R𝑇 ) since

𝜆C𝑐 ( [𝐴𝑛C]R𝑇 ) = (𝑛 + 1)𝜆C𝑐 (𝐴𝑛C) ≥ (𝑚 + 1)𝜆C𝑐 (𝐴𝑚C ) = 𝜆
C
𝑐 ( [𝐴𝑚C ]R𝑇 ).

In Sections 9.3 and 9.4, we modify the transformation 𝑇 on the arrival and departure
sets, and we want to do this in a way that affects as many orbits as possible, as measured
by 𝜆C𝑐 . This amounts to using sets 𝐴𝑛C (and 𝐷𝑛C) with as high values of 𝑛 as possible.
The next lemma will be helpful in conducting such a selection in a measurable way
across all of 𝑐 ∈ C.

Lemma 9.9. Let 𝐴 ⊆ 𝑋 be a measurable set with a measurable partition 𝐴 =
⊔
𝑛 𝐴𝑛 and

let 𝜉 : C → R≥0 be a measurable function such that 𝜉 (𝑐) ≤ 𝜆C𝑐 (𝐴) for all 𝑐 ∈ C. There
are measurable 𝜈 : C → N and 𝑟 : C → R≥0 such that for any 𝑐 ∈ C for which 𝜉 (𝑐) > 0,
one has

𝜆C𝑐
( ( ⊔
𝑛>𝜈 (𝑐)

𝐴𝑛
)
∪
(
𝐴𝜈 (𝑐) ∩ (𝑐 + [0, 𝑟 (𝑐)])

) )
= 𝜉 (𝑐). (9.1)

Proof. For 𝑐 ∈ C such that 𝜉 (𝑐) > 0, set

𝜈(𝑐) = min
{
𝑛 ∈ N : 𝜆C𝑐

(⊔
𝑘>𝑛

𝐴𝑘
)
< 𝜉 (𝑐)

}
.

Note that one necessarily has 𝜆C𝑐 (𝐴𝜈 (𝑐) ) ≥ 𝜉 (𝑐) − 𝜆C𝑐
(⊔

𝑛>𝜈 (𝑐) 𝐴𝑛
)
> 0. Set

𝑟 (𝑐) = min
{
𝑎 ≥ 0 : 𝜆C𝑐

(
𝐴𝜈 (𝑐) ∩ (𝑐 + [0, 𝑎])

)
= 𝜉 (𝑐) − 𝜆C𝑐

( ⊔
𝑛>𝜈 (𝑐)

𝐴𝑛
)}
.
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These functions 𝜈 and 𝑟 satisfy the conclusions of the lemma.

Remark 9.10. Note that Eq. (9.1) does not specify the functions 𝜈 and 𝑟 uniquely. For
instance, although 𝜆C𝑐 (𝐴𝜈 (𝑐) ) > 0, there might be 𝛿 > 0 such that, for some 𝑐 ∈ C,

𝜆C𝑐
(
𝐴𝜈 (𝑐) ∩ (𝑐 + [𝑟 (𝑐), 𝑟 (𝑐) + 𝛿])

)
= 0.

In this case, replacing 𝑟 (𝑐) with 𝑟 (𝑐) + 𝛿 does not change the validity of Eq. (9.1).

Definition 9.11. Consider the partition of the positive arrival set ®𝐴C =
⊔
𝑛
®𝐴𝑛C and let

𝜉 : C → R≥0, 𝑟 : C → R≥0, and 𝜈 : C → N be as in Lemma 9.9. The set ®𝐴𝜉C defined
by the condition

®𝐴𝜉C (𝑐) =
⊔

𝑛> ®𝜈 (𝑐)

®𝐴𝑛C (𝑐) ∪
(
𝐴
®𝜈 (𝑐)
C ∩ (𝑐 + [0, ®𝑟 (𝑐)])

)
for all 𝑐 ∈ C

is said to be the positive 𝜉-copious arrival set. The positive 𝜉-copious departure
set is given by ®𝐷 𝜉

C = 𝜏C ( ®𝐴𝜉C). The definitions of the negative 𝜉-copious arrival and
departure sets use the partition ®𝐴C =

⊔
𝑛
®𝐴
𝑛

C of the negative arrival set and are
analogous.

Copious sets maximize the measure 𝜆C𝑐 of their saturation under the action of 𝑇 .
In other words, among all subsets 𝐴′ ⊆ ®𝐴C for which 𝜆C𝑐 (𝐴′) = 𝜉 (𝑐), the measure
𝜆C𝑐 ( [𝐴′]R𝑇 ) is maximal when 𝐴′ (𝑐) = ®𝐴𝜉C (𝑐). In particular, if 𝜆C𝑐 ( ®𝐴

𝜉

C) is close to
𝜆C𝑐 ( ®𝐴C), then we expect 𝜆C𝑐 ( [ ®𝐴

𝜉

C]R𝑇 ) to be close to 𝜆C𝑐 ( [ ®𝐴C]R𝑇 ). The following
lemma quantifies this intuition.

Lemma 9.12. Let 𝜉 : C → R≥0 be such that 𝜉 (𝑐) ≤ 𝜆C𝑐 ( ®𝐴C) for all 𝑐 ∈ C, and let ®𝐴𝜉C
be the 𝜉-copious arrival set constructed in Lemma 9.9. If there exists 1/2 > 𝛿 > 0 such
that 𝜉 (𝑐) ≥ (1 − 𝛿)𝜆C𝑐 ( ®𝐴C) for all 𝑐 ∈ C, then

𝜆C𝑐 ( [ ®𝐴C (𝑐) \ ®𝐴
𝜉

C (𝑐)]R𝑇 ) ≤
𝛿

1 − 𝛿𝜆
C
𝑐 ( ®𝑋) for all 𝑐 ∈ C,

and therefore also 𝜇( [ ®𝐴C \ ®𝐴𝜉C]R𝑇 ) ≤
𝛿

1−𝛿 𝜇( ®𝑋).
An analogous statement is valid for the negative arrival set ®𝐴C .

Proof. Let 𝜈 be as in Lemma 9.9 and note that⊔
𝑘>𝜈 (𝑐)

®𝐴𝑘C (𝑐) ⊆ ®𝐴
𝜉

C (𝑐) ⊆
⊔

𝑘≥𝜈 (𝑐)

®𝐴𝑘C (𝑐)
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whenever 𝑐 ∈ C satisfies 𝜉 (𝑐) > 0. Recall that for 𝑥 ∈ ®𝐴𝑛C we have 𝑥RC𝑇 𝑘 for all
0 ≤ 𝑘 ≤ 𝑛 and the sets 𝑇 𝑘 ( ®𝐴𝑛C) are pairwise disjoint. In particular,

𝜆C𝑐 ( ®𝑋) ≥ 𝜆C𝑐
( [ ⊔
𝑘≥𝜈 (𝑐)

®𝐴𝑘C (𝑐)
]
R𝑇

)
≥ (𝜈(𝑐) + 1)𝜆C𝑐

( ⊔
𝑘≥𝜈 (𝑐)

®𝐴𝑘C (𝑐)
)

≥ (𝜈(𝑐) + 1)𝜆C𝑐 ( ®𝐴
𝜉

C) = (𝜈(𝑐) + 1)𝜉 (𝑐). (9.2)

Note also that 𝜉 (𝑐) ≥ (1 − 𝛿)𝜆C𝑐 ( ®𝐴C) implies

𝜆C𝑐 ( ®𝐴C \ ®𝐴
𝜉

C) ≤ 𝜉 (𝑐)𝛿/(1 − 𝛿). (9.3)

For any 𝑐 ∈ C, we have

𝜆C𝑐 ( [ ®𝐴C (𝑐) \ ®𝐴
𝜉

C (𝑐)]R𝑇 ) ≤ 𝜆
C
𝑐 ({𝑇 𝑘𝑥 : 𝑥 ∈ ®𝐴C (𝑐) \ ®𝐴𝜉C (𝑐), 0 ≤ 𝑘 ≤ ®𝜈(𝑐)})

≤ (®𝜈(𝑐) + 1)𝜆C𝑐 ( ®𝐴C \ ®𝐴
𝜉

C)
∵ (9.3) ≤ (®𝜈(𝑐) + 1) ®𝜉 (𝑐)𝛿/(1 − 𝛿)
∵ (9.2) ≤ 𝜆C𝑐 ( ®𝑋)𝛿/(1 − 𝛿).

The inequality for the measure 𝜇 follows by disintegrating 𝜇 into
∫
C 𝜆
C
𝑐 ( · ) 𝑑𝜈(𝑐), as

discussed at the outset of this section.
The argument for the negative arrival set is completely analogous.

9.3 Coherent modifications

We remind the reader that our goal is to show that any dissipatively supported transforma-
tion𝑇 ∈ [R↷ 𝑋 ]1 of indexI(𝑇) = 0 can be approximated by periodic transformations.
One approach to “loop” the orbits of 𝑇 is by mapping ®𝐷C (𝑐) to ®𝐴C (𝑐) and ®𝐷C (𝑐)
to ®𝐴C (𝑐) (cf. Figure 9.6). For such a modification to work, the measures 𝜆C𝑐 ( ®𝐷C (𝑐))
and 𝜆C𝑐 ( ®𝐴C (𝑐)) have to be equal. Recall that I(𝑇) = 0 implies that for almost every
𝑐 ∈ C, the measure of points 𝑥 such that 𝑥 ≤ 𝑐 < 𝑇𝑥 equals the measure of those 𝑦
for which 𝑇𝑦 < 𝑐 ≤ 𝑦. If one could guarantee that 𝑇 ( ®𝐷C (𝑐)) = ®𝐴C (𝜎C (𝑐)), then the
aforementioned modification would indeed work. In the case of Z-actions, the discrete-
ness of the acting group allows one to find a cross-section C for which this condition
does hold. For flows, however, we must deal with the possibility that 𝑇 ( ®𝐷C (𝑐)) can be
“scattered” (see Figure 9.4) along the orbit and be unbounded, which is the key reason
for the increased complexity compared to the argument for Z-actions.

Since we cannot hope to “loop” all the orbits of 𝑇 , we will do the next best thing,
and apply the modification of Figure 9.6 on “most” orbits as measured by 𝜆C𝑐 . Copious
sets discussed in Section 9.2 have large saturations under 𝑇 , but, generally speaking,
fail to satisfy 𝑇 ( ®𝐷 𝜉

C (𝑐)) = ®𝐴
𝜉

C (𝜎C (𝑐)) for the same reason as do the sets ®𝐷C (𝑐). Our



Coherent modifications 87

strategy is to leverage the “𝜖 of room” provided by the difference ®𝐷C (𝑐) \ ®𝐷 𝜉

C (𝑐) to
transform 𝑇 into 𝑇 ′ that will retain the same arrival and departure sets as 𝑇 , while
additionally satisfying the condition 𝑇 ′ ( ®𝐷 𝜉

C (𝑐)) = ®𝐴
𝜉

C (𝜎C (𝑐)). In this section, we
describe two abstract modifications of dissipatively supported transformations, and the
approximation strategy outlined above will later be implemented in Section 9.4.

Since we are about to consider arrival and departure sets of different transforma-
tions, we use the notation ®𝐴C [𝑈] to denote the positive arrival set constructed for a
transformation𝑈; likewise for negative arrival and departure sets, etc.

Lemma 9.13. Let 𝜙 and 𝜙′ be measure-preserving transformations on 𝑋 subject to
the following conditions:

(1) supp(𝜙) ⊆ 𝐷C , supp(𝜙′) ⊆ 𝐴C;
(2) 𝜙( ®𝐷C) = ®𝐷C , 𝜙( ®𝐷C) = ®𝐷C , and 𝜙′ ( ®𝐴C) = ®𝐴C , 𝜙′ ( ®𝐴C) = ®𝐴C;
(3) 𝑥 RC 𝜙(𝑥) and 𝑥 RC 𝜙′ (𝑥) for all 𝑥 ∈ supp𝑇 .

The transformation 𝑈𝑥 = 𝜙′𝑇𝜙(𝑥) is monotone, 𝑈𝑥 = 𝑇𝑥 for all 𝑥 ∉ 𝐷C , and the
sets 𝐷C , 𝐴C remain the same:

®𝑋 [𝑈] = ®𝑋 ®𝑋 [𝑈] = ®𝑋,
®𝐷C [𝑈] = ®𝐷C ®𝐷C [𝑈] = ®𝐷C ,
®𝐴C [𝑈] = ®𝐴C ®𝐴C [𝑈] = ®𝐴C .

Moreover, the integral of lengths of “departing arcs” remains unchanged:∫
𝐷C

|𝜌𝑈 | 𝑑𝜇 =

∫
𝐷C

|𝜌𝑇 | 𝑑𝜇,

and the following estimate on
∫
𝑋
𝐷 (𝑇𝑥,𝑈𝑥) 𝑑𝜇(𝑥) is available:∫

𝑋

𝐷 (𝑇𝑥,𝑈𝑥) 𝑑𝜇(𝑥) ≤ 2
∫
𝐷C

|𝜌𝑇 (𝑥) | 𝑑𝜇(𝑥).

Proof. Figure 9.2 illustrates the definition of the transformation𝑈. The equality of the
arrival and departure sets is straightforward to verify. Note that 𝜙( ®𝐷C (𝑐)) = ®𝐷C (𝑐)
for all 𝑐 ∈ C, and therefore

∫
®𝐷C 𝜌𝜙 𝑑𝜇 = 0. In fact, the following four integrals vanish:∫

®𝐷C
𝜌𝜙 𝑑𝜇 =

∫
®𝐷C
𝜌𝜙 𝑑𝜇 =

∫
®𝐴C
𝜌𝜙′ 𝑑𝜇 =

∫
®𝐴C
𝜌𝜙′ 𝑑𝜇 = 0. (9.4)

Observe that 𝜌𝑈 is positive on ®𝐷C and negative on ®𝐷C; thus∫
𝐷C

|𝜌𝑈 | 𝑑𝜇 =

∫
®𝐷C
𝜌𝜙′𝑇𝜙 𝑑𝜇 −

∫
®𝐷C
𝜌𝜙′𝑇𝜙 𝑑𝜇
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®𝑋

®𝑋

𝜎C (𝑐)

𝜙 𝜙′

𝜙′ 𝜙

®𝐷C (𝑐)

®𝐴C (𝑐)

®𝐴C (𝜎C (𝑐))

®𝐷C (𝜎C (𝑐))

Figure 9.2. The transformation𝑈 = 𝜙′𝑇𝜙 defined in Lemma 9.13.

∵ cocycle identity =

∫
®𝐷C
𝜌𝜙 𝑑𝜇 +

∫
®𝐷C
𝜌𝑇 (𝜙(𝑥)) 𝑑𝜇(𝑥) +

∫
®𝐷C
𝜌𝜙′ (𝑇𝜙(𝑥)) 𝑑𝜇(𝑥)

−
∫
®𝐷C
𝜌𝜙 𝑑𝜇 −

∫
®𝐷C
𝜌𝑇 (𝜙(𝑥)) 𝑑𝜇(𝑥) −

∫
®𝐷C
𝜌𝜙′ (𝑇𝜙(𝑥)) 𝑑𝜇(𝑥)

=

∫
®𝐷C
𝜌𝜙 𝑑𝜇 +

∫
®𝐷C
𝜌𝑇 𝑑𝜇 +

∫
®𝐴C
𝜌𝜙′ 𝑑𝜇

−
∫
®𝐷C
𝜌𝜙 𝑑𝜇 −

∫
®𝐷C
𝜌𝑇 𝑑𝜇 −

∫
®𝐴C
𝜌𝜙′ 𝑑𝜇

∵ Eq. (9.4) =
∫
®𝐷C
𝜌𝑇 𝑑𝜇 −

∫
®𝐷C
𝜌𝑇 𝑑𝜇 =

∫
𝐷C

|𝜌𝑇 | 𝑑𝜇.

Finally, note that for any 𝑥 ∈ 𝐷C , the arc from 𝑥 to𝑇𝑥 intersects the arc from𝑇−1𝜙′𝑇𝜙(𝑥)
to 𝜙′𝑇𝜙(𝑥) (both arcs go over the same point of C), and therefore

𝐷 (𝑇𝑥,𝑈𝑥) ≤ |𝜌𝑇 (𝑥) | + |𝜌𝑇 (𝑇−1𝜙′𝑇𝜙(𝑥)) |.

Integration over 𝐷C yields∫
𝑋

𝐷 (𝑇𝑥,𝑈𝑥) 𝑑𝜇(𝑥) =
∫
𝐷C

𝐷 (𝑇𝑥,𝑈𝑥) 𝑑𝜇(𝑥) ≤ 2
∫
𝐷C

|𝜌𝑇 (𝑥) | 𝑑𝜇(𝑥).

Lemma 9.14. Let 𝑇 ∈ [R ↷ 𝑋 ]1 be a monotone transformation. Let 𝐹 ⊆ 𝐷C be such
that 𝜆C𝑐 ( ®𝐹) = 𝜆C𝑐 ( ®𝐹) for all 𝑐 ∈ C, and the function C ∋ 𝑐 ↦→ 𝜆C𝑐 (𝐹) is𝜎C-invariant (i.e.,
𝜆C𝑐 (𝐹) = 𝜆C𝑐′ (𝐹) whenever 𝑐 and 𝑐′ belong to the same orbit of the flow). Let 𝑍 ⊆ 𝐴C be
the arrival subset that corresponds to 𝐹, i.e., 𝑍 = 𝑇 (𝐹). Let 𝜓 : ®𝐹→ ®𝑍 and 𝜓′ : ®𝐹→ ®𝑍
be any measure-preserving transformations such that 𝜓(𝑥)RC𝑥 and 𝜓′ (𝑥)RC𝑥 for



Periodic approximations 89

all 𝑥 in the corresponding domains. Define 𝑉 : 𝑋 → 𝑋 by the following formula:

𝑉𝑥 =


𝜓(𝑥) if 𝑥 ∈ ®𝐹,
𝜓′ (𝑥) if 𝑥 ∈ ®𝐹,
𝑇𝑥 otherwise.

The transformation 𝑉 is a measure-preserving automorphism from the full group
[R ↷ 𝑋 ], and 𝑉𝑥 = 𝑇𝑥 for all 𝑥 ∉ 𝐹. The integral of distances 𝐷 (𝑇𝑥, 𝑉𝑥) can be
estimated as follows:∫

𝑋

𝐷 (𝑇𝑥,𝑉𝑥) 𝑑𝜇(𝑥) ≤ 2
∫
𝐷C

|𝜌𝑇 (𝑥) | 𝑑𝜇(𝑥).

The following figure illustrates the notions of Lemma 9.14.

®𝑋

®𝑋
𝑐

𝑇

𝑇

𝜓 𝜓′

®𝐹

®𝑍

®𝑍

®𝐹

Figure 9.3. The transformation 𝑉 defined in Lemma 9.14.

Proof. It is straightforward to verify that 𝑉 is a measure-preserving transformation.
For the integral inequality, note that for any 𝑥 ∈ ®𝐹 one has

𝐷 (𝑇𝑥,𝑉𝑥) ≤ |𝜌𝑇 (𝑥) | + |𝜌𝑇 (𝑇−1𝑥) |,

and therefore∫
®𝐹
𝐷 (𝑇𝑥,𝑉𝑥) 𝑑𝜇(𝑥) ≤

∫
®𝐹
|𝜌𝑇 | 𝑑𝜇 +

∫
®𝐹
|𝜌𝑇 | 𝑑𝜇 =

∫
𝐹

|𝜌𝑇 | 𝑑𝜇 ≤
∫
𝐷C

|𝜌𝑇 | 𝑑𝜇.

A similar inequality holds for
∫
®𝐹 𝐷 (𝑇𝑥,𝑉𝑥) 𝑑𝜇, and the lemma follows.

9.4 Periodic approximations

We now have all the ingredients necessary to prove that monotone transformations
can be approximated by periodic automorphisms. Our arguments follow the approach
outlined at the beginning of Section 9.3.
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In the following lemma, we assume that the Lebesgue measure of those 𝑥 ∈ ®𝑋 that
jump over any given 𝑐 ∈ C is bounded from above by some 𝛽, and that most of such
jumps — of measure at least 𝛾 — are between adjacent RC-classes. We are going to
construct a periodic approximation 𝑃 of the transformation 𝑇 with an explicit bound on∫
𝑋
𝐷 (𝑇𝑥, 𝑃𝑥) 𝑑𝜇(𝑥), which can be made small for a sufficiently sparse cross-section C.

When the flow is ergodic, this lemma alone suffices to conclude that𝑇 ∈𝔇( [R↷ 𝑋 ]1).
Theorem 9.16 builds upon Lemma 9.15 and treats the general case.

Lemma 9.15. Let 𝑇 ∈ [R ↷ 𝑋 ]1 be a monotone transformation, let 𝐾 > 0 be a
positive real, and let 𝐽 = {𝑥 ∈ supp𝑇 : |𝜌𝑇 (𝑥) | ≥ 𝐾}. Let C be a cross-section such
that gapC (𝑐) > 𝐾 for all 𝑐 ∈ C. Let 0 < 𝛾 < 𝛽 be reals such that for all 𝑐 ∈ C:

𝜆C𝑐 ({𝑥 ∈ ®𝑋 : 𝑥 < 𝜎C (𝑐) ≤ 𝑇𝑥, 𝑇𝑥 RC 𝜎C (𝑐)}) > 𝛾,
𝜆C𝑐 ({𝑥 ∈ ®𝑋 : 𝑇𝑥 < 𝑐 ≤ 𝑥, 𝑇𝑥 RC 𝜎−1

C (𝑐)}) > 𝛾,
𝜆C𝑐 ({𝑥 ∈ ®𝑋 : 𝑥 < 𝜎C (𝑐) ≤ 𝑇𝑥}) < 𝛽,
𝜆C𝑐 ({𝑥 ∈ ®𝑋 : 𝑇𝑥 < 𝑐 ≤ 𝑥}) < 𝛽.

There exists a periodic transformation 𝑃 ∈ [R ↷ 𝑋 ]1 such that supp 𝑃 ⊆ supp𝑇 and∫
𝑋

𝐷 (𝑇𝑥, 𝑃𝑥) 𝑑𝜇(𝑥) ≤ 5
∫
𝐷C

|𝜌𝑇 | 𝑑𝜇 +
∫
𝐽

|𝜌𝑇 | 𝑑𝜇 +
𝐾 (𝛽 − 𝛾)

𝛾
𝜇(supp𝑇).

Proof. Let 𝐷C and 𝐴C be the departure and arrival sets of 𝑇 . Figure 9.4 depicts the
arrival set ®𝐴C (𝑐) and the departure set ®𝐷C (𝑐) for an element 𝑐 of the cross-section
C. Note that the preimages 𝑇−1( ®𝐴C (𝑐)) may come from different (possibly infinitely
many) RC-equivalence classes; likewise, the images 𝑇 ( ®𝐷C (𝑐)) of the departure set
may visit several RC-equivalence classes.

®𝑋
𝜏C. . . . . . . . .

®𝐴C (𝑐) ®𝐷C (𝑐)

𝑐 𝜎C (𝑐)

Figure 9.4. The arrival set ®𝐴C (𝑐) and the departure set ®𝐷C (𝑐) for some 𝑐 ∈ C.

Set 𝜉 (𝑐) = 𝛾 to be the constant function. In view of the assumptions on 𝛾, we may
apply Lemma 9.9 to get positive and negative 𝜉-copious arrival sets ®𝐴𝜉C ⊆ 𝐴C and ®𝐴

𝜉

C ⊆
𝐴C , as well as the corresponding departure sets ®𝐷 𝜉

C = 𝜏C ( ®𝐴𝜉C) and ®𝐷 𝜉

C = 𝜏C ( ®𝐴
𝜉

C). For
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the sets 𝐴𝜉C = ®𝐴
𝜉

C ⊔ ®𝐴
𝜉

C and 𝐷 𝜉

C =
®𝐷 𝜉

C ⊔ ®𝐷
𝜉

C , we have 𝜆C𝑐 (𝐴
𝜉

C (𝑐)) = 2𝛾 = 𝜆C𝑐 (𝐷
𝜉

C (𝑐))
for all 𝑐 ∈ C. Let

𝐴◦C =
{
𝑥 ∈ ®𝐴C : 𝑇−1𝑥 RC 𝜎−1

C (𝜋C (𝑥))
}
∪
{
𝑥 ∈ ®𝐴C : 𝑇−1𝑥 RC 𝜎C (𝜋C (𝑥))

}
,

𝐷◦C =
{
𝑥 ∈ ®𝐷C : 𝑇𝑥 RC 𝜎C (𝜋C (𝑥))

}
∪
{
𝑥 ∈ ®𝐷C : 𝑇𝑥 RC 𝜎−1

C (𝜋C (𝑥))
}
,

be the set of arcs that jump from/to the next RC-equivalence class. By the assumptions
of the lemma, we have 𝜆C𝑐 ( ®𝐷◦C (𝑐)) ≥ 𝛾 and 𝜆C𝑐 ( ®𝐴◦C (𝑐)) ≥ 𝛾 for all 𝑐 ∈ C. Let 𝜙 be
any measure-preserving transformation such that:
• 𝜙 is supported on 𝐷C;
• 𝜙( ®𝐷C) = ®𝐷C and 𝜙( ®𝐷C) = ®𝐷C;
• 𝜙(𝑥) RC 𝑥 for all 𝑥 ∈ 𝑋;
and moreover

𝜙(𝐷 𝜉

C) ⊆ 𝐷
◦
C . (9.5)

Select a transformation 𝜙′ such that
• 𝜙′ is supported on 𝐴C;
• 𝜙′ ( ®𝐴C) = ®𝐴C and 𝜙′ ( ®𝐴C) = ®𝐴C;
• 𝜙′ (𝑥) RC 𝑥 for all 𝑥 ∈ 𝑋;
and moreover

𝜙′ (𝑇 ◦ 𝜙(𝐷 𝜉

C)) = 𝐴
𝜉

C . (9.6)

Figure 9.5 illustrates these maps. Note that while in general 𝜏C
( ®𝐴◦(𝑐)) ≠ ®𝐷◦(𝑐), one

has 𝜏C
( ®𝐴𝜉 (𝑐)) = ®𝐷 𝜉 (𝑐) for all 𝑐 ∈ C by the definition of the 𝜉-copious departure set.

®𝑋
𝑐

®𝐴◦C (𝑐) ®𝐷◦C (𝑐)

®𝐴𝜉C (𝑐) ®𝐷 𝜉

C (𝑐)
𝜏C

𝜙′𝜙′ 𝜙

Figure 9.5. Automorphism 𝜙 maps 𝐷 𝜉

C (𝑐) into 𝐷◦C (𝑐) and (𝜙′)−1 sends 𝐴𝜉C (𝑐) into 𝐴◦C (𝑐).

Let 𝑈 be the transformation obtained by applying Lemma 9.13 to 𝑇 , 𝜙, and 𝜙′.
The automorphism𝑈 satisfies𝑈 ( ®𝐷 𝜉

C (𝑐)) = ®𝐴
𝜉

C (𝜎C (𝑐)) and𝑈 ( ®𝐷 𝜉

C (𝑐)) = ®𝐴
𝜉

C (𝜎−1
C (𝑐))

for all 𝑐 ∈ C. Choose a measure-preserving transformation 𝜓 : ®𝐷 𝜉

C → ®𝐴
𝜉

C such that
𝑥 RC 𝜓(𝑥) for all 𝑥 in the domain of 𝜓. Set 𝜓′ = 𝜏−1

C ◦ 𝜓
−1 ◦ 𝜏−1

C : ®𝐷 𝜉

C → ®𝐴
𝜉

C . Let𝑉 be
the transformation produced by Lemma 9.14 applied to𝑈, 𝜓, and 𝜓′ (see Figure 9.6).
Finally, set 𝑃 : 𝑋 → 𝑋 to be
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®𝑋

®𝑋
𝑐

®𝐴𝜉C (𝑐) ®𝐷 𝜉

C (𝑐)𝜏C

®𝐷 𝜉

C (𝑐) ®𝐴
𝜉

C (𝑐)
𝜏C

𝜓𝜓′ = 𝜏−1
C ◦ 𝜓

−1 ◦ 𝜏−1
C

Figure 9.6. Construction of the automorphism 𝑉 from𝑈, 𝜓, and 𝜓′.

𝑃𝑥 =

{
𝑉𝑥 if 𝑥 ∈ [𝐷 𝜉

C]R𝑉 ,
𝑥 otherwise.

We claim that 𝑃 satisfies the conclusions of the lemma. It is periodic, since the trans-
formation 𝜓′ ◦ 𝜏C ◦ 𝜓 ◦ 𝜏C is the identity map, and supp 𝑃 ⊆ supp𝑇 by construction.
It remains to estimate

∫
𝑋
𝐷 (𝑇𝑥, 𝑃𝑥) 𝑑𝜇(𝑥).∫

𝑋

𝐷 (𝑇𝑥, 𝑃𝑥) 𝑑𝜇(𝑥) ≤
∫
𝑋

𝐷 (𝑇𝑥,𝑈𝑥) 𝑑𝜇(𝑥) +
∫
𝑋

𝐷 (𝑈𝑥,𝑉𝑥) 𝑑𝜇(𝑥)

+
∫
𝑋

𝐷 (𝑉𝑥, 𝑃𝑥) 𝑑𝜇(𝑥)

≤ [Estimates of Lemma 9.13 and Lemma 9.14]

≤ 4
∫
𝐷C

|𝜌𝑇 | 𝑑𝜇 +
∫
𝑋

𝐷 (𝑉𝑥, 𝑃𝑥) 𝑑𝜇(𝑥).

We concentrate on estimating
∫
𝑋
𝐷 (𝑉𝑥, 𝑃𝑥) 𝑑𝜇(𝑥). Recall that 𝑇𝑥 = 𝑈𝑥 = 𝑉𝑥 for all

𝑥 ∉ 𝐷C; hence, 𝜌𝑇 (𝑥) = 𝜌𝑉 (𝑥) for 𝑥 ∉ 𝐷C . Set Ψ = ( ®𝑋 ∪ ®𝑋) \ [𝐷 𝜉

C]R𝑉 and note that
𝑉𝑥 = 𝑈𝑥 for 𝑥 ∈ Ψ. Therefore, using the conclusion of Lemma 9.13, we have∫

𝐷C∩Ψ
|𝜌𝑉 | 𝑑𝜇 =

∫
𝐷C∩Ψ

|𝜌𝑈 | 𝑑𝜇 ≤
∫
𝐷C

|𝜌𝑈 | 𝑑𝜇 =

∫
𝐷C

|𝜌𝑇 | 𝑑𝜇. (9.7)

The integral
∫
𝑋
𝐷 (𝑉𝑥, 𝑃𝑥) 𝑑𝜇(𝑥) can now be estimated as follows.∫

𝑋

𝐷 (𝑉𝑥, 𝑃𝑥) 𝑑𝜇(𝑥) =
∫
Ψ

|𝜌𝑉 | 𝑑𝜇

≤
∫
Ψ\𝐷C

|𝜌𝑉 | 𝑑𝜇 +
∫
𝐷C∩Ψ

|𝜌𝑉 | 𝑑𝜇

∵ 𝑇𝑥 = 𝑉𝑥 for 𝑥 ∉ 𝐷C and Eq. (9.7) ≤
∫
Ψ\𝐷C

|𝜌𝑇 | 𝑑𝜇 +
∫
𝐷C

|𝜌𝑇 | 𝑑𝜇.
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Finally, we consider the integral
∫
Ψ\𝐷C |𝜌𝑇 | 𝑑𝜇 and partition its domain Ψ \ 𝐷C as

(𝐽 ∩ (Ψ \ 𝐷C)) ⊔ ((Ψ \ 𝐷C) \ 𝐽), which yields∫
Ψ\𝐷C

|𝜌𝑇 | 𝑑𝜇 ≤
∫
𝐽

|𝜌𝑇 | 𝑑𝜇 + 𝐾𝜇(Ψ)

≤
∫
𝐽

|𝜌𝑇 | 𝑑𝜇 +
𝐾 (𝛽 − 𝛾)

𝛾
𝜇(supp𝑇),

where the last inequality follows from Lemma 9.12 with 𝛿 = 1 − 𝛾/𝛽. Combining all
the inequalities together, we get∫

𝑋

𝐷 (𝑇𝑥, 𝑃𝑥) 𝑑𝜇(𝑥) ≤ 5
∫
𝐷C

|𝜌𝑇 | 𝑑𝜇 +
∫
𝐽

|𝜌𝑇 | 𝑑𝜇 +
𝐾 (𝛽 − 𝛾)

𝛾
𝜇(supp𝑇).

Lemma 9.15 allows us to approximate, with a periodic transformation, a monotone
𝑇 for which the Lebesgue measure of points jumping over any given 𝑐 ∈ 𝑋 is roughly
constant across orbits. To deal with the general case, we simply need to split the phase
space 𝑋 into countably many segments that are invariant under the flow and apply
Lemma 9.15 on each of them separately. Small care needs to be taken to ensure that the
values (𝛽 − 𝛾)/𝛾, which appear in the formulation of Lemma 9.15, remain uniformly
small across the partition of 𝑋 . Details are presented in the following theorem. Let us
recall that 𝜆𝑐 denotes the Lebesgue measure on the entire orbit of 𝑐, as discussed in
Section 4.2 (the measure 𝜆C𝑐 , which we have used throughout this chapter, corresponds
to the Lebesgue measure restricted to the interval 𝑐 + [0, gapC (𝑐)) ).

Theorem 9.16. Let 𝑇 ∈ [R ↷ 𝑋 ]1 be a monotone transformation that belongs to
the kernel of the index map. For any 𝜖 > 0, there exists a periodic transformation
𝑃 ∈ [R ↷ 𝑋 ]1 such that supp 𝑃 ⊆ supp𝑇 and

∫
𝑋
𝐷 (𝑇𝑥, 𝑃𝑥) 𝑑𝜇(𝑥) < 𝜖 .

Proof. Without loss of generality, we assume 𝜖 ≤ 1. Let 𝐾𝜖 ≥ 1 be such that for the set

𝐽𝜖 = {𝑥 ∈ supp𝑇 : |𝜌𝑇 (𝑥) | ≥ 𝐾𝜖 }

one has
∫
𝐽𝜖
|𝜌𝑇 | 𝑑𝜇 < 𝜖/18. Pick a cross-section C with gaps so large that

2𝐾2
𝜖 /gapC (𝑐) < 𝜖/15

for all 𝑐 ∈ C, which ensures

𝐾𝜖 · 𝜇(𝐷C \ 𝐽𝜖 ) ≤ 𝜖/15. (9.8)

Note also that Eq. (9.8) holds for any cross-section C′ ⊆ C, since 𝐷C′ ⊆ 𝐷C and
gapC′ (𝑐) ≥ gapC (𝑐) for all 𝑐 ∈ C′.
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For any positive real 𝛼 > 0, the positive real 𝛿(𝛼) = 𝜖𝛼/(5 · 3𝐾𝜖 ) satisfies 𝛿(𝛼) < 𝛼
and 2𝛿(𝛼)/(𝛼 − 𝛿(𝛼)) < 𝜖/3𝐾𝜖 . We may therefore pick countably many positive reals
𝛼𝑛 > 0, 𝛿𝑛 > 0, 𝑛 ≥ 1, such that R>0 =

⋃
𝑛 (𝛼𝑛 − 𝛿𝑛/2, 𝛼𝑛 + 𝛿𝑛/2) and( 2𝛿𝑛

𝛼𝑛 − 𝛿𝑛

)
<

𝜖

3𝐾𝜖
∀𝑛 ≥ 1. (9.9)

Define intervals 𝐼𝑛 = (𝛼𝑛 − 𝛿𝑛/2, 𝛼𝑛 + 𝛿𝑛/2), 𝑛 ≥ 1.
Let 𝜁 : C → R≥0 be the map that measures the set of forward arcs over its argument:

𝜁 (𝑐) = 𝜆𝑐
(
{𝑥 ∈ ®𝑋 : 𝑥 < 𝑐 ≤ 𝑇𝑥}

)
.

Our assumption that𝑇 lies in the kernel of the index map implies that 𝜁 also measures the
set of backward arcs over its argument. Specifically, by Eq. (6.3) from Proposition 6.6,
after discarding an invariant null set, we have for every 𝑐 ∈ C,

𝜆𝑐 ({𝑥 ∈ supp𝑇 : 𝑥 < 𝑐 ≤ 𝑇𝑥}) = 𝜆𝑐 ({𝑥 ∈ supp𝑇 : 𝑇𝑥 < 𝑐 ≤ 𝑥}).

Set C1 = 𝜁−1(𝐼1) and construct inductively C𝑛 = 𝜁−1(𝐼𝑛) \
[⋃

𝑘<𝑛 C𝑘
]
R , where R

denotes the orbit equivalence relation induced by the flow R ↷ 𝑋 . The sets C𝑛 are
pairwise disjoint, and moreover, (𝑐1, 𝑐2) ∉ R for all 𝑐1 ∈ C𝑛1 , 𝑐2 ∈ C𝑛2 , 𝑛1 ≠ 𝑛2. Let
𝜒𝑛 : C𝑛 → N, 𝑛 ≥ 1, be the function defined by

𝜒𝑛 (𝑐) = min
{
𝑚 ∈ N :

𝜆𝑐
({
𝑥 ∈ ®𝑋 : 𝑥 < 𝑐 ≤ 𝑇𝑥, 𝐷 (𝑥, 𝑐) ≤ 𝑚, 𝐷 (𝑇𝑥, 𝑐) ≤ 𝑚

})
> 𝜁 (𝑐) − 𝛿𝑛/2

and 𝜆𝑐
({
𝑥 ∈ ®𝑋 : 𝑇𝑥 < 𝑐 ≤ 𝑥, 𝐷 (𝑥, 𝑐) ≤ 𝑚, 𝐷 (𝑇𝑥, 𝑐) ≤ 𝑚

})
> 𝜁 (𝑐) − 𝛿𝑛/2

}
.

Set C′
𝑛,1 = 𝜒−1

𝑛 (1) and define inductively C′𝑛,𝑚 = 𝜒−1(𝑚) \
[⋃

𝑘<𝑚 C′𝑛,𝑘
]
R . Let 𝑋𝑛,𝑚

denote the saturated set [C′𝑛,𝑚]R . Finally, for all 𝑚, 𝑛 ≥ 1, let C𝑛,𝑚 ⊆ C′𝑛,𝑚 be a sub-
section satisfying gapC𝑛,𝑚 (𝑐) > 𝑚 for all 𝑐 ∈ C𝑛,𝑚. The sets C𝑛,𝑚 and 𝑋𝑛,𝑚 satisfy the
following conditions:

(1) C𝑛,𝑚 is a cross-section for the restriction of the flow onto 𝑋𝑛,𝑚;
(2) the sets 𝑋𝑛,𝑚, 𝑚, 𝑛 ≥ 1, are pairwise disjoint.
(3) 𝜁 (𝑐) ∈ 𝐼𝑛 and, for all 𝑐 ∈ C𝑛,𝑚, we have

𝜆
C𝑛,𝑚
𝑐

(
{𝑥 ∈ ®𝑋 : 𝑥 < 𝜎C𝑛,𝑚 (𝑐) ≤ 𝑇𝑥}

)
> 𝛼𝑛 − 𝛿𝑛 and

𝜆
C𝑛,𝑚
𝑐

(
{𝑥 ∈ ®𝑋 : 𝑇𝑥 < 𝑐 ≤ 𝑥}

)
> 𝛼𝑛 − 𝛿𝑛.

Let𝑇𝑛,𝑚 denote the restriction of𝑇 onto 𝑋𝑛,𝑚. Apply Lemma 9.15 to the transforma-
tion𝑇𝑛,𝑚, cross-section C𝑛,𝑚 with gaps of size at least𝐾𝜖 , and 𝛽 = 𝛼𝑛 + 𝛿𝑛, 𝛾 = 𝛼𝑛 − 𝛿𝑛.
Let 𝑃𝑛,𝑚 be the resulting periodic transformation on 𝑋𝑛,𝑚. Set 𝑃 =

⊔
𝑛,𝑚 𝑃𝑛,𝑚. We
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claim that 𝑃 satisfies the conclusions of the theorem. Set C′ = ⊔
𝑛,𝑚 C𝑛,𝑚 and note that

C′ ⊆ C, whence 𝐷C′ ⊆ 𝐷C . We can now split the integral
∫
𝑋
𝐷 (𝑇𝑥, 𝑃𝑥) 𝑑𝜇(𝑥) as:∫

𝑋

𝐷 (𝑇𝑥, 𝑃𝑥) 𝑑𝜇(𝑥) =
∑︁
𝑛,𝑚

∫
𝑋𝑛,𝑚

𝐷 (𝑇𝑛,𝑚𝑥, 𝑃𝑛,𝑚𝑥) 𝑑𝜇(𝑥).

Applying Lemma 9.15, we obtain the following chain of inequalities:∫
𝑋

𝐷 (𝑇𝑥, 𝑃𝑥) 𝑑𝜇(𝑥) ≤ 5
∑︁
𝑛,𝑚

∫
𝐷C𝑛,𝑚

|𝜌𝑇 | 𝑑𝜇 +
∑︁
𝑛,𝑚

∫
𝐽𝜖 ∩𝑋𝑛,𝑚

|𝜌𝑇 | 𝑑𝜇

+
∑︁
𝑛,𝑚

𝐾𝜖

( 2𝛿𝑛
𝛼𝑛 − 𝛿𝑛

)
𝜇(𝑋𝑛,𝑚)

∵ Eq. (9.9) ≤ 5
∫
𝐷C

|𝜌𝑇 | 𝑑𝜇 +
∫
𝐽𝜖

|𝜌𝑇 | 𝑑𝜇 + (𝜖/3)𝜇(𝑋)

≤ 5
∫
𝐷C\𝐽𝜖

|𝜌𝑇 | 𝑑𝜇 + 6
∫
𝐽𝜖

|𝜌𝑇 | 𝑑𝜇 + 𝜖/3

∵ choice of 𝐾𝜖 < 5𝐾𝜖 𝜇(𝐷C \ 𝐽𝜖 ) + 𝜖/3 + 𝜖/3
∵ Eq. (9.8) ≤ 𝜖,

and the theorem follows.

Corollary 9.17. Let R ↷ 𝑋 be a measure-preserving flow and 𝑇 ∈ [R ↷ 𝑋 ]1 be a
dissipatively supported transformation. If I(𝑇) = 0, then 𝑇 ∈ 𝔇( [R ↷ 𝑋 ]1).

Proof. By Corollary 9.8, there is a monotone transformation𝑈 and a periodic transfor-
mation 𝑃 such that 𝑇 = 𝑈 ◦ 𝑃. Since 𝑃 ∈ 𝔇( [R ↷ 𝑋 ]1) by Corollary 3.16, it remains
to show that𝑈 belongs to the derived subgroup. The latter follows from Theorem 9.16,
since I(𝑈) = I(𝑇) − I(𝑃) = 0.





Chapter 10

Conclusions

Our objective in this last chapter is to draw several conclusions regarding the structure
of the L1 full groups of measure-preserving flows. The analysis conducted in Chapters 8
and 9 leads to the most technically challenging result of our work, which is the following
theorem.

Theorem 10.1. Let F : R ↷ 𝑋 be a free measure-preserving flow on a standard
probability space. The kernel of the index map coincides with the derived subgroup
𝔇( [F ]1).

Proof. The inclusion𝔇( [F ]1) ⊆ kerI is automatic since the image ofI is abelian. For
the other direction, pick a transformation𝑇 ∈ kerI and consider its Hopf decomposition
𝑋 = 𝐶 ⊔ 𝐷 provided by Proposition 4.16. We have 𝑇 = 𝑇𝐶 ◦ 𝑇𝐷 , where 𝑇𝐶 ∈ [F ]1 is
conservative and 𝑇𝐷 ∈ [F ]1 is dissipatively supported. According to Corollary 8.8,
I(𝑇𝐶) = 0 and 𝑇𝐶 ∈ 𝔇( [F ]1), whence I(𝑇𝐷) = I(𝑇) − I(𝑇𝐶) = 0. Therefore, the
dissipative part 𝑇𝐷 satisfies the assumptions of Corollary 9.17, which yields 𝑇𝐷 ∈
𝔇( [F ]1), and hence 𝑇 ∈ 𝔇( [F ]1) as desired.

10.1 Topological ranks of L1 full groups

Empowered with the result above and Theorem 5.19, we can estimate the topological
ranks of L1 full groups of flows. We recall the following well-known inequalities.

Proposition 10.2. Let 𝜙 : 𝐺 → 𝐻 be a surjective continuous homomorphism of Polish
groups. The topological rank rk(𝐺) satisfies

rk(𝐻) ≤ rk(𝐺) ≤ rk(𝐻) + rk(ker 𝜙).

Proposition 10.3. Let F : R ↷ 𝑋 be a free measure-preserving flow on a standard
probability space (𝑋, 𝜇). The topological rank rk( [F ]1) is finite if and only if the
flow has finitely many ergodic components. Moreover, if F has exactly 𝑛 ergodic
components, then

𝑛 + 1 ≤ rk( [F ]1) ≤ 𝑛 + 3.

Proof. Let E be the space of probability invariant ergodic measures of the flow, and
let 𝑝 be the probability measure on E such that 𝜇 =

∫
E 𝜈 𝑑𝑝(𝜈) (see Appendix E.1).

Proposition 6.6 shows that the index map I : [F ]1 → L1(E, 𝑝) is continuous and
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surjective. An application of Proposition 10.2 yields

rk(L1(E, 𝑝)) ≤ rk( [F ]1) ≤ rk(L1(E, 𝑝)) + rk(kerI) = rk(L1(E, 𝑝)) + 2, (10.1)

where the last equality is based on Theorem 10.1 and Theorem 5.19. Since L1(E, 𝑝)
is a Banach space, its topological rank is finite if and only if its dimension is finite,
which is equivalent to (E, 𝑝) being purely atomic with finitely many atoms. We have
shown that rk( [F ]1) is finite if and only if the flow has only finitely many ergodic
components. The moreover part of the proposition follows from the inequality (10.1)
and the observation that rk(L1(E, 𝑝)) = dim(L1(E, 𝑝)) + 1.

As already mentioned in the introduction, we conjecture that the topological rank
completely remembers the number of ergodic components.

Conjecture 10.4. Let F be a free measure-preserving flow. If it has exactly 𝑛 ergodic
components, then rk( [F ]1) = 𝑛 + 1.

Provided the conjecture holds, we have a priori no way of distinguishing L1 full
groups of ergodic flows as topological groups. For Z-actions, it is a consequence of
Belinskaja’s theorem that there are many L1 full groups. The following two sections
explore analogues of her result for flows, demonstrating the existence of numerous
L1 full groups associated with free ergodic flows. While we currently lack a concrete
method to distinguish these groups, their geometric properties—discussed in the final
section—may provide valuable insights in this direction.

10.2 Katznelson’s conjugation theorem

R. M. Belinskaja [8] showed that if measure-preserving transformations𝑇,𝑈 ∈Aut(𝑋, 𝜇)
generate the same orbit equivalence relation, i.e., R𝑇 = R𝑈 , and𝑈 ∈ [𝑇 ]1, then 𝑇 and
𝑈 are conjugated. Y. Katznelson found a different argument and isolated a sufficient
condition for the conjugacy of measure-preserving transformations (see [10, Theo-
rem A.1]). In the following, for 𝑇 ∈ Aut(𝑋, 𝜇), 𝑥 ∈ 𝑋 , and 𝐴 ⊆ Z, we let 𝑇 𝐴𝑥 denote
the set {𝑇 𝑘𝑥 : 𝑘 ∈ 𝐴}.

Theorem 10.5 (Katznelson). Suppose 𝑇,𝑈 ∈ Aut(𝑋, 𝜇) are measure-preserving trans-
formations that generate the same orbit equivalence relation,R𝑇 = R𝑈 . If the symmetric
difference 𝑇N𝑥 △ 𝑈N𝑥 is finite for almost all 𝑥, then 𝑇 and 𝑈 are conjugated by an
element from the full group [𝑇 ] = [𝑈 ].

The analog of this result for free measure-preserving flows will be proved shortly
in Theorem 10.9. But first, we discuss an important application of Theorem 10.5.
Consider a free measure-preserving flow F : R ↷ 𝑋 . Given a dissipatively supported
transformation 𝑇 ∈ [F ] (in the sense of Definition 9.1), Proposition C.4 implies that
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almost every non-trivial 𝑇-orbit [𝑥]R𝑇 is a discrete subset of [𝑥]R unbounded both
from below and from above. The order induced on [𝑥]R𝑇 by the flow may disagree
with the 𝑇-order of points. One may therefore define the F -reordering of 𝑇 to be the
first return transformation 𝑇 induced by the ordering of the flow on the orbits of 𝑇 :

𝑇𝑥 = 𝑥 +min{𝑟 > 0 : 𝑥 + 𝑟 ∈ [𝑥]R𝑇 } for 𝑥 ∈ supp𝑇.

Note that 𝑇 and 𝑇 generate the same orbit equivalence relation, R𝑇 = R𝑇̃ .
If 𝑇 belongs to the L1 full group of the flow, either 𝑇N𝑥 △ 𝑇N𝑥 or 𝑇N𝑥 △ 𝑇−N𝑥 is

finite, depending on whether lim𝑛 𝜌(𝑥, 𝑇𝑛𝑥) = +∞ or lim𝑛 𝜌(𝑥, 𝑇𝑛𝑥) = −∞ (cf. Corol-
lary 9.4). Which symmetric difference is finite may depend on the point 𝑥 ∈ 𝑋 , and
Theorem 10.5 can be used to show that 𝑇 and its reordering 𝑇 are flip-conjugate.

Definition 10.6. Let (𝑋1, 𝜇1) and (𝑋2, 𝜇2) be standard probability spaces, and let
𝑇𝑖 ∈ Aut(𝑋𝑖 , 𝜇𝑖), 𝑖 = 1, 2. Measure-preserving transformations 𝑇1 and 𝑇2 are flip-
conjugate if there exist an isomorphism of measure spaces 𝑆 : 𝑋1→ 𝑋2 and measurable
partitions 𝑋1 = 𝑋−1 ⊔ 𝑋

+
1 , 𝑋2 = 𝑋−2 ⊔ 𝑋

+
2 such that

(1) 𝑆(𝑋−1 ) = 𝑋
−
2 and 𝑆(𝑋+1 ) = 𝑋

+
2 ;

(2) 𝑋−1 , 𝑋
+
1 are 𝑇1-invariant, and 𝑋−2 , 𝑋

+
2 are 𝑇2-invariant;

(3) 𝑆𝑇1 ↾𝑋+1 𝑆
−1 = 𝑇2 ↾𝑋+2 and 𝑆𝑇1 ↾𝑋−1 𝑆

−1 = 𝑇−1
2 ↾𝑋−2 .

Note that when one of the 𝑇𝑖’s is ergodic, our definition of flip-conjugacy coincides
with the standard one, which requires 𝑋−

𝑖
or 𝑋+

𝑖
to have full measure.

Proposition 10.7. Any dissipatively supported 𝑇 ∈ [F ]1 and its F -reordering 𝑇 are
flip-conjugated by an element from the full group [𝑇 ] = [𝑇 ].

Proof. Consider the decomposition supp𝑇 = ®𝑋 ⊔ ®𝑋 into the positive and negative
orbits as in Definition 9.5. In particular, 𝑇N𝑥△𝑇N𝑥 and 𝑇N𝑥△𝑇−N𝑥 are finite for 𝑥 ∈ ®𝑋
and 𝑥 ∈ ®𝑋 , respectively. Theorem 10.5 implies that there exist automorphisms 𝑆1 ∈
[𝑇 ↾ ®𝑋 ] and 𝑆2 ∈ [𝑇 ↾ ®𝑋 ] such that 𝑆1𝑇 ↾ ®𝑋 𝑆

−1
1 = 𝑇 ↾ ®𝑋 and 𝑆2𝑇 ↾ ®𝑋 𝑆−1

2 = 𝑇−1 ↾ ®𝑋 .
The transformation 𝑆 given by

𝑆𝑥 =


𝑆1𝑥 if 𝑥 ∈ ®𝑋,
𝑆2𝑥 if 𝑥 ∈ ®𝑋,
𝑥 otherwise

belongs to the full group [𝑇 ] and witnesses the flip-conjugacy of 𝑇 and 𝑇 .

The transformation conjugating 𝑇 and 𝑈 in Theorem 10.5 can be written fairly
explicitly. This is done in terms of the function 𝛿 defined as follows. Suppose (Ω, 𝜆)
is a (possibly infinite) measure space, and let 𝐴, 𝐵 ⊆ Ω be measurable sets such that
𝜆(𝐴 △ 𝐵) < +∞. We set 𝛿(𝐴, 𝐵) = 𝜆(𝐴 \ 𝐵) − 𝜆(𝐵 \ 𝐴). This function satisfies a few
properties which the reader can easily verify.
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Proposition 10.8. Suppose (Ω, 𝜆) is a measure space. For all 𝐴, 𝐵, 𝐶, 𝑎 ⊆ Ω such
that 𝜆(𝐴 △ 𝐵), 𝜆(𝐵 △ 𝐶), 𝜆(𝐴 △ 𝐶), 𝜆(𝑎) < +∞, the following holds:

(1) 𝛿(𝐴,𝐶) = 𝛿(𝐴, 𝐵) + 𝛿(𝐵,𝐶);
(2) 𝛿(𝐴, 𝐴) = 0 and 𝛿(𝐴, 𝐵) = −𝛿(𝐵, 𝐴);
(3) 𝛿(𝐴 △ 𝑎, 𝐵) = 𝛿(𝐴, 𝐵) + (𝜆(𝑎) − 2𝜆(𝑎 ∩ 𝐴)).

Any orbit of a measure-preserving transformation can be endowed with a counting
measure. Given 𝑇 and𝑈 as in the statement of Theorem 10.5, set 𝜏(𝑥) = 𝛿(𝑈N𝑥, 𝑇N𝑥)
and define 𝑆𝑥 = 𝑈𝜏 (𝑥 )𝑥. One can verify that 𝑆 ∈ [𝑈 ] = [𝑇 ] and 𝑆𝑇𝑆−1 = 𝑈 (further
details can be found in [10, Theorem A.1]).

Let now F1 and F2 be measure-preserving flows on a standard probability space
(𝑋, 𝜇); we denote the actions of 𝑟 ∈ R upon 𝑥 ∈ 𝑋 by 𝑥 +1 𝑟 and 𝑥 +2 𝑟, respectively.
Suppose that their full groups coincide, [F1 ] = [F2 ], and so the flows share the same
orbits,RF1 =RF2 . For 𝑥 ∈ 𝑋 , let 𝑠𝑖 (𝑥) = 𝑥 +𝑖 [0,∞), 𝑖 = 1,2, denote the “right half-orbit”
of 𝑥. A natural analog of the condition |𝑇N𝑥 △𝑈N𝑥 | < ∞ from Theorem 10.5 would
be to require finiteness of the Lebesgue measure of 𝑠1(𝑥) △ 𝑠2(𝑥) for all 𝑥 ∈ 𝑋 . This
condition alone, however, is not sufficient for the conjugacy of F1 and F2.

Each flow induces a copy of the Lebesgue measure onto orbits via

𝜆𝑖,𝑥 (𝐴) = 𝜆({𝑟 ∈ R : 𝑥 +𝑖 𝑟 ∈ 𝐴}).

Since we assume [F1 ] = [F2 ], and so F2 ⊆ [F1 ], 𝜆1,𝑥 is a translation invariant measure
relative to the action of F2, and therefore must differ from 𝜆2,𝑥 by a constant: there is
an orbit invariant measurable function 𝑐 : 𝑋 → R>0 such that 𝜆2,𝑥 = 𝑐(𝑥)𝜆1,𝑥 . Any
element in [F1 ] = [F2 ] preserves 𝜆𝑖,𝑥 , 𝑖 = 1, 2, and therefore cannot conjugate F1 into
F2 unless 𝑐(𝑥) is constantly equal to 1.

When the flows are ergodic, 𝑐(𝑥) = 𝑐 is a constant, and one may renormalize
the flows without changing the full groups. Let F ′2 be the rescaling of F2 given by
𝑥 +′2 𝑟 = 𝑥 +2 𝑐𝑟. It is straightforward to check that 𝜆′2,𝑥 (𝐴) = 𝑐

−1𝜆2,𝑥 (𝐴) = 𝜆1,𝑥 (𝐴),
and the flows F1 and F ′2 induce the same measure onto orbits.

After this renormalization, the finiteness of the measure 𝑠1(𝑥) △ 𝑠2(𝑥) for all 𝑥 ∈ 𝑋
is indeed sufficient to establish the conjugacy of the flows.

Theorem 10.9. Let F𝑖 , 𝑖 = 1, 2, be free measure-preserving flows that share the
same orbits, RF1 = RF2 , and induce the same measures (𝜆𝑥)𝑥∈𝑋 onto orbits. If
𝜆𝑥 (𝑠1(𝑥) △ 𝑠2(𝑥)) < +∞, 𝑥 ∈ 𝑋 , then the flows are conjugate by a measure-preserving
transformation 𝑆 ∈ [F1 ].

Proof. Let 𝑛 : 𝑋 ×R→ R be the F1,F2-cocycle defined by 𝑥 +2 𝑟 = 𝑥 +1 𝑛(𝑥, 𝑟). Since
F1 and F2 induce the same measure on the orbits, 𝑛(𝑥, ·) : R → R is a Lebesgue
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measure-preserving automorphism:

𝜆(𝑛(𝑥, 𝐴)) = 𝜆1,𝑥 ({𝑥 +1 𝑛(𝑥, 𝑟) : 𝑟 ∈ 𝐴})
= 𝜆2,𝑥 ({𝑥 +2 𝑟 : 𝑟 ∈ 𝐴}) = 𝜆(𝐴).

For 𝑥 ∈ 𝑋 and 𝑟 ∈ R ∪ {+∞} let

𝑠𝑖,𝑟 (𝑥) =
{
𝑥 +𝑖 [0, 𝑟) if 𝑟 ≥ 0,
𝑥 +𝑖 [𝑟, 0) if 𝑟 < 0.

In particular, 𝑠𝑖 (𝑥) = 𝑠𝑖,+∞(𝑥). Note that

𝑠1(𝑥 +2 𝑟) = 𝑠1(𝑥) △ 𝑠1,𝑛(𝑥,𝑟 ) (𝑥),
𝑠2(𝑥 +2 𝑟) = 𝑠2(𝑥) △ 𝑠2,𝑟 (𝑥). (10.2)

Also, considering the cases 𝑟 < 0 and 𝑟 ≥ 0 separately, one can easily verify that for
all 𝑟 ∈ R and 𝑖 = 1, 2

𝜆𝑖,𝑥 (𝑠𝑖,𝑟 (𝑥)) − 2𝜆𝑖,𝑥 (𝑠2(𝑥) ∩ 𝑠2,𝑟 (𝑥)) = −𝑟.

and, in particular,

𝜆1,𝑥 (𝑠1,𝑛(𝑥,𝑟 ) (𝑥)) − 2𝜆1,𝑥 (𝑠1(𝑥) ∩ 𝑠1,𝑛(𝑥,𝑟 ) (𝑥)) = −𝑛(𝑥, 𝑟),
𝜆2,𝑥 (𝑠2,𝑟 (𝑥)) − 2𝜆2,𝑥 (𝑠2(𝑥) ∩ 𝑠2,𝑟 (𝑥)) = −𝑟. (10.3)

Put 𝜏(𝑥) = 𝛿(𝑠1(𝑥), 𝑠2(𝑥)), then

𝜏(𝑥 +2 𝑟) = 𝛿(𝑠1(𝑥 +2 𝑟), 𝑠2(𝑥 +2 𝑟))
∵ Eq. (10.2) = 𝛿(𝑠1(𝑥) △ 𝑠1,𝑛(𝑥,𝑟 ) (𝑥), 𝑠2(𝑥 +2 𝑟))
∵ Prop. 10.8 = 𝛿(𝑠1(𝑥), 𝑠2(𝑥 +2 𝑟))+

𝜆1,𝑥 (𝑠1,𝑛(𝑥,𝑟 ) (𝑥)) − 2𝜆1,𝑥 (𝑠1(𝑥) ∩ 𝑠1,𝑛(𝑥,𝑟 ) (𝑥))
∵ Eq. (10.3) = 𝛿(𝑠1(𝑥), 𝑠2(𝑥 +2 𝑟)) − 𝑛(𝑥, 𝑟)
∵ Prop. 10.8 = −𝛿(𝑠2(𝑥 +2 𝑟), 𝑠1(𝑥)) − 𝑛(𝑥, 𝑟) = 𝛿(𝑠1(𝑥), 𝑠2(𝑥 +2 𝑟))−

(𝜆2,𝑥 (𝑠2,𝑟 (𝑥)) − 2𝜆2,𝑥 (𝑠2(𝑥) ∩ 𝑠2,𝑟 (𝑥))) − 𝑛(𝑥, 𝑟)
∵ Eq. (10.3) = 𝛿(𝑠1(𝑥), 𝑠2(𝑥)) − 𝑛(𝑥, 𝑟) + 𝑟. (10.4)

The required transformation 𝑆 : 𝑋 → 𝑋 is given by 𝑆𝑥 = 𝑥 +1 𝜏(𝑥).

𝑆(𝑥 +2 𝑟) = (𝑥 +2 𝑟) +1 𝜏(𝑥 +2 𝑟) = (𝑥 +1 𝑛(𝑥, 𝑟)) +1 𝜏(𝑥 +2 𝑟)
∵ Eq. (10.4) = 𝑥 +1 (𝑛(𝑥, 𝑟) + 𝜏(𝑥) − 𝑛(𝑥, 𝑟) + 𝑟) = 𝑆𝑥 +1 𝑟.
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Thus 𝑆 conjugatesF1 andF2. It therefore remains to check that 𝑆 is a measure-preserving
bĳection. First, note that 𝑆𝑥 satisfies 𝛿(𝑠1(𝑆𝑥), 𝑠2(𝑥)) = 0. Indeed, 𝑠1(𝑆𝑥) = 𝑠1(𝑥) △
𝑠1,𝜏 (𝑥 ) (𝑥) (by the analog of Eq. (10.2)), and therefore

𝛿(𝑠1(𝑆𝑥), 𝑠2(𝑥)) = 𝜏(𝑥) − 𝜏(𝑥) = 0 (10.5)

by Proposition 10.8.
To show injectivity, suppose that 𝑆𝑥 = 𝑆𝑦. In view of Eq. (10.5) and Proposition 10.8,

𝛿(𝑠2(𝑥), 𝑠2(𝑦)) = 𝛿(𝑠2(𝑥), 𝑠1(𝑆𝑥)) + 𝛿(𝑠1(𝑆𝑦), 𝑠2(𝑦)) = 0.

However, if 𝑦 = 𝑥 +2 𝑟, then 𝑠2(𝑦) = 𝑠2(𝑥) △ 𝑠2,𝑟 (𝑥) and so 𝛿(𝑠2(𝑥), 𝑠2(𝑦)) = 𝑟. One
concludes that 𝑟 = 0 and 𝑥 = 𝑦. We have already established that 𝑆(𝑥 +2 𝑟) = 𝑆𝑥 +1 𝑟 ,
which shows that the range of 𝑆 is orbit invariant, yielding surjectivity.

Finally, to show that 𝑆 is measure-preserving, it suffices to check that 𝑆 preserves
the Lebesgue measure 𝜆1,𝑥 = 𝜆2,𝑥 on all the orbits. To this end, let 𝑛′ : 𝑋 × R→ R be
the F1-cocycle (i.e., 𝑥 +1 𝑟 = 𝑥 +2 𝑛

′ (𝑥, 𝑟)). For all 𝑟 ′ ∈ R, one has

𝜆1,𝑥 (𝑆𝑠1,𝑟 ′ (𝑥)) = 𝜆1,𝑥 ({𝑦 +1 𝜏(𝑦) : 𝑦 ∈ 𝑠1,𝑟 ′ (𝑥)})
= 𝜆1,𝑥 ({(𝑥 +1 𝑟) +1 𝜏(𝑥 +1 𝑟) : 0 ≤ 𝑟 < 𝑟 ′})
= 𝜆({𝑟 + (𝜏(𝑥) − 𝑟 + 𝑛′ (𝑥, 𝑟)) : 0 ≤ 𝑟 < 𝑟 ′})
= 𝜆({𝑛′ (𝑥, 𝑟) : 0 ≤ 𝑟 < 𝑟 ′}) = 𝜆(𝑛′ (𝑥, [0, 𝑟 ′))) = 𝑟 ′.

Hence, 𝑆 ∈ Aut(𝑋, 𝜇) is the required conjugation between F1 and F2.

In the Z case, the above result is the key to Belinskaja’s flip-conjugacy result for
L1 orbit equivalence. Unfortunately, we do not know if it can be useful for proving an
analogous result for flows. In the next section, we nevertheless obtain a weaker result
that shows there are many L1 full groups. We leave the following question open.

Question 10.10. Given two ergodic flows with equal L1 full groups, does there exist a
rescaling under which they satisfy the hypothesis of the above theorem?

10.3 L1 orbit equivalence implies flip Kakutani equivalence

A measure-preserving action of a compactly generated locally compact Polish group
can always be twisted by a continuous automorphism of the group without affecting
the L1 full group.

In the case of Z-actions, this takes a particularly simple form since the only
non-trivial automorphism of Z is given by 𝑛 ↦→ −𝑛. It follows from the results of
R. M. Belinskaja [8] that this is, up to conjugacy, the only way to get an L1 orbit
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equivalence for ergodic Z-actions [40, Theorem 4.2]: if 𝑇1, 𝑇2 are two ergodic measure-
preserving transformations that are L1 orbit equivalent, then they are flip-conjugate: 𝑇1
is conjugate to either 𝑇2 or 𝑇−1

2 .
As mentioned before, we do not know whether a variant of such rigidity holds when

we replace Z by R (see Question 10.17 below), but, as shown in Theorem 10.15, L1

orbit equivalent free measure-preserving flows must at least be flip Kakutani equivalent.
In particular, there are uncountably many L1 full groups of free ergodic flows up to
abstract group isomorphism.

Let us first define the notion of (flip) Kakutani equivalence of flows. For the main
results about this concept, the reader may consult [28,29], where it is called monotone
equivalence of flows. Given a measure-preserving automorphism 𝑇 ∈ Aut(𝑍, 𝜈) and
a positive integrable function 𝑓 ∈ L1(𝑍, 𝜈), one can define the so-called suspension
flow or flow under a function on the space

𝑋 = {(𝑧, 𝑡) : 𝑧 ∈ 𝑍, 0 ≤ 𝑡 < 𝑓 (𝑧)}.

For 𝑟 ≥ 0, the action (𝑧, 𝑡) + 𝑟 is given by

(𝑧, 𝑡) + 𝑟 =
(
𝑇 𝑘𝑧, 𝑡 + 𝑟 −

𝑘−1∑︁
𝑖=0

𝑓 (𝑇 𝑖𝑧)
)
,

where 𝑘 ≥ 0 is defined uniquely by the condition
∑𝑘−1
𝑖=0 𝑓 (𝑇 𝑖𝑧) ≤ 𝑡 + 𝑟 < ∑𝑘

𝑖=0 𝑓 (𝑇 𝑖𝑧);
similarly, for 𝑟 ≤ 0 the action is

(𝑧, 𝑡) + 𝑟 =
(
𝑇−𝑘𝑧, 𝑡 + 𝑟 +

𝑘∑︁
𝑖=1

𝑓 (𝑇−𝑖𝑧)
)
,

where 𝑘 ≥ 0 satisfies 0 ≤ 𝑡 + 𝑟 +
𝑘∑
𝑖=1

𝑓 (𝑇−𝑖𝑧) < 𝑓 (𝑇−𝑘𝑧). Such a flow preserves the

restriction onto 𝑋 of the product measure 𝜈 × 𝜆. The space (𝑋, 𝜇), where

𝜇 =
𝜈 × 𝜆∫
𝑍
𝑓 𝑑𝜈

↾𝑋,

is a standard probability space. The automorphism𝑇 in the suspension flow construction
is called the base automorphism.

Definition 10.11. Two flows are flip Kakutani equivalent if they are isomorphic to
suspension flows over flip-conjugate base automorphisms.

It is important to note that the construction of suspension flows can be reversed
through the use of cross-sections1. Given a free flow on (𝑋, 𝜇) and a cocompact 𝑈-

1In full generality, the definition of a cross-section should actually be relaxed, replacing
lacunarity with discreteness in each orbit, and only requiring the gap function of the cross-section
to be integrable.
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lacunary cross-section C ⊆ 𝑋 for a precompact neighborhood of the identity𝑈 ⊆ 𝐺,
there is a unique finite measure 𝜈 on C such that the map𝑈 × C → C +𝑈 ⊆ 𝑋 taking
(𝑡, 𝑐) to 𝑐 + 𝑡 is measure-preserving (see [37, Prop. 4.3] for the general construction).
The first-return map 𝜎C : C → C is measure-preserving, and our initial flow can be
seen as the flow built under the gap function gapC with the base transformation 𝜎C .

We require the following key result, established by D. Rudolph [54]. In light of the
preceding discussion, it can be restated as follows: every free measure-preserving flow
is conjugate to a suspension flow with a two-valued function.

Theorem 10.12 (Rudolph). Let 𝑡0 ∈ R>0 \ Q be a positive irrational number. Any free
measure-preserving flow on a standard probability space admits a cross-section whose
gap function takes only the values 1 and 𝑡0 almost surely.

Remark 10.13. The second-named author has obtained a generalization of this result
in the purely Borel context; see [57].

Theorem 10.14. Let F , F ′ be free measure-preserving flows on (𝑋, 𝜇) that share
the same orbits, namely RF = RF′ . If F ′ ≤ [F ]1, then F and F ′ are flip Kakutani
equivalent.

Proof. We denote the flow F using our usual notation, (𝑥, 𝑡) ↦→ 𝑥 + 𝑡. As explained
right after Definition 10.11, it suffices to find cross-sections for F and F ′ such that the
corresponding first return automorphisms are flip-conjugate.

Fix some irrational 𝑡0 > 1, and let C ⊆ 𝑋 be a Borel cross-section for F such
that, outside a Borel F -invariant null set, we have gapC (𝑐) ∈ {1, 𝑡0} for all 𝑐 ∈ C, as
provided by Theorem 10.12. Define the automorphism 𝑇 : 𝑋 → 𝑋 by

𝑇𝑥 =

{
𝜎C (𝑐) + 𝛼 if 𝑥 = 𝑐 + 𝛼 for some 𝑐 ∈ C, 𝛼 ∈ [0, 1],
𝑥 otherwise.

The transformation 𝑇 is obtained by gluing together the identity map, 𝑥 ↦→ 𝑥 + 1, and
𝑥 ↦→ 𝑥 + 𝑡0. Since all these belong to [F ]1, which is finitely full, we have 𝑇 ∈ [F ]1
as well. Note that 𝑇 is dissipatively supported and is therefore flip-conjugate to its
F ′-reordering 𝑇 by Proposition 10.7. In other words, there is a 𝑇-invariant Borel set
𝑍 ⊆ 𝑋 of full measure, 𝜇(𝑍) = 1, and a 𝑇-invariant Borel partition 𝑍 = 𝑍+ ⊔ 𝑍− such
that 𝑇 ↾𝑍+ is conjugate to 𝑇 ↾𝑍+ and 𝑇 ↾𝑍− is conjugate to 𝑇−1 ↾𝑍− .

Let 𝜈 be the measure on C given for a Borel 𝐴 ⊆ C by 𝜈(𝐴) = 𝜇(𝐴 + [0, 1)). The
measure 𝜇 ↾C+[0,1) is naturally isomorphic to (𝜈 × 𝜆) ↾C+[0,1) , where 𝜆 is the Lebesgue
measure on [0, 1], and we therefore have

∀𝜈×𝜆(𝑐, 𝜆) ∈ C × [0, 1) 𝑐 + 𝛼 ∈ 𝑍.

By Fubini’s theorem, this is equivalent to

∀𝜆𝛼 ∈ [0, 1) ∀𝜈𝑐 ∈ C (𝑐 + 𝛼 ∈ 𝑍).
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Therefore, there exists some 𝛼0 ∈ [0, 1) such that 𝜈({𝑐 ∈ C : 𝑐 + 𝛼0 ∈ 𝑍}) = 1. Note
that 𝑇 ↾C+𝛼0 is the first return map on C + 𝛼0 in the order of the flow F , whereas
𝑇 ↾C+𝛼0 is the first return map in the order induced on the orbits by F ′. Since 𝑇 ↾C+𝛼0

and 𝑇 ↾C+𝛼0 are flip-conjugate, the flows are flip Kakutani equivalent.

Theorem 10.14 has the following straightforward consequences.

Corollary 10.15. If two free ergodic measure-preserving flows are L1 orbit equivalent,
then they are also flip Kakutani equivalent.

Proof. This now follows from the definition of L1 orbit equivalence, see Definition 4.19
and the paragraph thereafter.

Corollary 10.16. If two free ergodic measure-preserving flows have abstractly iso-
morphic L1 full groups, then they are also flip Kakutani equivalent.

Proof. We have seen in Proposition 4.21 that the isomorphism of L1 full groups of
ergodic flows implies L1 orbit equivalence, so the result follows from the previous
corollary.

Kakutani equivalence is a highly non-trivial equivalence relation (see [49] or [21,
36]). It seems likely, however, that L1 full groups of flows contain even more information
about the action. The only continuous automorphisms of R are multiplications by
nonzero scalars, and we ask whether the isomorphism of L1 full groups necessarily
recovers the action up to such an automorphism.

Question 10.17. Let F1 and F2 be free ergodic measure-preserving flows with isomor-
phic L1 full groups. Is it true that there exists 𝛼 ∈ R∗ such that F1 and F2 ◦ 𝑚𝛼 are
isomorphic, where 𝑚𝛼 denotes the multiplication by 𝛼?

Note that a positive answer to Question 10.10 would imply a positive answer to the
above question.

10.4 Maximality of the L1 norm and geometry

In this last section, we show that the L1 norm is maximal on L1 full groups of flows.
In particular, it defines their quasi-isometry type. Exploring this quasi-isometry type
further might lead to topological group invariants capable of distinguishing some
ergodic flows.

Theorem 10.18. Let F be a free measure-preserving flow. The L1 norm on [F ]1 is
maximal.
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Proof. We have already shown that the L1 norm on the derived L1 full group is maximal
(see Theorem 5.5). Denote by (E, 𝑝) the space of F -invariant ergodic probability
measures, where 𝑝 is the probability measure arising from the disintegration of 𝜇,
which we write as 𝑥 ↦→ 𝜈𝑥 (see Section E.1). The derived L1 full group is equal to the
kernel of the surjective index map I : [F ]1 → L1(E, 𝑝,R) and the quotient norm on
[F ]1/ker 𝐼 is equal to the L1 norm on L1(E, 𝑝,R) by Proposition 6.7. The latter norm
is maximal, as is the case for any Banach space norm.

Given a function 𝑓 ∈ L1(E, 𝑝,R), let𝑈 𝑓 ∈ [F ]1 be given by𝑈 𝑓 (𝑥) = 𝑥 + 𝑓 (𝜈𝑥).
The cocycle 𝜌𝑈 𝑓 (𝑥) = 𝑓 (𝜈𝑥) is constant on each ergodic component and ∥𝑈 𝑓 ∥1 = ∥ 𝑓 ∥1.
Furthermore, I(𝑈 𝑓 ) = 𝑓 . We show that ∥ · ∥ is both large-scale geodesic and coarsely
proper (see Appendix A.2 and Proposition A.10, in particular).

Any 𝑇 ∈ [F ]1 can be written as 𝑇 = (𝑇𝑈−1
I(𝑇 ) )𝑈I(𝑇 ) , where the transformation

𝑇𝑈−1
I(𝑇 ) ∈ kerI =𝔇( [F ]1), and ∥𝑈I(𝑇 ) ∥1 ≤ ∥𝑇 ∥1. In particular, we have ∥𝑇𝑈−1

I(𝑇 ) ∥1 ≤
2∥𝑇 ∥1.

Since the L1 norm is maximal on 𝔇( [F ]1), it is large-scale geodesic. In fact,
Proposition 3.25 establishes that it is large-scale geodesic with constant 𝐾 = 2. We
may therefore express 𝑇𝑈−1

I(𝑇 ) as a product𝑉1 · · ·𝑉𝑛 of elements𝑉𝑖 ∈ 𝔇( [F ]1), where
each 𝑉𝑖 has norm at most 𝐾 and

𝑛∑︁
𝑖=1
∥𝑉𝑖 ∥1 ≤ 𝐾 ∥𝑇𝑈−1

I(𝑇 ) ∥1 ≤ 2𝐾 ∥𝑇 ∥1.

The transformation𝑈I(𝑇 ) can, for any 𝑚 ≥ 1, also be expressed as a product

𝑈I(𝑇 ) = 𝑈I(𝑇 )/𝑚 · · ·𝑈I(𝑇 )/𝑚 = 𝑈𝑚I(𝑇 )/𝑚.

By taking 𝑚 sufficiently large, we can ensure that ∥𝑈I(𝑇 )/𝑚∥1 = ∥I(𝑇)/𝑚∥1 ≤ 𝐾.
Therefore, 𝑇 = (𝑉1 · · ·𝑉𝑛) (𝑈I(𝑇 )/𝑚 · · ·𝑈I(𝑇 )/𝑚), and

𝑛∑︁
𝑖=1
∥𝑉𝑖 ∥1 +

𝑚∑︁
𝑗=1
∥𝑈I(𝑇 )/𝑚∥1 ≤ 2𝐾 ∥𝑇 ∥1 + ∥𝑈I(𝑇 ) ∥1 ≤ 3𝐾 ∥𝑇 ∥1.

We conclude that the norm ∥ · ∥ on [F ]1 is large-scale geodesic with 𝐾 ′ = 3𝐾 = 6.
It remains to prove coarse properness. Let 𝜖 > 0 and 𝑅 > 0 be positive reals. By

Theorem 5.5, there exists 𝑛 ∈ N so large that every element in the derived L1 full group
of norm at most 2𝑅 is a product of 𝑛 elements of norm at most 𝜖 . Let 𝑁 be any integer
greater than 𝑅/𝜖 . We argue that every element of [F ]1 of norm at most 𝑅 is a product
of 2𝑛 + 𝑁 elements of norm at most 𝜖 .

Indeed, if 𝑇 = (𝑇𝑈−1
I(𝑇 ) )𝑈I(𝑇 ) has norm at most 𝑅, then

∥𝑇𝑈−1
I(𝑇 ) ∥1 ≤ 2 ∥𝑇 ∥1 ≤ 2𝑅,
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and 𝑇𝑈−1
I(𝑇 ) can therefore by written as a product of 𝑛 elements of 𝔇( [𝐹 ]1) each of

norm ≤ 𝜖 . Moreover,𝑈I(𝑇 ) = 𝑈𝑁I(𝑇 )/𝑁 and ∥𝑈I(𝑇 )/𝑁 ∥1 ≤ 𝜖 by the choice of 𝑁 . The
conclusion follows.

Remark 10.19. While the proposition above states that L1 full groups of flows are quite
large, one can use Proposition 6.8 to show that they satisfy the Haagerup property.
In other words, such groups admit a coarsely proper affine action on a Hilbert space
(namely, the affine Hilbert space 𝜒R≥0 + L2(R, 𝑀)).

Corollary 10.16 along with [49, Sec. 12] implies that there are uncountably many
L1 full groups of ergodic free flows up to topological group isomorphism. It would be
interesting if their geometry allowed us to distinguish these groups. However, we do
not even know the answer to the following question.

Question 10.20. Are there two free ergodic measure-preserving flows with non-quasi-
isometric L1 full groups?





Appendix A

Normed groups

We chose to present our work in the framework of groups equipped with compatible
norms rather than metrics. These two frameworks are equivalent, but the former has
some stylistic advantages, in our opinion. In Appendix A, we remind the reader the
concept of a norm on a group (Section A.1) and state C. Rosendal’s results on maximal
norms (Section A.2).

A.1 Norms on groups

Definition A.1. A norm on a group𝐺 is a map ∥·∥ :𝐺→ R≥0 such that for all 𝑔, ℎ ∈ 𝐺
(1) ∥𝑔∥ = 0 if and only if 𝑔 = 𝑒;
(2) ∥𝑔∥ = ∥𝑔−1∥;
(3) ∥𝑔ℎ∥ ≤ ∥𝑔∥ + ∥ℎ∥.

If 𝐺 is moreover a topological group, a norm ∥·∥ on 𝐺 is called compatible if the balls
{𝑔 ∈ 𝐺 : | |𝑔 | | < 𝑟}, 𝑟 > 0, form a basis of neighborhoods of the identity. When 𝐺 is a
Polish group equipped with a compatible norm ∥·∥, we refer to the pair (𝐺, ∥·∥) as a
Polish normed group.

There is a correspondence between (compatible) left-invariant metrics on a group
and (compatible) norms on it. Indeed, given a left-invariant metric 𝑑 on 𝐺, the function
∥𝑔∥ = 𝑑 (𝑒, 𝑔) is a norm. Conversely, from a norm ∥·∥ one can recover the left-invariant
metric 𝑑 via 𝑑 (𝑔, ℎ) = ∥𝑔−1ℎ∥. Analogously, there is a correspondence between norms
and right-invariant metrics given by 𝑑 (𝑔, ℎ) = ∥ℎ𝑔−1∥.

The language of group norms thus contains the same information as the formalism of
left-invariant (or right-invariant) metrics, but it has the stylistic advantage of removing
the need of making a choice between the invariant side, when such a choice is immaterial.

Remark A.2. Note, however, that there are metrics that are neither left- nor right-
invariant, which nonetheless induce a group norm via the same formula ∥𝑔∥ = 𝑑 (𝑔, 𝑒).
Consider for example a Polish group 𝐺 with a compatible left-invariant metric 𝑑′ on it.
If 𝐺 is not a CLI group, the metric 𝑑′ is not complete, but the metric

𝑑 ( 𝑓 , 𝑔) = 𝑑′ ( 𝑓 , 𝑔) + 𝑑′ ( 𝑓 −1, 𝑔−1)
2

is complete. Since 𝑑 (𝑔, 𝑒) = 𝑑′ (𝑔, 𝑒), we see that 𝑑 induces the same norm ∥·∥ as does
the left-invariant metric 𝑑′.
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There is a canonical way to push a norm onto a factor group.

Proposition A.3 (see [18, Thm. 2.2.10]). Let (𝐺, ∥·∥) be a Polish normed group, and
let 𝐻 ⊴ 𝐺 be a closed normal subgroup of 𝐺. The function

∥𝑔𝐻∥𝐺/𝐻 = inf{∥𝑔ℎ∥ : ℎ ∈ 𝐻}

is a norm on 𝐺/𝐻 which is compatible with the quotient topology. In particular,
(𝐺/𝐻, ∥·∥𝐺/𝐻 ) is a Polish normed group.

Definition A.4. A compatible norm ∥·∥ on a locally compact Polish group𝐺 is proper
if all balls {𝑔 ∈ 𝐺 : ∥𝑔∥ ≤ 𝑟} are compact.

R. A. Struble [58] showed that all locally compact Polish groups admit a compatible
proper norm.

A.2 Maximal norms

As we noted in Lemma 2.13, quasi-isometric norms yield the same L1 full groups.
C. Rosendal identified the class of Polish groups that admit maximal norms, which are
unique up to quasi-isometry. In this section, we state some results from C. Rosendal’s
treatise [52], which are relevant to our work. For the reader’s convenience, we formulate
the following definitions and propositions in the language of group norms as opposed
to left-invariant metrics or écarts, as in the original reference.

Definition A.5 ([52, Def. 2.68]). A compatible norm ∥·∥ on a Polish group 𝐺 is said
to be maximal if for any compatible norm ∥·∥′ there is a constant 𝐶 > 0 such that
∥𝑔∥′ ≤ 𝐶∥𝑔∥ + 𝐶 for all 𝑔 ∈ 𝐺.

Definition A.6 ([52, Prop. 2.15]). Let𝐺 be a Polish group. A subset 𝐴 ⊆ 𝐺 is coarsely
bounded if for every continuous isometric action of 𝐺 on a metric space (𝑀, 𝑑𝑀 ), the
set 𝐴 · 𝑚 is bounded for each 𝑚 ∈ 𝑀 , i.e., there is 𝐾 > 0 such that

𝑑𝑀 (𝑎1 · 𝑚, 𝑎2 · 𝑚) ≤ 𝐾 for all 𝑎1, 𝑎2 ∈ 𝐴.

A Polish group 𝐺 is boundedly generated if it is generated by a coarsely bounded set.

Theorem A.7 ([52, Thm. 2.73]). A Polish group admits a maximal compatible norm
if and only if it is boundedly generated.

The following characterization is available to establish maximality of a given norm.

Definition A.8 ([52, Def. 2.62]). A norm ∥·∥ on a group 𝐺 is called large-scale
geodesic if there is 𝐾 > 0 such that for any 𝑔 ∈ 𝐺, there are 𝑔1, . . . , 𝑔𝑛 ∈ 𝐺 of norm
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∥𝑔𝑖 ∥ ≤ 𝐾 , 1 ≤ 𝑖 ≤ 𝑛, such that 𝑔 = 𝑔1 · · · 𝑔𝑛 and
𝑛∑︁
𝑖=1
∥𝑔𝑖 ∥ ≤ 𝐾 ∥𝑔∥ .

Definition A.9 ([52, Lem. 2.39(2) and Prop. 2.7(5)]). A norm ∥·∥ on a group 𝐺 is
called coarsely proper if for every 𝜖 > 0 and every 𝑅 > 0, there are a finite subset
𝐹 ⊆ 𝐺 and 𝑛 ∈ N such that every element 𝑔 ∈ 𝐺 of norm at most 𝑅 can be written as a
product

𝑔 = 𝑓1𝑔1 · · · 𝑓𝑛𝑔𝑛,

where 𝑓1, . . . , 𝑓𝑛 ∈ 𝐹 and each 𝑔𝑖 has norm at most 𝜖 .

Proposition A.10 ([52, Prop. 2.72]). A compatible norm ∥·∥ on a Polish group 𝐺 is
maximal if and only if it is both large-scale geodesic and coarsely proper.





Appendix B

Spaces and groups of measurable maps

B.1 L0 spaces and convergence in measure

In this section, we introduce the topology of convergence in measure for spaces of
measurable functions and explore its connections to an L1-type metric as well as its
relationship with the group Aut(𝑋, 𝜇).

Definition B.1. Let (𝑋, 𝜇) be a standard probability space, and let 𝑌 be a Polish space.
The space L0(𝑋, 𝜇,𝑌 ), often denoted by L0(𝑋,𝑌 ) for brevity, consists of equivalence
classes of measurable maps 𝑓 : 𝑋 → 𝑌 , where functions are identified up to null
sets. This space is equipped with the topology of convergence in measure, which
is generated by the sets 𝑈̃𝜖 ,𝐴 defined as follows: for every measurable subset 𝐴 ⊆ 𝑋 ,
every open subset𝑈 ⊆ 𝑌 , and every 𝜖 > 0,

𝑈̃𝜖 ,𝐴 = { 𝑓 ∈ L0(𝑋,𝑌 ) : 𝜇( 𝑓 −1(𝑈) ∩ 𝐴) > 𝜖}.

The topology of convergence in measure is Polish. The justification of this fact is
postponed to Proposition B.8. First, we take a brief detour to justify why this topology
is appropriately named the topology of convergence in measure.

Lemma B.2. Let 𝑑𝑌 be a compatible metric on 𝑌 . For 𝑓0 ∈ L0(𝑋,𝑌 ), a neighborhood
basis of 𝑓0 is given by the sets{

𝑓 ∈ L0(𝑋,𝑌 ) : 𝜇
(
{𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓 (𝑥), 𝑓0(𝑥)) ≥ 𝜖}

)
< 𝜖

}
, 𝜖 > 0.

Proof. Fix 𝜖 > 0 and a dense sequence (𝑦𝑛)𝑛 in 𝑌 . For each 𝑛, define

𝐴𝑛 =
{
𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑦𝑛) < 𝜖

2
}
.

By the density of (𝑦𝑛)𝑛, we have 𝑋 =
⋃
𝑛 𝐴𝑛. Consequently, there exists 𝑁 ≥ 1 such

that 𝜇
(⋃

𝑛<𝑁 𝐴𝑛
)
> 1 − 𝜖

2 . Without loss of generality, by re-enumerating the sequence
(𝑦𝑛)𝑛 if necessary, we may assume that 𝜇(𝐴𝑛) > 0 for all 𝑛 < 𝑁 . Let 𝑈𝑛 denote the
open ball of radius 𝜖

2 centered at 𝑦𝑛, and set

𝜖𝑛 = min
{
𝜇 (𝐴𝑛 )

2 , 𝜖
2𝑁

}
.

For any 𝑓 ∈ L0(𝑋,𝑌 ), the set 𝐵 = {𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑓 (𝑥)) ≥ 𝜖} is contained in(
𝑋 \

⋃
𝑛<𝑁

𝐴𝑛

)
∪

⋃
𝑛<𝑁

{𝑥 ∈ 𝐴𝑛 : 𝑑𝑌 ( 𝑓 (𝑥), 𝑦𝑛) ≥ 𝜖
2 },
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and therefore

𝜇(𝐵) ≤ 𝜇
(
𝑋 \

⋃
𝑛<𝑁

𝐴𝑛

)
+
∑︁
𝑛<𝑁

𝜇
(
{𝑥 ∈ 𝐴𝑛 : 𝑑𝑌 ( 𝑓 (𝑥), 𝑦𝑛) ≥ 𝜖

2 }
)

∵ choice of 𝑁 <
𝜖

2
+
∑︁
𝑛<𝑁

𝜇
(
{𝑥 ∈ 𝐴𝑛 : 𝑑𝑌 ( 𝑓 (𝑥), 𝑦𝑛) ≥ 𝜖

2 }
)

=
𝜖

2
+
∑︁
𝑛<𝑁

𝜇
(
𝐴𝑛 \ 𝑓 −1(𝑈𝑛)

)
=
𝜖

2
+
∑︁
𝑛<𝑁

(
𝜇(𝐴𝑛) − 𝜇( 𝑓 −1(𝑈𝑛) ∩ 𝐴𝑛)

)
.

If 𝑓 ∈ 𝑈̃𝑛
𝜇 (𝐴𝑛 )−𝜖𝑛 ,𝐴𝑛 , then

𝜇(𝐴𝑛) − 𝜇( 𝑓 −1(𝑈𝑛) ∩ 𝐴𝑛) < 𝜖𝑛 ≤ 𝜖
2𝑁 ,

and therefore the open set
⋂
𝑛<𝑁 𝑈̃

𝑛
𝜇 (𝐴𝑛 )−𝜖𝑛 ,𝐴𝑛 satisfies the desired inclusion

𝑓0 ∈
⋂
𝑛<𝑁

𝑈̃𝑛
𝜇 (𝐴𝑛 )−𝜖𝑛 ,𝐴𝑛 ⊆

{
𝑓 ∈ L0(𝑋,𝑌 ) : 𝜇

(
{𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓 (𝑥), 𝑓0(𝑥)) ≥ 𝜖}

)
< 𝜖

}
.

Conversely, given any 𝑓0 ∈ 𝑈̃𝜖 ,𝐴, we need to show the existence of 𝛿 > 0 such that{
𝑓 ∈ L0(𝑋,𝑌 ) : 𝜇 ({𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓 (𝑥), 𝑓0(𝑥)) ≥ 𝛿}) < 𝛿

}
⊆ 𝑈𝜖 ,𝐴.

Since𝑈 is open, we have

𝑓 −1
0 (𝑈) ∩ 𝐴 =

⋃
𝑛

{
𝑥 ∈ 𝐴 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑌 \𝑈) > 1

𝑛

}
.

Thus, there exists 𝑛 ∈ N sufficiently large such that

𝜇
(
{𝑥 ∈ 𝐴 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑌 \𝑈) > 1

𝑛
}
)
> 𝜖.

Let
𝛿 = min

{ 1
𝑛
, 𝜇

(
{𝑥 ∈ 𝐴 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑌 \𝑈) > 1

𝑛
}
)
− 𝜖

}
. (B.1)

Now, consider 𝑓 ∈ L0(𝑋,𝑌 ) satisfying

𝜇 ({𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑓 (𝑥)) ≥ 𝛿}) < 𝛿. (B.2)

Then,

𝑓 −1(𝑈) ∩ 𝐴 ⊇
{
𝑥 ∈ 𝐴 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑓 (𝑥)) < 𝛿 and 𝑑𝑌 ( 𝑓0(𝑥), 𝑌 \𝑈) > 1

𝑛

}
,

and the latter set can be rewritten as

𝐴 \
(
{𝑥 ∈ 𝐴 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑓 (𝑥)) ≥ 𝛿} ∪ {𝑥 ∈ 𝐴 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑌 \𝑈) ≤ 1

𝑛
}
)
.
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Consequently,

𝜇( 𝑓 −1(𝑈) ∩ 𝐴) ≥ 𝜇(𝐴) − 𝜇
(
{𝑥 ∈ 𝐴 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑓 (𝑥)) ≥ 𝛿}

)
− 𝜇

(
{𝑥 ∈ 𝐴 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑌 \𝑈) ≤ 1

𝑛
}
)
.

Since 𝑓 is assumed to satisfy Eq. (B.2) and 𝛿 is chosen according to Eq. (B.1), we get

𝜇( 𝑓 −1(𝑈) ∩ 𝐴) > 𝜇(𝐴) − 𝜇
(
{𝑥 ∈ 𝐴 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑌 \𝑈) > 1

𝑛
}
)
+ 𝜖

− 𝜇
(
{𝑥 ∈ 𝐴 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑌 \𝑈) ≤ 1

𝑛
}
)
.

The two negative terms sum to −𝜇(𝐴), and thus we have 𝜇( 𝑓 −1(𝑈) ∩ 𝐴) > 𝜖 . We
conclude that{

𝑓 ∈ L0(𝑋,𝑌 ) : 𝜇({𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓0(𝑥), 𝑓 (𝑥)) ≥ 𝛿}) < 𝛿
}
⊆ 𝑈̃𝜖 ,𝐴.

Now suppose that 𝑑𝑌 is a compatible bounded metric on 𝑌 ; for instance,

𝑑𝑌 (𝑦1, 𝑦2) = min{1, 𝑑′𝑌 (𝑦1, 𝑦2)}, 𝑦1, 𝑦2 ∈ 𝑌,

for an arbitrary compatible metric 𝑑′
𝑌

. We can then equip L0(𝑋,𝑌 ) with the metric 𝑑𝑌 ,
defined by

𝑑𝑌 ( 𝑓 , 𝑔) =
∫
𝑋

𝑑𝑌 ( 𝑓 (𝑥), 𝑔(𝑥)) 𝑑𝜇(𝑥). (B.3)

The following properties of convergence in measure and 𝑑𝑌 are well-known.

Lemma B.3. Let 𝑑𝑌 be a compatible bounded metric on 𝑌 . The following properties
hold:

(1) The metric 𝑑𝑌 is compatible with the topology of convergence in measure.
(2) A sequence of functions ( 𝑓𝑛)𝑛 converges in measure to 𝑓 if and only if every

subsequence of ( 𝑓𝑛)𝑛 has a further subsequence that converges pointwise to 𝑓 .

Proof. (1) We employ the neighborhood basis established in Lemma B.2. For any
𝜖 > 0, Markov’s inequality yields

𝜖 · 𝜇({𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓 (𝑥), 𝑓0(𝑥)) ≥ 𝜖}) ≤
∫
𝑋

𝑑𝑌 ( 𝑓 (𝑥), 𝑓0(𝑥)) 𝑑𝜇(𝑥) = 𝑑𝑌 ( 𝑓 , 𝑓0),

demonstrating that the topology induced by 𝑑𝑌 refines the topology of convergence in
measure.

Conversely, let 𝐾 > 0 be a bound on 𝑑𝑌 . If

𝜇({𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓 (𝑥), 𝑓0(𝑥)) ≥
𝜖

𝐾
}) < 𝜖

𝐾
,
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then 𝑑𝑌 ( 𝑓 , 𝑓0) < 𝜖
𝐾
+ 𝜖 . This shows that the topology of convergence in measure refines

the topology induced by 𝑑𝑌 . Consequently, the two topologies coincide.
(2) We begin with the direct implication. Assume that 𝑓𝑛 → 𝑓 in measure and

consider a subsequence ( 𝑓𝑛𝑘 )𝑘 . By passing to a further subsequence (still denoted
( 𝑓𝑛𝑘 )𝑘 for simplicity), Lemma B.2 lets us assume that for all 𝑘 ∈ N, the set

𝐴𝑘 = {𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓𝑛𝑘 (𝑥), 𝑓 (𝑥)) ≥ 2−𝑘}

has measure less than 2−𝑘 . By the Borel–Cantelli lemma, almost every 𝑥 ∈ 𝑋 belongs
to only finitely many 𝐴𝑘 . This implies that 𝑓𝑛𝑘 converges pointwise to 𝑓 almost surely.

For the converse, assume that every subsequence of ( 𝑓𝑛)𝑛 admits a further sub-
sequence that converges pointwise to 𝑓 . Note that 𝑑𝑌 ( 𝑓𝑛, 𝑓 ) → 0 holds if and only
if every subsequence ( 𝑓𝑛𝑘 )𝑘 of ( 𝑓𝑛)𝑛 has a further subsequence ( 𝑓𝑛𝑘𝑖 )𝑖 such that
𝑑𝑌 ( 𝑓𝑛𝑘𝑖 , 𝑓 ) → 0. Thus, it suffices to show that if ( 𝑓𝑛)𝑛 converges to 𝑓 pointwise, then
also 𝑑𝑌 ( 𝑓𝑛, 𝑓 ) → 0. This follows directly from the Lebesgue’s dominated convergence
theorem, in view of the boundedness of 𝑑𝑌 .

We finish this section with the following lemma.

Lemma B.4. Let 𝐺 be a Polish group acting continuously on a Polish space 𝑋 , and
let 𝜇 be a Borel probability measure on 𝑋 . Then the map

Φ : L0(𝑋, 𝐺) → L0(𝑋, 𝑋)
L0(𝑋, 𝐺) ∋ 𝑓 ↦→ (𝑥 ↦→ 𝑓 (𝑥) · 𝑥)

is continuous.

Proof. We use the pointwise characterization of convergence in measure, as stated
in item (2) of Lemma B.3. Suppose 𝑓𝑛 → 𝑓 in measure, where 𝑓𝑛, 𝑓 ∈ L0(𝑋, 𝐺). To
show that Φ( 𝑓𝑛) → Φ( 𝑓 ) in measure, consider an arbitrary subsequence (Φ( 𝑓𝑛𝑘 ))𝑘 .

Since 𝑓𝑛 → 𝑓 in measure, there exists a further subsequence ( 𝑓𝑛𝑘𝑖 )𝑖 that converges
pointwise to 𝑓 . By the continuity of the action, we have 𝑓𝑛𝑘𝑖 (𝑥) · 𝑥 → 𝑓 (𝑥) · 𝑥 for all
𝑥 ∈ 𝑋 . This means (Φ( 𝑓𝑛𝑘𝑖 ))𝑖 converges pointwise to Φ( 𝑓 ), as required.

B.2 L1 spaces of pointed metric spaces

We now restrict our attention to integrable maps. To this end, we require the target
space to be a Polish pointed metric space, which we define as a separable complete
metric space (𝑌, 𝑑𝑌 ) equipped with a distinguished basepoint 𝑒 ∈ 𝑌 .

Definition B.5. Let (𝑋, 𝜇) be a standard probability space, and let (𝑌, 𝑑𝑌 , 𝑒) be a Polish
pointed metric space. We define the 𝑒-pointed L1 space L1

𝑒 (𝑋, 𝜇,𝑌 ), often denoted by
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L1
𝑒 (𝑋,𝑌 ) for brevity, as the pointed metric space consisting of all measurable functions
𝑓 : 𝑋 → 𝑌 satisfying ∫

𝑋

𝑑𝑌 (𝑒, 𝑓 (𝑥)) 𝑑𝜇(𝑥) < +∞,

equipped with the metric

𝑑𝑌 ( 𝑓1, 𝑓2) =
∫
𝑋

𝑑𝑌
(
𝑓1(𝑥), 𝑓2(𝑥)

)
𝑑𝜇(𝑥),

and with the constant function 𝑒 : 𝑥 ↦→ 𝑒 as its basepoint. The finiteness of the integral
in the definition of 𝑑𝑌 follows from the triangle inequality, using 𝑒 as an intermediate
point.

Remark B.6. To simplify notation, we omit explicit reference to the metric 𝑑𝑌 in the
notation for the L1 space L1

𝑒 (𝑋,𝑌 ). However, it is important to note that the definition
of this space fundamentally depends on the choice of 𝑑𝑌 .

Proposition B.7. Let (𝑋, 𝜇) be a standard probability space and (𝑌, 𝑑𝑌 , 𝑒) be a Polish
pointed metric space. Then (L1

𝑒 (𝑋,𝑌 ), 𝑑𝑌 ) is a Polish metric space.

Proof. The proof follows the classical argument establishing that (L1(𝑋,R), 𝑑R) is
a Polish metric space. To prove completeness, consider a Cauchy sequence ( 𝑓𝑛)𝑛 in
L1
𝑒 (𝑋,𝑌 ). Without loss of generality, we may assume that 𝑑𝑌 ( 𝑓𝑛, 𝑓𝑛+1) < 2−𝑛, 𝑛 ∈ N.

Define the sets

𝐴𝑛 = {𝑥 ∈ 𝑋 : 𝑑𝑌 ( 𝑓𝑛 (𝑥), 𝑓𝑛+1(𝑥)) ≥ 1/𝑛2}, 𝑛 ≥ 1.

By Markov’s inequality, 𝜇(𝐴𝑛) ≤ 𝑛22−𝑛, and thus
∑
𝑛 𝜇(𝐴𝑛) < ∞. The Borel–Cantelli

lemma implies that ( 𝑓𝑛 (𝑥))𝑛 is pointwise Cauchy for almost every 𝑥 ∈ 𝑋 . Since (𝑌, 𝑑𝑌 )
is complete, the pointwise limit 𝑓 (𝑥) = lim𝑛 𝑓𝑛 (𝑥) exists almost surely.

Define functions ℎ𝑛, ℎ : 𝑋 → R≥0 by

ℎ𝑛 (𝑥) =
∑︁
𝑖<𝑛

𝑑𝑌 ( 𝑓𝑖 (𝑥), 𝑓𝑖+1(𝑥)), ℎ(𝑥) =
∑︁
𝑖∈N

𝑑𝑌 ( 𝑓𝑖 (𝑥), 𝑓𝑖+1(𝑥)) = lim
𝑛→∞

ℎ𝑛 (𝑥),

and note that ℎ ∈ L1(𝑋,R) by Fatou’s lemma. Finally, we conclude that

𝑑𝑌 ( 𝑓𝑛, 𝑓 ) =
∫
𝑋

𝑑𝑌 ( 𝑓𝑛 (𝑥), 𝑓 (𝑥)) 𝑑𝜇(𝑥) ≤
∫
𝑋

∞∑︁
𝑘=𝑛

𝑑𝑌 ( 𝑓𝑘 (𝑥), 𝑓𝑘+1(𝑥)) 𝑑𝜇(𝑥)

=

∫
𝑋

(ℎ(𝑥) − ℎ𝑛 (𝑥)) 𝑑𝜇(𝑥) → 0,

where the last convergence follows from Lebesgue’s dominated convergence theorem.
To establish separability, let 𝐷 ⊆ 𝑌 be a countable dense set. The subspace of maps

taking values in 𝐷 is 𝑑𝑌 -dense (in fact, dense even in the much stronger sup metric).
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The set of functions taking only finitely many values in 𝐷 remains dense. By further
restricting to functions measurable with respect to a dense countable subalgebra of the
measure algebra on 𝑋 , we obtain a countable dense subset of L1

𝑒 (𝑋,𝑌 ).

Note that L1
𝑒 (𝑋, 𝑌 ) is a subset of L0(𝑋, 𝑌 ). If 𝑑𝑌 is bounded, the integrability

condition becomes trivial, and we have L1
𝑒 (𝑋,𝑌 ) = L0(𝑋,𝑌 ). Combining item (1) from

Lemma B.3 with the preceding proposition, we obtain the following well-known result.

Proposition B.8. If 𝑌 is a Polish space, then the topology of convergence in measure
on L0(𝑋,𝑌 ) is Polish, and it is induced by the L1 metric 𝑑𝑌 for any bounded compatible
metric 𝑑𝑌 on 𝑌 .

More generally, we can establish a relationship between the L1 topology and the
topology of convergence in measure as follows.

Proposition B.9. Let (𝑌, 𝑑𝑌 , 𝑒) be a possibly unbounded Polish pointed metric space.
The inclusion map L1

𝑒 (𝑋,𝑌 ) ↩→ L0(𝑋,𝑌 ) is continuous.

Proof. Define 𝑑𝑏
𝑌
(𝑦1, 𝑦2) = min{𝑑𝑌 (𝑦1, 𝑦2),1}, 𝑦1, 𝑦2 ∈ 𝑌 , to be the bounded complete

metric on 𝑌 obtained by capping 𝑑𝑌 . By Lemma B.3, 𝑑𝑏
𝑌

induces the topology of
convergence in measure on L0(𝑋,𝑌 ). Since 𝑑𝑏

𝑌
≤ 𝑑𝑌 , one also has 𝑑𝑏

𝑌
≤ 𝑑𝑌 . Thus, the

inclusion map
(L1
𝑒 (𝑋,𝑌 ), 𝑑𝑌 ) ↩→ (L0(𝑋,𝑌 ), 𝑑𝑏𝑌 )

is 1-Lipschitz and, in particular, continuous.

Remark B.10. The inclusion L1
𝑒 (𝑋,𝑌 ) ↩→ L0(𝑋,𝑌 ) is not, in general, an embedding.

To see this, suppose 𝑑𝑌 is unbounded. Then there exist elements 𝑦𝑛 ∈ 𝑌 such that
𝑑𝑌 (𝑦𝑛, 𝑒) ≥ 2𝑛 for all 𝑛. Partition the space 𝑋 into disjoint sets

⊔∞
𝑛=1 𝐴𝑛, where

𝜇(𝐴𝑛) = 2−𝑛. Define functions 𝑓𝑛 for 𝑛 ≥ 1 as follows:

𝑓𝑛 (𝑥) =
{
𝑦𝑛 if 𝑥 ∈ 𝐴𝑛,
𝑒 otherwise.

In the notation of Proposition B.9, we have 𝑑𝑏
𝑌
( 𝑓𝑛, 𝑒) = 𝜇(𝐴𝑛) → 0 as 𝑛→∞, which

implies 𝑓𝑛 → 𝑒 in L0. However, since 𝑑𝑌 ( 𝑓𝑛, 𝑒) ≥ 1 for all 𝑛 ≥ 1, this convergence
does not hold in L1.

The group of measure-preserving automorphisms Aut(𝑋, 𝜇) acts naturally on
L1
𝑒 (𝑋,𝑌 ) by composition, i.e., (𝑇 · 𝑓 ) (𝑥) = 𝑓 (𝑇−1𝑥). This action fixes the basepoint 𝑒.

Moreover, each automorphism acts by an isometry, as it preserves the measure 𝜇.

Proposition B.11. Let (𝑋, 𝜇) be a standard probability space, and let (𝑌, 𝑑𝑌 , 𝑒) be a
Polish pointed metric space. The action of Aut(𝑋, 𝜇) on L1

𝑒 (𝑋,𝑌 ) is continuous.
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Proof. The argument follows a similar approach to that in [11, Prop. 2.9(1)]. Consider
sequences 𝑇𝑛→ 𝑇 and 𝑓𝑛→ 𝑓 . We need to show that 𝑇𝑛 · 𝑓𝑛→ 𝑇 · 𝑓 . Since the action
is by isometries, we have

𝑑𝑌 (𝑇𝑛 · 𝑓𝑛, 𝑇 · 𝑓 ) = 𝑑𝑌 ( 𝑓𝑛, 𝑇−1
𝑛 𝑇 · 𝑓 ) ≤ 𝑑𝑌 ( 𝑓𝑛, 𝑓 ) + 𝑑𝑌 ( 𝑓 , 𝑇−1

𝑛 𝑇 · 𝑓 ).

Thus, it suffices to prove that for any 𝑓 ∈ L1
𝑒 (𝑋,𝑌 ) and any convergent sequence of

automorphisms 𝑇𝑛 → 𝑇 , the term 𝑑𝑌 ( 𝑓 , 𝑇−1
𝑛 𝑇 · 𝑓 ) tends to 0 as 𝑛→∞.

To establish this, it is enough to verify the claim for functions that take only
finitely many values, as such functions are dense in L1

𝑒 (𝑋, 𝑌 ). Suppose 𝑓 is a step
function defined over a partition 𝑋 =

⊔𝑚
𝑖=1 𝐴𝑖 . The convergence 𝑇𝑛 → 𝑇 implies

𝜇(𝑇−1
𝑛 𝑇 (𝐴𝑖)△𝐴𝑖) → 0 for all 1 ≤ 𝑖 ≤ 𝑚, which readily gives 𝑑𝑌 ( 𝑓 ,𝑇−1

𝑛 𝑇 · 𝑓 ) → 0.

In what follows, we identify Aut(𝑋, 𝜇) with a subset of L0(𝑋, 𝑋).

Proposition B.12. Let 𝜏 be a Polish topology on a standard probability space (𝑋, 𝜇)
compatible with its Borel structure. The inclusion map

Aut(𝑋, 𝜇) ↩→ L0(𝑋, 𝑋)

is a topological embedding when Aut(𝑋, 𝜇) is equipped with the weak topology and
L0(𝑋, 𝑋) is equipped with the topology of convergence in measure associated with 𝜏.

Proof. Fix a bounded complete metric 𝑑 compatible with 𝜏. By Lemma B.3, 𝑑 induces
the topology of convergence in measure on L0(𝑋, 𝑋). The topological group Aut(𝑋, 𝜇)
acts on L0(𝑋, 𝑋) by 𝑇 · 𝑓 = 𝑓 ◦ 𝑇−1 and this action is continuous by Proposition B.11.
Furthermore, for every 𝑇 ∈ Aut(𝑋, 𝜇), we have 𝑇−1 · id𝑋 = 𝑇 ∈ L0(𝑋, 𝑋), which shows
that the inclusion map is continuous.

The metric 𝑑 induces a right-invariant metric on Aut(𝑋, 𝜇). To prove that the
inclusion map is a topological embedding, it suffices to show that if 𝑑 (𝑇𝑛, id𝑋) → 0,
then𝑇𝑛→ id𝑋 weakly in Aut(𝑋, 𝜇). By Lemma B.3, 𝑑 (𝑇𝑛, id𝑋) → 0 implies𝑇𝑛→ id𝑋
in measure. In particular, for every 𝜏-open set𝑈 ⊆ 𝑋 , the definition of convergence in
measure yields

lim inf
𝑛→∞

𝜇(𝑇−1
𝑛 (𝑈) ∩𝑈) ≥ 𝜇(id−1

𝑋 (𝑈) ∩𝑈) = 𝜇(𝑈).

We conclude that

𝜇(𝑈) ≥ lim sup
𝑛→∞

𝜇(𝑇−1
𝑛 (𝑈) ∩𝑈) ≥ lim inf

𝑛→∞
𝜇(𝑇−1

𝑛 (𝑈) ∩𝑈) ≥ 𝜇(𝑈),

and therefore lim𝑛 𝜇(𝑇−1
𝑛 (𝑈) ∩𝑈) = 𝜇(𝑈). Since each 𝑇𝑛 is measure-preserving, it

follows that lim𝑛 𝜇(𝑇−1
𝑛 (𝑈) △ 𝑈) = 0 for every 𝑈 ∈ 𝜏. By the regularity of 𝜇, this

implies 𝑇𝑛 → id𝑋 weakly, as required.
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Let us now return to L1 spaces associated with possibly unbounded pointed metric
spaces (𝑌, 𝑑𝑌 , 𝑒). When 𝑌 is a Polish group, there is a natural choice for 𝑒, namely the
identity element of the group, which we also denote by 𝑒. In this case, we simplify the
notation further and write L1(𝑋,𝑌 ).

Recall that a Polish normed group is a Polish group equipped with a compatible
norm (see Appendix A.1). In particular, if (𝐺, ∥·∥) is a Polish normed group, there is a
canonical choice of a compatible complete metric on 𝐺, namely

𝑑𝐺 (𝑢, 𝑣) =
∥𝑢−1𝑣∥ + ∥𝑣𝑢−1∥

2
.

The corresponding space L1(𝑋,𝐺) is Polish by Proposition B.7. Furthermore, it forms
a Polish group under pointwise operations, as we now demonstrate.

Proposition B.13. Let (𝐺, ∥·∥) be a Polish normed group. The space L1(𝑋, 𝐺) is a
Polish normed group under the pointwise operations,

( 𝑓 · 𝑔) (𝑥) = 𝑓 (𝑥)𝑔(𝑥), 𝑓 −1(𝑥) = 𝑓 (𝑥)−1,

and the norm ∥ 𝑓 ∥L
1 (𝑋,𝐺)

1 =
∫
𝑋
∥ 𝑓 (𝑥)∥ 𝑑𝜇(𝑥).

Proof. The space L1(𝑋,𝐺) consists of all measurable functions 𝑓 : 𝑋 → 𝐺 with finite
norm, ∥ 𝑓 ∥L

1 (𝑋,𝐺)
1 < ∞. Using the properties of the norm ∥·∥ on 𝐺, we have

∥ 𝑓 · 𝑔∥L
1 (𝑋,𝐺)

1 =

∫
𝑋

∥ 𝑓 (𝑥)𝑔(𝑥)∥ 𝑑𝜇(𝑥)

≤
∫
𝑋

(
∥ 𝑓 (𝑥)∥ + ∥𝑔(𝑥)∥

)
𝑑𝜇(𝑥)

= ∥ 𝑓 ∥L
1 (𝑋,𝐺)

1 + ∥𝑔∥L
1 (𝑋,𝐺)

1 ,

∥ 𝑓 −1∥L
1 (𝑋,𝐺)

1 =

∫
𝑋

∥ 𝑓 (𝑥)−1∥ 𝑑𝜇(𝑥)

=

∫
𝑋

∥ 𝑓 (𝑥)∥ 𝑑𝜇(𝑥) = ∥ 𝑓 ∥L
1 (𝑋,𝐺)

1 .

Thus, L1(𝑋, 𝐺) is closed under the group operations, and ∥ · ∥L
1 (𝑋,𝐺)

1 defines a group
norm on it.

To verify the continuity of the group operations, it suffices to show that for any
𝑔 ∈ L1(𝑋, 𝐺) and any sequence 𝑓𝑛 ∈ L1(𝑋, 𝐺), 𝑛 ∈ N, converging to the identity
function 𝑒 (i.e., ∥ 𝑓𝑛∥L

1 (𝑋,𝐺)
1 → 0), there exists a subsequence ( 𝑓𝑛𝑘 )𝑘 such that

∥𝑔 · 𝑓𝑛𝑘 · 𝑔−1∥L
1 (𝑋,𝐺)

1 → 0 as 𝑘 →∞,

(see, for example, [9, Thm 3.4 and Lem. 3.5]).
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By Proposition B.9 and the fact that convergence in measure implies pointwise
convergence of a subsequence (see item (2) of Lemma B.3), there exists a subsequence
( 𝑓𝑛𝑘 )𝑘 such that 𝑓𝑛𝑘 (𝑥) → 𝑒 for almost all 𝑥 ∈ 𝑋 . By passing to a further subsequence,
we may assume without loss of generality that

∑
𝑘 ∥ 𝑓𝑛𝑘 ∥

L1 (𝑋,𝐺)
1 < +∞. The function

𝑀 (𝑥) = ∑
𝑘 ∥ 𝑓𝑛𝑘 (𝑥)∥ belongs to L1(𝑋, 𝐺), and for all 𝑘 ∈ N and 𝑥 ∈ 𝑋 ,

∥𝑔(𝑥) 𝑓𝑛𝑘 (𝑥)𝑔(𝑥)−1∥ ≤ 2∥𝑔(𝑥)∥ + ∥ 𝑓𝑛𝑘 (𝑥)∥ ≤ 2∥𝑔(𝑥)∥ + 𝑀 (𝑥).

The continuity of the group operations on 𝐺 ensures that 𝑔 · 𝑓𝑛𝑘 · 𝑔−1 → 𝑒 pointwise.
It remains to apply Lebesgue’s dominated convergence theorem and conclude that
∥𝑔 · 𝑓𝑛𝑘 · 𝑔−1∥L

1 (𝑋,𝐺)
1 → 0, as required.

Remark B.14. If the chosen compatible norm on 𝐺 is bounded, then L1(𝑋, 𝐺) =
L0(𝑋, 𝐺), and the topology under consideration coincides with the topology of con-
vergence in measure by Lemma B.3. Consequently, we recover the well-known fact
that L0(𝑋, 𝐺) is a Polish group when equipped with the topology of convergence in
measure.





Appendix C

Hopf decomposition

An important tool in the theory of invertible non-singular transformations on 𝜎-finite
measure spaces is the Hopf decomposition, which partitions the phase space into the so-
called dissipative and recurrent parts, reflecting different dynamics of the transformation.
In this appendix, we recall the relevant definitions and indicate what happens for
measure-preserving transformations of a 𝜎-finite space. The reader may consult [35,
Sec. 1.3] for further details on the following definitions.

Definition C.1. Let 𝑆 be an invertible non-singular transformation of a𝜎-finite measure
space (Ω, 𝜆). A measurable set 𝐴 ⊆ Ω is said to be:
• wandering if 𝐴 ∩ 𝑆𝑘 (𝐴) = ∅ for all 𝑘 ≥ 1;
• recurrent if 𝐴 ⊆ ⋃

𝑘≥1 𝑆
𝑘 (𝐴);

• infinitely recurrent if 𝐴 ⊆ ⋂
𝑛≥1

⋃
𝑘≥𝑛 𝑆

𝑘 (𝐴).
The inclusions above are understood to hold up to a null set. The transformation 𝑆 is:
• dissipative if the phase space Ω is a countable union of wandering sets;
• conservative if there are no wandering sets of positive measure;
• recurrent if every set of positive measure is recurrent;
• infinitely recurrent if every set of positive measure is infinitely recurrent.

It turns out that the properties of being conservative, recurrent, and infinitely
recurrent are all mutually equivalent.

Proposition C.2. Let 𝑆 be an invertible non-singular transformation of a 𝜎-finite
measure space (Ω, 𝜆). The following are equivalent:

(1) 𝑆 is conservative;
(2) 𝑆 is recurrent;
(3) 𝑆 is infinitely recurrent.

Among the properties introduced in Definition C.1, only recurrence and dissipativity
are therefore different. In fact, any non-singular transformation admits a canonical
decomposition, known as the Hopf decomposition, into these two types of action.

Proposition C.3 (Hopf decomposition). Let 𝑆 be an invertible non-singular trans-
formation of a 𝜎-finite measure space (Ω, 𝜆). There exists an 𝑆-invariant partition
Ω = 𝐷 ⊔𝐶 such that 𝑆 ↾𝐷 is dissipative and 𝑆 ↾𝐶 is recurrent (equivalently, conserva-
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tive). Moreover, if Ω= 𝐷′ ⊔𝐶′ is another partition with this property then𝜆(𝐷△𝐷′) = 0
and 𝜆(𝐶△𝐶′) = 0.

We also note the following consequence of dissipativity in case the measure is
preserved.

Proposition C.4. Let 𝑆 be an invertible measure-preserving transformation of a 𝜎-
finite measure space (Ω, 𝜆) and let Ω = 𝐷 ⊔ 𝐶 be its Hopf decomposition. For every
set 𝐴 ⊆ Ω of finite measure, almost every point in 𝐷 eventually escapes 𝐴:

∀𝜆𝑥 ∈ 𝐷 ∃𝑁 ∀𝑛 ≥ 𝑁 𝑇𝑛𝑥 ∉ 𝐴.

Proof. We may as well assume 𝐷 = Ω. Let 𝐴 ⊆ Ω have finite measure. Let 𝑄 be a
wandering set whose translates cover Ω as provided by [1, Prop. 1.1.2]. Consider the
map Φ : 𝑄 × Z → Ω which maps (𝑥, 𝑛) to 𝑇𝑛 (𝑥), and observe that Φ is measure-
preserving if we endow 𝑄 × Z with the product of the measure induced by 𝜆 on 𝑄 and
the counting measure on Z.

If the set of 𝑥 ∈𝑄 for which 𝑆𝑛 (𝑥) ∈ 𝐴 for infinitely many 𝑛 ∈N has positive measure,
then, by Fubini’s theorem, the set 𝐴 must have infinite measure, which contradicts the
assumption. The same reasoning applies to any 𝑆-translate of 𝑄. Since these translates
cover Ω, the proof is complete.



Appendix D

Disintegration of measure

Let R be a smooth measurable equivalence relation on a standard Lebesgue space
(𝑋, 𝜇), and let 𝜋 : 𝑋 → 𝑌 be a measurable reduction to the identity relation on some
standard Lebesgue space (𝑌, 𝜈), 𝜋(𝑥) = 𝜋(𝑦) if and only if 𝑥R𝑦. Suppose that 𝜈 is a
𝜎-finite measure on 𝑌 that is equivalent to the push-forward 𝜋∗𝜇. A disintegration
of 𝜇 relative to (𝜋, 𝜈) is a collection of measures (𝜇𝑦)𝑦∈𝑌 on 𝑋 such that for all Borel
sets 𝐴 ⊆ 𝑋:

(1) 𝜇𝑦 (𝑋 \ 𝜋−1(𝑦)) = 0 for 𝜈-almost all 𝑦 ∈ 𝑌 ;
(2) the map 𝑌 ∋ 𝑦 ↦→ 𝜇𝑦 (𝐴) ∈ R is measurable;
(3) 𝜇(𝐴) =

∫
𝑌
𝜇𝑦 (𝐴) 𝑑𝜈(𝑦).

A theorem of D. Maharam [43] asserts that 𝜇 can be disintegrated over any (𝜋, 𝜈)
as above. In fact, the existence of a disintegration can be proved in a considerably more
general setup (see, for example, D. H. Fremlin [19, Thm. 452I]), but in the framework
of standard Lebesgue spaces, disintegration is essentially unique. While the context of
our work is purely ergodic-theoretical, we note that the disintegration result holds in
the descriptive set-theoretical setting as well, as discussed in [44] and [26]. Without
striving for generality, we formulate here a specific version that suits our needs.

Theorem D.1 (Disintegration of Measure). Let (𝑋, 𝜇) be a standard Lebesgue space,
(𝑌, 𝜈) be a 𝜎-finite standard Lebesgue space, and let 𝜋 : 𝑋 → 𝑌 be a measurable
function. If 𝜋∗𝜇 is equivalent to 𝜈, then there exists a disintegration (𝜇𝑦)𝑦∈𝑌 of 𝜇
over (𝜋, 𝜈). Moreover, such a disintegration is essentially unique in the sense that
if (𝜇′𝑦)𝑦∈𝑌 is another disintegration, then 𝜇𝑦 = 𝜇′𝑦 for 𝜈-almost all 𝑦 ∈ 𝑌 .

Remark D.2. It is more common to formulate the disintegration theorem with the
assumption that 𝜋∗𝜇 = 𝜈, when one can additionally ensure that 𝜇𝑦 (𝑋) = 𝜇(𝑋) for
𝜈-almost all 𝑦. Weakening the equality 𝜋∗𝜇 = 𝜈 to mere equivalence is a simple conse-
quence, for if (𝜇𝑦)𝑦∈𝑌 is a disintegration of 𝜇 over (𝜋, 𝜋∗𝜇), then

( 𝑑𝜋∗𝜇
𝑑𝜈
(𝑦) · 𝜇𝑦

)
𝑦∈𝑌

is a disintegration of 𝜇 over (𝜋, 𝜈).
Let 𝑋𝑎 ⊆ 𝑋 be the set of atoms of the disintegration, i.e.,

𝑋𝑎 = {𝑥 ∈ 𝑋 : 𝜇𝑦 (𝑥) > 0 for some 𝑦 ∈ 𝑌 },

and let 𝐹 be the equivalence relation on 𝑋𝑎, where two atoms within the same fiber are
equivalent whenever they have the same measure: 𝑥1𝐹𝑥2 if and only if 𝜇𝜋 (𝑥1 ) (𝑥1) =
𝜇𝜋 (𝑥2 ) (𝑥2) and 𝜋(𝑥1) = 𝜋(𝑥2). The equivalence relation 𝐹 is measurable and has finite
classes 𝜇-almost surely. Let 𝑋𝑛, 𝑛 ≥ 1, be the union of 𝐹-equivalence classes of size
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exactly 𝑛, thus 𝑋𝑎 =
⊔
𝑛≥1 𝑋𝑛. Set also 𝑋0 = 𝑋 \ 𝑋𝑎 to be the atomless part of the

disintegration and let R𝑛 denote the restriction of R onto 𝑋𝑛.
Consider the group [R ] ≤ Aut(𝑋, 𝜇) of measure-preserving bĳections 𝑇 such that

𝑥R𝑇𝑥 holds 𝜇-almost surely. Every 𝑇 ∈ [R ] preserves 𝜈-almost all measures 𝜇𝑦 , since
(𝑇∗𝜇𝑦)𝑦∈𝑌 is a disintegration of 𝑇∗𝜇 = 𝜇, which has to coincide with (𝜇𝑦)𝑦∈𝑌 by the
uniqueness of the disintegration. In particular, the partition 𝑋 =

⊔
𝑛∈N 𝑋𝑛 is invariant

under the full group [R ], and for any 𝑇 ∈ [R ], the restriction 𝑇 ↾𝑋𝑛∈ [R𝑛 ] for every
𝑛 ∈ N. Conversely, for a sequence 𝑇𝑛 ∈ [R𝑛 ], 𝑛 ∈ N, one has 𝑇 =

⊔
𝑛 𝑇𝑛 ∈ [R ]. We

therefore have an isomorphism of (abstract) groups [R ] � ∏
𝑛∈N [R𝑛 ].

The groups [R𝑛 ] can be described quite explicitly. First, consider the case 𝑛 ≥ 1;
thus 𝑋𝑛 ⊆ 𝑋𝑎. All equivalence classes of the restriction of 𝐹 onto 𝑋𝑛 have size 𝑛. Let
𝑌𝑛 ⊆ 𝑋𝑛 be a measurable transversal, i.e., a measurable set intersecting every 𝐹-class in
a single point, and let 𝜈𝑛 = 𝜇 ↾𝑌𝑛 . Every 𝑇 ∈ [R𝑛 ] produces a permutation of 𝜇-almost
every 𝐹-class, so we can view it as an element of L0(𝑌𝑛, 𝜈𝑛,𝔖𝑛), where 𝔖𝑛 is the group
of permutations of an 𝑛-element set. This identification works in both directions and
produces an isomorphism [R𝑛 ] � L0(𝑌𝑛, 𝜈𝑛,𝔖𝑛). Note also that all 𝜈𝑛 are atomless if
so is 𝜇. We allow for 𝜇(𝑋𝑛) = 0, in which case L0(𝑌𝑛, 𝜈𝑛,𝔖𝑛) is the trivial group.

Let us now return to the equivalence relation R0 = R ∩ 𝑋0 × 𝑋0, and recall that the
measures 𝜇𝑦 ↾𝑋0 are atomless. Let𝑌0 = {𝑦 : 𝜇𝑦 (𝑋0) > 0} be the encoding of fibers with
non-trivial atomless components, and put 𝜈0 = 𝜈 ↾𝑌0 . In particular, for every 𝑦 ∈ 𝑌0, the
space (𝑋0, 𝜇𝑦) is isomorphic to the interval [0, 𝜇𝑦 (𝑋0)] endowed with the Lebesgue
measure. In fact, one can select such isomorphisms in a measurable way across all
𝑦 ∈ 𝑌0. More precisely, there is a measurable isomorphism

𝜓 : 𝑋0 → {(𝑦, 𝑟) ∈ 𝑌0 × R : 0 ≤ 𝑟 ≤ 𝜇𝑦 (𝑋0)}

such that for all 𝑦 ∈ 𝑌0,
• 𝜓(𝜋−1(𝑦) ∩ 𝑋0) = {𝑦} × [0, 𝜇𝑦 (𝑋0)];
• 𝜓∗(𝜇𝑦 ↾𝑋0) coincides with the Lebesgue measure on {𝑦} × [0, 𝜇𝑦 (𝑋0)].
The reader may find further details in [26, Thm. 2.3], where the same construction is
discussed in a more refined setting of Borel disintegrations.

Using the isomorphism 𝜓, each 𝜋−1(𝑦) ∩ 𝑋0, 𝑦 ∈ 𝑌0, is identified with [0, 𝜇𝑦 (𝑋0)].
Since every 𝑇 ∈ [R0 ] preserves 𝜈-almost every 𝜇𝑦 , we may rescale these intervals
and view any 𝑇 ∈ [R0 ] as an element of L0(𝑌0, 𝜈0,Aut( [0, 1], 𝜆)). Conversely, every
𝑓 ∈ L0(𝑌0, 𝜈0,Aut( [0, 1], 𝜆)) gives rise to 𝑇 𝑓 ∈ [R0 ] via the notationally convoluted
but natural

𝑇 𝑓 (𝑥) = 𝜓−1 (𝜋(𝑥), ( 𝑓 (𝜋(𝑥)) · proj2(𝜓(𝑥))/𝜇𝜋 (𝑥 ) (𝑋0)
)
𝜇𝜋 (𝑥 ) (𝑋0)

)
,

which, in plain words, simply applies 𝑓 (𝜋(𝑥)) upon the corresponding fiber identi-
fied with [0, 1] using 𝜓. This map is an isomorphism between the groups [R0 ] and
L0(𝑌0, 𝜈0,Aut( [0, 1], 𝜆)).
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Let us say that R has atomless classes if 𝜇𝑦 is atomless 𝜈-almost surely or, equiva-
lently, if 𝜇(𝑋𝑎) = 0 in the notation above. We may summarize the discussion so far
into the following proposition.

Proposition D.3. Let R be a smooth measurable equivalence relation on a standard
Lebesgue space (𝑋, 𝜇). There are (possibly empty) standard Lebesgue spaces (𝑌𝑛, 𝜈𝑛),
𝑛 ∈ N, such that the full group [R ] ≤ Aut(𝑋, 𝜇) is (abstractly) isomorphic to

L0(𝑌0, 𝜈0,Aut( [0, 1], 𝜆)) ×
∏
𝑛≥1

L0(𝑌𝑛, 𝜈𝑛,𝔖𝑛),

where 𝔖𝑛 is the group of permutations of an 𝑛-element set. If 𝜇 is atomless, then so
are the spaces (𝑌𝑛, 𝜈𝑛), 𝑛 ≥ 1. If R has atomless classes, then all (𝑌𝑛, 𝜈𝑛), 𝑛 ≥ 1, are
negligible and [R ] is isomorphic to L0(𝑌0, 𝜈0,Aut( [0, 1], 𝜆)).

We can further refine the product in Proposition D.3 by decomposing the spaces
(𝑌𝑛, 𝜈𝑛) into individual atoms and the atomless remainders. This relies on the following
general result.

Proposition D.4. Let (𝑍, 𝜈𝑍 ) be a standard Lebesgue space, and let𝐺 be a Polish group.
For any finite or countably infinite measurable partition 𝑍 =

⊔
𝑛∈𝐼 𝑍𝑛, there exists an

isomorphism of topological groups between L0(𝑍, 𝜈𝑍 , 𝐺) and
∏
𝑛∈𝐼 L0(𝑍𝑛, 𝜈𝑍,𝑛, 𝐺),

where 𝜈𝑍,𝑛 is the restriction of 𝜈𝑍 onto 𝑍𝑛.

Proof. Consider the map Φ that assigns to each 𝑓 ∈ L0(𝑍, 𝜈𝑍 , 𝐺) the sequence of its
restrictions 𝑓 ↾𝑍𝑛∈ L0(𝑍𝑛, 𝜈𝑍,𝑛, 𝐺), where 𝑛 ∈ 𝐼. It is straightforward to verify that
Φ is a group isomorphism, and its continuity follows directly from the definition of
convergence in measure. Automatic continuity implies that Φ is a homeomorphism, as
it is a Borel group isomorphism between Polish groups (see [6, Sec. 1.6]). Alternatively,
the continuity of Φ−1 can easily be checked directly.

Applying Proposition D.4 to the partition of (𝑍, 𝜈𝑍 ) into the atomless part 𝑍0
and individual atoms 𝑍𝑘 = {𝑧𝑘} (if any), and noting that for a singleton 𝑍𝑘 the group
L0(𝑍𝑘 , 𝜈𝑍,𝑘 , 𝐺) is naturally isomorphic to 𝐺, we get the following corollary.

Corollary D.5. Let (𝑍, 𝜈𝑍 ) be a standard Lebesgue space, and let 𝐺 be a Polish group.
Let 𝑍𝑎 ⊆ 𝑍 be the set of atoms of 𝑍 , and let 𝑍0 = 𝑍 \ 𝑍𝑎 be the atomless part. The
group L0(𝑍, 𝜈𝑍 , 𝐺) is isomorphic to L0(𝑍0, 𝜈𝑍 ↾𝑍0 , 𝐺) × 𝐺 |𝑍𝑎 | .

Combining the above discussion with Proposition D.3, we obtain a very concrete
representation for [R ]. In the formulation below, 𝐺0 is understood to be the trivial
group.

Proposition D.6. Let R be a smooth measurable equivalence relation on a standard
Lebesgue space (𝑋, 𝜇). There exist cardinals 𝜅𝑛 ≤ ℵ0 and 𝜖𝑛 ∈ {0, 1} such that
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[R ] � L0( [0, 1], 𝜆,Aut( [0, 1], 𝜆)) 𝜖0 × Aut( [0, 1], 𝜆)𝜅0

×
(∏
𝑛≥1

L0( [0, 1], 𝜆,𝔖𝑛) 𝜖𝑛 ×𝔖𝜅𝑛
𝑛

)
.

If 𝜇 is atomless, then 𝜅𝑛 = 0 for all 𝑛 ≥ 1; if R has atomless classes, then 𝜖𝑛 = 0
for all 𝑛 ≥ 1.

So far, we have considered [R ] as an abstract group. This is because neither of the
two natural topologies on Aut(𝑋, 𝜇) interacts well with the full group construction—
[R ] is generally not closed in the weak topology, and is not separable in the uniform
topology whenever 𝜇(𝑋0) > 0. Nonetheless, the isomorphism given in Proposition D.3
shows that there is a natural Polish topology on [R ], which arises when we view
the groups L0(𝑌0, 𝜈0,Aut( [0, 1], 𝜆)) and L0(𝑌𝑛, 𝜈𝑛,𝔖𝑛) as Polish groups in the topol-
ogy of convergence in measure. It is with respect to this topology that we formulate
Proposition D.7.

Proposition D.7. Let R be a smooth measurable equivalence relation on a standard
Lebesgue space (𝑋, 𝜇). The set of periodic elements is dense in [R ].

Proof. Rokhlin’s Lemma implies that any 𝑇 ∈ [R ] can be approximated in the uniform
topology by periodic elements from [𝑇 ] ⊆ [R ]. Since the uniform topology is stronger
than the Polish topology on [R ], the proposition follows.



Appendix E

Actions of locally compact Polish groups

In this chapter of the appendix, we collect some well-known facts related to the actions of
locally compact Polish groups. This exposition is provided for the reader’s convenience
and completeness. We recall that, by a result of G. W. Mackey [42], any Boolean
measure-preserving action of a locally compact Polish group can be realized as a spatial
Borel action. Thus, we may switch to pointwise formulations whenever convenient for
the exposition.

E.1 Ergodic decomposition

Let 𝐺 ↷ 𝑋 be a measure-preserving action of a locally compact Polish group on a
standard probability space (𝑋, 𝜇). The space E = EINV(𝐺 ↷ 𝑋) of invariant ergodic
probability measures of this action possesses the structure of a standard Borel space.
The Ergodic Decomposition theorem of V. S. Varadarajan [59, Thm. 4.2] asserts that
there exist an essentially unique Borel 𝐺-invariant surjection 𝑋 ∋ 𝑥 ↦→ 𝜈𝑥 ∈ E and a
probability measure 𝑝 on E such that 𝜇 =

∫
E 𝜈 𝑑𝑝(𝜈). This equality holds in the sense

that 𝜇(𝐴) =
∫
E 𝜈(𝐴) 𝑑𝑝(𝜈) for all Borel 𝐴 ⊆ 𝑋 .

There is a one-to-one correspondence between measurable 𝐺-invariant functions
ℎ : 𝑋→ R and measurable functions ℎ̃ : E → R, given by ℎ̃(𝜈𝑥) = ℎ(𝑥). For measures 𝜇
and 𝑝 as above, this correspondence gives an isometric isomorphism between L1(E,R)
and the subspace of L1(𝑋,R) consisting of 𝐺-invariant functions.

E.2 Tessellations

An important feature of locally compact group actions is the fact that they all admit
Lebesgue measurable cross-sections. This was proved by J. Feldman, P. Hahn, and
C. Moore in [16], whereas a Borel version of the result was obtained by A. S. Kechris
in [30].

Definition E.1. Let 𝐺 ↷ 𝑋 be a Borel action of a locally compact Polish group. A
cross-section is a Borel set C ⊆ 𝑋 which is both
• a complete section for R𝐺: it intersects every orbit of the action; and
• lacunary: there is a neighborhood of the identity 1𝐺 ∈ 𝑈 ⊆ 𝐺 such that C is

𝑈-lacunary, namely one has𝑈 · 𝑐 ∩𝑈 · 𝑐′ = ∅ for all distinct 𝑐, 𝑐′ ∈ C.
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A cross-section C is 𝐾-cocompact, where 𝐾 ⊆ 𝐺 is a compact set, if 𝐾 · C = 𝑋; a
cross-section is cocompact if it is 𝐾-cocompact for some compact 𝐾 ⊆ 𝐺.

Any action 𝐺 ↷ 𝑋 admits a 𝐾-cocompact cross-section, whenever 𝐾 ⊆ 𝐺 is a
compact neighborhood of the identity (see [56, Thm. 2.4]). We also recall the following
well-known lemma on the possibility of partitioning a cross-section into pieces with a
prescribed lacunarity parameter.

Lemma E.2. Let𝐺↷ 𝑋 be a Borel action of a locally compact Polish group, and let C
be a cross-section for the action. For any compact neighborhood of the identity 𝑉 ⊆ 𝐺,
there exists a finite Borel partition C =

⊔
𝑖 C𝑖 such that each C𝑖 is 𝑉-lacunary.

Proof. Set 𝐾 = (𝑉 ∪𝑉−1)2, and let𝑈 ⊆ 𝐺 be a compact neighborhood of the identity
small enough for C to be 𝑈-lacunary. Define a binary relation G on C by declaring
(𝑐, 𝑐′) ∈ G whenever 𝑐 ∈ 𝐾 · 𝑐′ and 𝑐 ≠ 𝑐′. Note that G is symmetric since 𝐾 is. We
view G as a Borel graph on C and claim that it is locally finite. More specifically, if 𝜆
is a right Haar measure, then the degree of each 𝑐 ∈ C is at most

⌊
𝜆(𝑈 ·𝐾 )
𝜆(𝑈)

⌋
− 1.

Indeed, let 𝑐0, . . . , 𝑐𝑁 ∈ C be distinct elements such that 𝑐𝑖 ∈ 𝐾 · 𝑐0 for all 𝑖 ≤ 𝑁;
in particular (𝑐𝑖 , 𝑐0) ∈ G for 𝑖 ≥ 1. Let 𝑘𝑖 ∈ 𝐾 be such that 𝑘𝑖 · 𝑐0 = 𝑐𝑖 . The lacunarity
of C asserts that the sets𝑈 · 𝑐𝑖 = 𝑈𝑘𝑖 · 𝑐0 are supposed to be pairwise disjoint, which
necessitates𝑈𝑘𝑖 to be pairwise disjoint for 0 ≤ 𝑖 ≤ 𝑁 . Clearly,𝑈𝑘𝑖 ⊆ 𝑈𝐾 since 𝑘𝑖 ∈ 𝐾 .
Using the right-invariance of 𝜆, we have 𝜆(𝑈𝐾) ≥ 𝜆

(⊔
𝑖≤𝑁 𝑈𝑘𝑖

)
= (𝑁 + 1)𝜆(𝑈), and

thus 𝑁 + 1 ≤ 𝜆(𝑈𝐾 )
𝜆(𝑈) , as claimed.

We may now use [34, Prop. 4.6] to deduce the existence of a finite partitionC =⊔
𝑖 C𝑖

such that no two points in C𝑖 are adjacent. In other words, if 𝑐, 𝑐′ ∈ C𝑖 are distinct, then
𝑐 ∉ 𝐾 · 𝑐′, and therefore 𝑉 · 𝑐 ∩𝑉 · 𝑐′ = ∅, which shows that each C𝑖 is 𝑉-lacunary.

Every cross-section C gives rise to a smooth subrelation of R𝐺 by associating to
𝑥 ∈ 𝑋 “the closest point” of C in the same orbit. Such a subrelation is known as the
Voronoi tessellation. For the purposes of Chapter 5, we need a slightly more abstract
concept of a tessellation, which may not correspond to Voronoi domains. While far
from being the most general, the following treatment is sufficient for our needs.

Definition E.3. Let 𝐺 ↷ 𝑋 be a Borel action of a locally compact Polish group on a
standard Borel space and let C ⊆ 𝑋 be a cross-section. A tessellation over C is a Borel
setW ⊆ C × 𝑋 such that

(1) all fibersW𝑐 = {𝑥 ∈ 𝑋 : (𝑐, 𝑥) ∈ W} are pairwise disjoint for 𝑐 ∈ C;
(2) for all 𝑐 ∈ C, elements ofW𝑐 are R𝐺-equivalent to 𝑐, i.e., {𝑐} ×W𝑐 ⊆ R𝐺;
(3) fibers cover the phase space, 𝑋 =

⊔
𝑐∈CW𝑐.

A tessellationW over C is called 𝑁-lacunary for an open subset 𝑁 ⊆ 𝐺 if, for
every 𝑐 ∈ C, the inclusion 𝑁 · 𝑐 ⊆ W𝑐 holds. It is said to be 𝐾-cocompact, where
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𝐾 ⊆ 𝐺 is a compact subset, ifW𝑐 ⊆ 𝐾 · 𝑐 for all 𝑐 ∈ C. We say thatW is cocompact
if it is 𝐾-cocompact for some compact subset 𝐾 ⊆ 𝐺.

Any tessellationW can be viewed as a (flipped) graph of a function, since for
any 𝑥 ∈ 𝑋 , there is a unique 𝑐 ∈ C such that (𝑐, 𝑥) ∈ W. We denote such 𝑐 by 𝜋W (𝑥),
which produces a Borel map 𝜋W : 𝑋 → C. There is a natural equivalence relation RW
associated with the tessellation. Namely, 𝑥1 and 𝑥2 are RW-equivalent whenever they
belong to the same fiber, i.e., 𝜋W (𝑥1) = 𝜋W (𝑥2). In view of item (2), RW ⊆ R𝐺 , and
moreover, every R𝐺-class consists of countably many RW-classes.

E.3 Voronoi tessellations

Voronoi tessellations provide a specific method for constructing tessellations over a
given cross-section. Suppose that the group 𝐺 is endowed with a compatible proper
norm ∥·∥. Let 𝐷 : R𝐺 → R≥0 be the associated metric on the orbits of the action (as
in Section 2.1), and let ⪯C be a Borel linear order on C. The Voronoi tessellation over
the cross-section C relative to a proper norm ∥·∥ is the setVC ⊆ C × 𝑋 defined by

VC =
{
(𝑐, 𝑥) ∈ C × 𝑋 : 𝑐R𝐺𝑥 and for all 𝑐′ ∈ C such that 𝑐′R𝐺𝑥, either

𝐷 (𝑐, 𝑥) < 𝐷 (𝑐′, 𝑥) or
(𝐷 (𝑐, 𝑥) = 𝐷 (𝑐′, 𝑥) and 𝑐 ⪯C 𝑐′)

}
.

The properness of the norm ensures that for each 𝑥 ∈ 𝑋 , there are only finitely many
candidates 𝑐 that minimize 𝐷 (𝑐, 𝑥), and hence each 𝑥 ∈ 𝑋 is associated with a unique
𝑐 ∈ C. Here is a basic application of Voronoi tessellations.

Proposition E.4. Let 𝐺 be a locally compact Polish group acting in a Borel manner on
a standard Borel space 𝑋 . There exists a sequence of cocompact tessellations (V𝑛)𝑛∈N
such that R𝐺 =

⋃
𝑛 RV𝑛 .

Remark E.5. It is essential that in the statement above, the equivalence relations RV𝑛
are not required to be nested. For a related statement where these relations are indeed
nested and the acting group is amenable, the reader is referred to Lemma 5.1.

Proof of Proposition E.4. Let C be a cocompact cross-section, and let ∥·∥ be a proper
norm on 𝐺 inducing the metric 𝐷 on the orbits. For each 𝑛 ∈ N, define𝑈𝑛 to be the
open ball of radius 𝑛 centered at 1𝐺 . We denote the Voronoi tessellation over C byVC .

Lemma E.2 lets us pick a finite sequence of cocompact cross-sections C𝑛1 , . . . , C
𝑛
𝑘𝑛

such that eachC𝑛
𝑖

is𝑈𝑛-lacunary andC =⊔𝑘𝑛
𝑖=1C

𝑛
𝑖

. Notably, the𝑈𝑛-lacunarity condition
ensures that for distinct 𝑐, 𝑐′ ∈ C𝑛

𝑖
, we have 𝐷 (𝑐, 𝑐′) ≥ 𝑛. LetV𝑛

𝑖
denote the Voronoi

tessellation over C𝑛
𝑖

.



132 Actions of locally compact Polish groups

We claim that the tessellations C𝑛
𝑖

constitute the desired sequence. Let 𝑥, 𝑦 ∈ 𝑋 be
such that (𝑥, 𝑦) ∈ R𝐺 . Set 𝑐 = 𝜋VC (𝑥). If 𝑛 is so large that 𝐷 (𝑥, 𝑐) < 𝑛 and 𝐷 (𝑦, 𝑐) < 𝑛,
then 𝜋V2𝑛

𝑖
(𝑦) = 𝑐 = 𝜋V2𝑛

𝑖
(𝑥) for the index 𝑖 satisfying 𝑐 ∈ C2𝑛

𝑖
. We conclude that

(𝑥, 𝑦) ∈ RV2𝑛
𝑖

, and the claim follows.

For the sake of Chapter 5, we also need a definition of the Voronoi tessellation
for norms that may not be proper. The set VC specified as above may, in this case,
fail to satisfy item (3) of the definition of a tessellation. For some 𝑥 ∈ 𝑋 , there may
be infinitely many 𝑐 ∈ C that minimize 𝐷 (𝑐, 𝑥), none of which are ⪯C-minimal. We
therefore need a different way to resolve the points on the “boundary” between the
regions, which can be achieved, for example, by delegating this task to a proper norm.

Definition E.6. Let ∥·∥ be a compatible norm on 𝐺 and let C be a cross-section. Pick
a compatible proper norm ∥·∥′ on 𝐺 and a Borel linear order ⪯C on C. Let 𝐷 and
𝐷′ be the metrics on the orbits of the action associated with the norms ∥·∥ and ∥·∥′,
respectively. The Voronoi tessellation over the cross-section C relative to the norm
∥·∥ is the setVC ⊆ C × 𝑋 defined by

VC =
{
(𝑐, 𝑥) ∈ C × 𝑋 : 𝑐R𝐺𝑥 and for all 𝑐′ ∈ C such that 𝑐′R𝐺𝑥 either

𝐷 (𝑐, 𝑥) < 𝐷 (𝑐′, 𝑥) or
(𝐷 (𝑐, 𝑥) = 𝐷 (𝑐′, 𝑥) and 𝐷′ (𝑐, 𝑥) < 𝐷′ (𝑐′, 𝑥)) or
(𝐷 (𝑐, 𝑥) = 𝐷 (𝑐′, 𝑥) and 𝐷′ (𝑐, 𝑥) = 𝐷′ (𝑐′, 𝑥) and 𝑐 ⪯C 𝑐′)

}
.

The definition of the Voronoi tessellation does depend on the choice of the norm
∥·∥′ and the linear order ⪯C on the cross-section, but its key properties remain the
same regardless of these choices. We therefore often do not explicitly specify which
∥·∥′ and ⪯C are picked. Note also that if the cross-section is cocompact, then every
region of the Voronoi tessellation is bounded, i.e., sup𝑥∈𝑋 𝐷 (𝑥, 𝜋VC (𝑥)) < +∞.

Our goal is to show that the equivalence relations RW are atomless in the sense of
Section D, provided that each orbit of the action is uncountable. To this end, we first
need the following lemma.

Lemma E.7. Let 𝐺 be a locally compact Polish group acting on a standard Lebesgue
space (𝑋, 𝜇) by measure-preserving automorphisms. Suppose that almost every orbit
of the action is uncountable. If A ⊆ 𝑋 is a measurable set such that the intersection
of A with almost every orbit is countable, then 𝜇(A) = 0.

Proof. Pick a proper norm ∥·∥ on 𝐺. Let C be a cross-section for the action, and let
𝐵2𝑟 ⊆ 𝐺 be an open ball around the identity of sufficiently small radius 2𝑟 > 0 such
that 𝐵2𝑟 · 𝑐 ∩ 𝐵2𝑟 · 𝑐′ = ∅ whenever 𝑐, 𝑐′ ∈ C are distinct. Let VC be the Voronoi
tessellation over C relative to ∥·∥. Note that 𝐵2𝑟 · 𝑐 is fully contained in the RVC -class
of 𝑐.
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We claim that it is enough to consider the case when A intersects each RVC -class
in at most one point. Indeed, the restriction of RVC onto A is a smooth countable
equivalence relation, so one can write A =

⊔
𝑛∈NA′𝑛, where each A′𝑛 intersects each

RVC -class in at most one point. To simplify notation, we assume that A already
possesses this property.

Let 𝑌 = 𝐵𝑟 · C, and let (𝑔𝑛)𝑛∈N be a countable dense subset of 𝐺. We define the
function 𝛾 : 𝑋 → N by

𝛾(𝑥) = min{𝑛 ∈ N : 𝑥 RVC 𝑔𝑛𝑥 and 𝑔𝑛𝑥 ∈ 𝑌 }.

LetA𝑛 = A ∩ 𝛾−1(𝑛), and note that the setsA𝑛 partitionA. It is therefore enough to
show that 𝜇(A𝑛) = 0 for any 𝑛 ∈ N. Pick 𝑛0 ∈ N. The action is measure-preserving,
and therefore 𝜇(A𝑛0) = 𝜇(𝑔𝑛0A𝑛0). Set B0 = 𝑔𝑛0A𝑛0 and note that for any 𝑥 ∈ B0 and
𝑔 ∈ 𝐵𝑟 ⊆ 𝐺, one has 𝑔𝑥RVC𝑥. If the action were free, we could easily conclude that
𝜇(B0) = 0, since the sets 𝑔B0, 𝑔 ∈ 𝐵𝑟 , would be pairwise disjoint. In general, we need
to exhibit a little more care and construct a countable family of pairwise disjoint sets
B𝑛 as follows. For 𝑥 ∈ B0, let

𝜏𝑛 (𝑥) = min
{
𝑚 ∈ N : 𝑥RVC𝑔𝑚𝑥 and 𝑔𝑚𝑥 ∉

⋃
𝑘≤𝑛
B𝑛

}
.

The value 𝜏𝑛 (𝑥) is well-defined because the stabilizer of 𝑥 is closed and must be nowhere
dense in 𝐵𝑟 due to the orbit 𝐺 · 𝑥 being uncountable. Put B𝑛+1 = {𝑔𝜏𝑛 (𝑥 )𝑥 : 𝑥 ∈ B0}
and note that 𝜇(B𝑛) = 𝜇(B0). We get a pairwise disjoint infinite family of sets B𝑛, all
having the same measure. Since 𝜇 is finite, we conclude that 𝜇(B0) = 0, and the lemma
follows.

Corollary E.8. Let𝐺 be a locally compact Polish group acting on a standard Lebesgue
space (𝑋, 𝜇) by measure-preserving automorphisms. Let C be a cross-section for the
action, and letW⊆C × 𝑋 be a tessellation. If 𝜇-almost every orbit of 𝐺 is uncountable,
then RW is atomless.

Proof. Consider the disintegration (𝜇𝑐)𝑐∈C of RW relative to (𝜋W , 𝜈), where 𝜋W :
𝑋 → C and 𝜈 = (𝜋W)∗𝜇. Let 𝑋𝑎 ⊆ 𝑋 be the set of atoms of the disintegration. Since
𝜈-almost every 𝜇𝑐 is finite, the fibers 𝜋−1

W (𝑐) have countably many atoms. Since every
tessellation has only countably many tiles within each orbit, we conclude that 𝑋𝑎 has a
countable intersection with almost every orbit of the action. Lemma E.7 applies and
shows that 𝜇(𝑋𝑎) = 0. Hence, RW is atomless as required.

Consider the full group [RW ], which, by Proposition D.3 and Corollary E.8, is
isomorphic to L0(𝑌, 𝜈,Aut( [0, 1], 𝜆)) for some standard Lebesgue space (𝑌, 𝜈). This
full group can naturally be viewed as a subgroup of [R𝐺 ], and the topology induced
on [RW ] from the full group [R𝐺 ] coincides with the topology of convergence in
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measure on L0(𝑌, 𝜈,Aut( [0, 1], 𝜆)) (see Section 3 of [11]). We therefore have the
following corollary.

Corollary E.9. Let𝐺 be a locally compact Polish group acting on a standard Lebesgue
space (𝑋, 𝜇) by measure-preserving automorphisms. Let C be a cross-section for
the action, let W ⊆ C × 𝑋 be a tessellation, and let 𝜋W : 𝑋 → C be the corre-
sponding reduction. If 𝜇-almost every orbit of 𝐺 is uncountable, then the subgroup
[RW ] ≤ [R𝐺 ] is isomorphic as a topological group to L0(C, (𝜋W)∗𝜇,Aut( [0, 1], 𝜆)).
If moreover all orbits of the action have measure zero, then (𝜋W)∗𝜇 is non-atomic,
and [RW ] is isomorphic to L0( [0, 1], 𝜆,Aut( [0, 1], 𝜆)).



Appendix F

Conditional measures

The ergodic decomposition theorem, as formulated in Section E.1, is not available for
general probability measure-preserving actions of Polish groups. Conditional measures
provide a useful framework to remedy this. As before, Aut(𝑋, 𝜇) stands for the group of
measure-preserving automorphisms of a standard probability space. It is more useful,
however, to view Aut(𝑋, 𝜇) as the group of measure-preserving automorphisms of
the measure algebra MAlg(𝑋, 𝜇) of (𝑋, 𝜇), i.e., the Boolean algebra of equivalence
classes of Borel subsets of 𝑋 , identified up to measure zero. The measure algebra is
endowed with a natural metric 𝑑𝜇 given by 𝑑𝜇 (𝐴, 𝐵) = 𝜇(𝐴 △ 𝐵). The completeness
of (MAlg(𝑋, 𝜇), 𝑑𝜇) follows directly from its natural isometric identification with
(L1(𝑋, 𝜇, Z/2Z), 𝑑𝑌 ), where Z/2Z is endowed with the discrete metric 𝑑𝑌 , and the
metric 𝑑𝑌 is given in Definition B.5.

Proposition F.1. The metric space (MAlg(𝑋, 𝜇), 𝑑𝜇) is complete.

Note that closed subalgebras of MAlg(𝑋, 𝜇) are in a one-to-one correspondence
with complete (in the measure-theoretical sense) 𝜎-subalgebras of the 𝜎-algebra of
Lebesgue measurable sets.

F.1 Conditional expectations

We give a concise overview of how conditional expectations can be defined without
the need for disintegration.

Let 𝑀 be a closed subalgebra of MAlg(𝑋, 𝜇) and let L2(𝑀, 𝜇) denote the L2 space
of real-valued 𝑀-measurable functions. Note that L2(𝑀, 𝜇) is a closed subspace of
L2(𝑋, 𝜇) = L2(MAlg(𝑋, 𝜇), 𝜇). The 𝑀-conditional expectation is the orthogonal
projection E𝑀 : L2(𝑋, 𝜇) → L2(𝑀, 𝜇). It is uniquely defined by the condition∫

𝑋

𝑓 𝑔 𝑑𝜇 =

∫
𝑋

E𝑀 ( 𝑓 )𝑔 𝑑𝜇 for all 𝑓 ∈ L2(𝑋, 𝜇) and all 𝑔 ∈ L2(𝑀, 𝜇). (F.1)

Due to the density of step functions in L2(𝑀, 𝜇), the conditional expectation can
equivalently be defined as the linear contraction L2(𝑋, 𝜇) → L2(𝑀, 𝜇) satisfying∫

𝐴

𝑓 𝑑𝜇 =

∫
𝐴

E𝑀 ( 𝑓 ) 𝑑𝜇 for all 𝐴 ∈ 𝑀 and all 𝑓 ∈ L2(𝑋, 𝜇). (F.2)

Positive functions are precisely those that yield a non-negative dot product with any
characteristic function. By allowing 𝑔 in Eq. (F.1) to vary over the set of all characteristic
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functions of subsets in 𝑀, we can see that the conditional expectation E𝑀 preserves
positivity.

Proposition F.2. If 𝑓 ∈ L2(𝑋, 𝜇) is non-negative, 𝑓 ≥ 0, then E𝑀 ( 𝑓 ) ≥ 0.

While we defined conditional expectations as operators on L2(𝑋, 𝜇), their domain
can be extended to all of L1(𝑋, 𝜇), makingE𝑀 a contraction from L1(𝑋, 𝜇) to L1(𝑀, 𝜇).
This is justified by the following proposition.

Proposition F.3. The conditional expectation E𝑀 : L2(𝑋, 𝜇) → L2(𝑀, 𝜇) is a con-
traction when the domain and the range are endowed with the L1 norms.

Proof. If 𝑓 ∈ L2(𝑋, 𝜇) is non-negative, 𝑓 ≥ 0, then Eq. (F.1) yields

∥ 𝑓 ∥1 =

∫
𝑋

𝑓 𝑑𝜇 =

∫
𝑋

𝑓 · 1 𝑑𝜇 =

∫
𝑋

E𝑀 ( 𝑓 ) · 1 𝑑𝜇 =

∫
𝑋

E𝑀 ( 𝑓 ) 𝑑𝜇.

Since E𝑀 ( 𝑓 ) ≥ 0 by Proposition F.2, we conclude that ∥E𝑀 ( 𝑓 )∥1 = ∥ 𝑓 ∥1 for all
non-negative 𝑓 ∈ L2(𝑋, 𝜇).

An arbitrary 𝑓 ∈ L2(𝑋, 𝜇) can be written as the difference 𝑓 + − 𝑓 − of non-negative
functions 𝑓 + = max{ 𝑓 , 0} and 𝑓 − = max{− 𝑓 , 0}. Note that 𝑓 +, 𝑓 − ∈ L2(𝑋, 𝜇) and
∥ 𝑓 +∥1 + ∥ 𝑓 − ∥1 = ∥ 𝑓 ∥1. We therefore have

∥E𝑀 ( 𝑓 )∥1 = ∥E𝑀 ( 𝑓 + − 𝑓 −)∥1 ≤ ∥E𝑀 ( 𝑓 +)∥1 + ∥E𝑀 ( 𝑓 −)∥1 = ∥ 𝑓 +∥1 + ∥ 𝑓 − ∥1 = ∥ 𝑓 ∥1,

showing that E𝑀 is a contraction in the L1 norm.

Remark F.4. By the previous proposition, E𝑀 admits a (necessarily unique) extension
to a contraction

E𝑀 : L1(𝑋, 𝜇) → L1(𝑀, 𝜇).

Moreover, since every non-negative integrable function can be written as an increasing
limit of bounded non-negative functions, the analog of Proposition F.2 continues to
hold for 𝑓 ∈ L1(𝑋, 𝜇).

F.2 Conditional measures

Throughout this section, we let 𝜒𝐴 : 𝑋 → {0, 1} denote the characteristic function of
𝐴 ⊆ 𝑋 .

Definition F.5. Let 𝑀 be a closed subalgebra of MAlg(𝑋, 𝜇). The 𝑀-conditional
measure of 𝐴 ∈ MAlg(𝑋, 𝜇), denoted by 𝜇𝑀 (𝐴), is the conditional expectation of the
characteristic function of 𝐴, i.e., 𝜇𝑀 (𝐴) = E𝑀 (𝜒𝐴).

In particular, the conditional measure 𝜇𝑀 (𝐴) is an 𝑀-measurable function. It
enjoys the following natural properties.
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Proposition F.6. Let 𝑀 ⊆ MAlg(𝑋, 𝜇) be a closed subalgebra. The following proper-
ties hold for all 𝐴 ∈ MAlg(𝑋, 𝜇):

(1) 𝜇𝑀 (∅) = 0 and 𝜇𝑀 (𝑋) = 1, where 0 and 1 denote the constant maps;
(2) 𝜇𝑀 (𝐴) takes values in [0, 1] and

∫
𝑋
𝜇𝑀 (𝐴) = 𝜇(𝐴);

(3) 𝜇𝑀 is 𝜎-additive: if 𝐴 =
⊔
𝑛 𝐴𝑛, 𝐴𝑛 ∈ MAlg(𝑋, 𝜇), is a partition, then

𝜇𝑀 (𝐴) =
∑︁
𝑛∈N

𝜇𝑀 (𝐴𝑛),

where the convergence holds in L1(𝑀, 𝜇);
(4) if 𝑇 ∈ Aut(𝑋, 𝜇) fixes every element of 𝑀 , then 𝜇𝑀 (𝐴) = 𝜇𝑀 (𝑇 (𝐴)).

Proof. The first item is clear from the fact that both ∅ and 𝑋 belong to 𝑀, so their
characteristic functions are fixed by E𝑀 . The second item follows from the first and
positivity of the conditional expectation; the equality is a direct consequence of Eq. (F.2).
The third one is a consequence of the L1 continuity of E𝑀 and its linearity, noting that
𝜒𝐴 =

∑
𝑛 𝜒𝐴𝑛 in L1(𝑀, 𝜇).

Finally, the last item follows from the uniqueness of conditional expectation given
by Eq. (F.2). Indeed, if an automorphism 𝑇 fixes every element of 𝑀 , then∫

𝐵

𝑓 ◦ 𝑇−1 𝑑𝜇 =

∫
𝑇 (𝐵)
𝑓 𝑑𝜇 =

∫
𝐵

𝑓 𝑑𝜇 for all 𝐵 ∈ MAlg(𝑋, 𝜇),

so E𝑀 ( 𝑓 ◦ 𝑇−1) = E𝑀 ( 𝑓 ). Taking 𝑓 = 𝜒𝐴 for 𝐴 ∈ MAlg(𝑋, 𝜇), we conclude that
𝜇𝑀 (𝑇 (𝐴)) = 𝜇𝑀 (𝐴).

F.3 Conditional measures and full groups

Conditional measures, as defined in Section F.2, are associated with closed subalgebras
of MAlg(𝑋, 𝜇). Each subgroup G ≤ Aut(𝑋, 𝜇) gives rise to the subalgebra of G-
invariant sets, and we may therefore associate a conditional measure with the group G
itself.

Definition F.7. Let G be a subgroup of Aut(𝑋, 𝜇). The closed subalgebra of G-
invariant sets is denoted by 𝑀G and consists of all 𝐴 ∈ MAlg(𝑋, 𝜇) such that 𝑔𝐴 = 𝐴

for all 𝑔 ∈ G.

By definition, G ≤ Aut(𝑋, 𝜇) is ergodic if 𝑀G = {∅, 𝑋}. Since {∅, 𝑋}-measurable
functions are constants, the 𝑀G-conditional measure corresponds to the measure 𝜇
when G is ergodic. The following lemma is an easy consequence of the definitions
of the full group generated by a subgroup (Section 3.1) and the weak topology on
Aut(𝑋, 𝜇).
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Lemma F.8. Let G ≤ Aut(𝑋, 𝜇) be a group.
(1) If [G] is the full group generated by G, then 𝑀G = 𝑀[G] .
(2) If Γ ≤ G is dense in the weak topology, then 𝑀Γ = 𝑀G.

Given a subgroup G ≤ Aut(𝑋, 𝜇), we denote the 𝑀G-conditional measure simply
by 𝜇G.

Recall that a partial measure-preserving automorphism of (𝑋, 𝜇) is a measure-
preserving bĳection 𝜑 : dom 𝜑 → rng 𝜑 between measurable subsets of 𝑋 , called
the domain and the range of 𝜑, respectively. The pseudo full group generated by a
group Γ ≤ Aut(𝑋, 𝜇) is denoted by [[Γ ]] and consists of all partial automorphisms
𝜑 : dom 𝜑 → rng 𝜑 for which there exists a partition dom 𝜑 =

⊔
𝑛 𝐴𝑛 and elements

𝛾𝑛 ∈ Γ such that 𝜑 ↾𝐴𝑛= 𝛾𝑛 ↾𝐴𝑛 for all 𝑛. Elements of [[Γ ]] automatically preserve
the conditional measure 𝜇Γ in the sense that if 𝐴 ⊆ dom 𝜑, then 𝜇Γ (𝜑(𝐴)) = 𝜇Γ (𝐴).
Indeed,

𝜇Γ (𝜑(𝐴)) = 𝜇Γ
(
𝜑

(⊔
𝑛

(𝐴 ∩ 𝐴𝑛)
))

= 𝜇Γ

(⊔
𝑛

𝜑(𝐴 ∩ 𝐴𝑛)
)

∵ Prop. F.6(3) =
∑︁
𝑛

𝜇Γ (𝜑(𝐴 ∩ 𝐴𝑛)) =
∑︁
𝑛

𝜇Γ (𝛾𝑛 (𝐴 ∩ 𝐴𝑛))

∵ Prop. F.6(4) =
∑︁
𝑛

𝜇Γ (𝐴 ∩ 𝐴𝑛) = 𝜇Γ (𝐴).

Lemma F.9. Let G ≤ Aut(𝑋, 𝜇) be a group. For all 𝐴, 𝐵 ∈ MAlg(𝑋, 𝜇) satisfying
𝜇G(𝐴) = 𝜇G(𝐵), there exists an element 𝜑 ∈ [[G]] such that dom 𝜑 = 𝐴 and rng 𝜑 = 𝐵.

Proof. Let Γ = {𝛾𝑛 : 𝑛 ∈ N} be a countable weakly dense subgroup ofG. It follows from
Lemma F.8 that 𝜇Γ (𝐴) = 𝜇G(𝐴) = 𝜇G(𝐵) = 𝜇Γ (𝐵), and it is evident that [[Γ ]] ≤ [[G]].

We inductively define sequences (𝐴𝑛)𝑛 and (𝐵𝑛)𝑛 of subsets of 𝐴 and 𝐵, respec-
tively, starting with 𝐴0 = 𝐴 ∩ 𝛾−1

0 𝐵 and 𝐵0 = 𝛾0𝐴0, and for 𝑛 ≥ 1, we set

𝐴𝑛 =

(
𝐴 \

⋃
𝑚<𝑛

𝐴𝑚

)
∩ 𝛾−1

𝑛

(
𝐵 \

⋃
𝑚<𝑛

𝐵𝑚

)
and 𝐵𝑛 = 𝛾𝑛𝐴𝑛.

By construction, the sets 𝐴𝑛 are pairwise disjoint subsets of 𝐴, each set satisfies 𝛾𝑛𝐴𝑛 =
𝐵𝑛, and the sets 𝐵𝑛 are pairwise disjoint subsets of 𝐵. We assert that 𝜑 =

⊔
𝑛 (𝛾𝑛 ↾𝐴𝑛 )

is the desired element of [[G]].
Suppose, towards a contradiction, that either dom 𝜑 ≠ 𝐴 or rng 𝜑 ≠ 𝐵. Since Γ

preserves 𝜇Γ and 𝜇Γ (𝐴) = 𝜇Γ (𝐵), the sets 𝐴 \ dom 𝜑 and 𝐵 \ rng 𝜑 have the same
𝑀Γ-conditional measure, which is not constantly equal to zero. The set

𝐴̃ =
⋃
𝛾∈Γ

𝛾(𝐴 \ dom 𝜑)

is Γ-invariant and non-zero. Its conditional measure is therefore the characteristic
function 𝜒𝐴̃, which must be greater than or equal to 𝜇Γ (𝐴 \ dom 𝜑) = 𝜇Γ (𝐵 \ rng 𝜑).
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We conclude that 𝐵 \ rng 𝜑 ⊆ ⋃
𝛾∈Γ 𝛾(𝐴 \ dom 𝜑). In particular, there is the first 𝑛 ∈ N

such that (𝐴 \ dom 𝜑) ∩ 𝛾−1
𝑛 (𝐵 \ rng 𝜑) is non-zero. By construction, this set should

be a subset of 𝐴𝑛, yielding the desired contradiction.

Proposition F.10. Let G be a full subgroup of Aut(𝑋, 𝜇). The following conditions
are equivalent for all 𝐴, 𝐵 ∈ MAlg(𝑋, 𝜇):

(1) 𝜇G(𝐴) = 𝜇G(𝐵);
(2) there is 𝑇 ∈ G such that 𝑇 (𝐴) = 𝐵;
(3) there is an involution 𝑇 ∈ G such that 𝑇 (𝐴) = 𝐵 and supp𝑇 = 𝐴 △ 𝐵.

Proof. The implication (2)⇒(1) is a direct consequence of the definition of 𝑀G along
with item (4) of Proposition F.6. Also, (3)⇒(2) is evident.

We now prove the implication (1)⇒(3). The assumption 𝜇G(𝐴) = 𝜇G(𝐴) guarantees
that 𝜇G(𝐴 \ 𝐵) = 𝜇G(𝐵 \ 𝐴). Lemma F.9 applies and produces an element 𝜑 ∈ [[G]]
such that 𝜑(𝐴 \ 𝐵) = 𝐵 \ 𝐴. The involution 𝜑 ⊔ 𝜑−1 ⊔ id𝑋\(𝐴△𝐵) meets the required
conditions.

F.4 Aperiodicity

A countable subgroup Γ ≤ Aut(𝑋, 𝜇) is called aperiodic if almost all the orbits of
some (equivalently, any) realization of its action on (𝑋, 𝜇) are infinite. The so-called
Maharam’s lemma provides a characterization of aperiodicity in a purely measure-
algebraic way. We begin by formulating a variant of the standard marker lemma for
countable Borel equivalence relations (see, for instance, [33, Lemma 6.7]).

Lemma F.11. Let Γ ↷ 𝑋 be a Borel action of a countable group on a standard Borel
space 𝑋 . For every Borel set 𝐶 ⊆ 𝑋 , there is a decreasing sequence (𝐶𝑛)𝑛 of Borel
subsets of 𝐶 such that 𝐶 ⊆ Γ · 𝐶𝑛 for each 𝑛, and the set

⋂
𝑛 𝐶𝑛 intersects the Γ-orbit

of every 𝑥 ∈ 𝑋 in at most one point. Furthermore, if all orbits of Γ are infinite, the
sets 𝐶𝑛 can be chosen to have an empty intersection,

⋂
𝑛 𝐶𝑛 = ∅.

The following result is essentially due to H. Dye [15], where it is called Maharam’s
lemma.

Theorem F.12 (Maharam’s lemma). Let Γ ≤ Aut(𝑋, 𝜇) be a countable subgroup. The
following are equivalent:

(1) Γ is aperiodic;
(2) for any 𝐴 ∈ MAlg(𝑋, 𝜇) and any 𝑀Γ-measurable function 𝑓 : 𝑋 → [0, 1]

satisfying 𝑓 ≤ 𝜇Γ (𝐴), there is 𝐵 ⊆ 𝐴, 𝐵 ∈ MAlg(𝑋, 𝜇), such that 𝜇Γ (𝐵) = 𝑓 .

Proof. Let us start with the simpler implication (2)⇒(1), which is proved using a
contrapositive argument. Assume that (1) fails, meaning that Γ is not aperiodic. Let
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𝑛 ∈ N be an integer such that the Γ-invariant set 𝑋𝑛 = {𝑥 ∈ 𝑋 : |Γ · 𝑥 | = 𝑛} has non-zero
measure. We may assume that 𝑋 bears a Borel total order (for instance, by identifying
𝑋 with [0, 1]). Let 𝐴 = {𝑥 ∈ 𝑋𝑛 : 𝑥 = max{Γ · 𝑥}} be the set of maximal points of the
𝑛-element Γ-orbits and set 𝜑, dom 𝜑 = 𝑋𝑛 \ 𝐴, to be the element of the pseudo full
group [[Γ ]] that takes every 𝑥 ∈ 𝑋𝑛 \ 𝐴 to its <-successor in the orbit Γ · 𝑥. Given any
𝐵 ⊆ 𝐴, the set

⊔𝑛−1
𝑘=0 𝜑

−𝑘 (𝐵) is Γ-invariant, hence 𝜇Γ (
⊔𝑛−1
𝑘=0 𝜑

−𝑘 (𝐵)) takes values in
{0, 1}. Also

𝜇Γ
( 𝑛−1⊔
𝑘=0

𝜑−𝑘 (𝐵)
)
=

𝑛−1∑︁
𝑘=0

𝜇Γ
(
𝜑−𝑘 (𝐵)

)
= 𝑛𝜇Γ (𝐵),

where the last equality is a consequence of Proposition F.6. We conclude that 𝜇Γ (𝐵)
necessarily takes values in {0, 1

𝑛
}, which contradicts (2).

We now assume that Γ is aperiodic and prove the direct implication (1)⇒(2). The
argument is based on the following claim.
Claim. For every 𝐶 ∈ MAlg(𝑋, 𝜇), for every 𝑀Γ-measurable not almost surely zero
𝑓 : 𝑋 → [0, 1] such that 𝑓 ≤ 𝜇Γ (𝐶), there is a non-empty 𝐵 ⊆ 𝐶 satisfying 𝜇Γ (𝐵) ≤ 𝑓 .

Proof of the claim. Let (𝐶𝑛)𝑛 be a sequence of subsets of 𝐶 given by Lemma F.11.
Note that 𝜇Γ (𝐶𝑛) → 0 in L1, since

⋂
𝑛 𝐶𝑛 = ∅ and the 𝐶𝑛’s are decreasing. Passing

to a subsequence, we may assume that the convergence 𝜇Γ (𝐶𝑛) → 0 holds pointwise.
Set 𝐵𝑛 = {𝑥 ∈ 𝐶𝑛 : 𝜇Γ (𝐶𝑛) (𝑥) ≤ 𝑓 (𝑥)} and note that 𝜇Γ (𝐵𝑛) ≤ 𝜇Γ (𝐶𝑛) and therefore
𝜇Γ (𝐵𝑛) ≤ 𝑓 .

Pointwise convergence 𝜇Γ (𝐶𝑛) → 0 guarantees the existence of an index 𝑛 such
that 𝜇(𝐵𝑛) > 0, and so the set 𝐵 = 𝐵𝑛 is as required. □claim

The conclusion of the theorem now follows from a standard application of Zorn’s
lemma1. The latter provides a maximal family (𝐵𝑖)𝑖∈𝐼 of pairwise disjoint positive
measure elements of MAlg(𝑋, 𝜇) contained in 𝐴 and satisfying

∑
𝑖∈𝐼 𝜇Γ (𝐵𝑖) ≤ 𝑓 . The

index set 𝐼 has to be countable, and if 𝐵 =
⊔
𝑖∈𝐼 𝐵𝑖 then 𝜇Γ (𝐵) =

∑
𝑖∈𝐼 𝜇Γ (𝐵𝑖) ≤ 𝑓 .

Assume towards a contradiction that 𝜇Γ (𝐵) is not equal to 𝑓 almost everywhere, and use
the previous claim to get a non null 𝐵′ ⊆ 𝐴 \ 𝐵with 𝜇Γ (𝐵′) ≤ 𝑓 − 𝜇Γ (𝐵), contradicting
the maximality of (𝐵𝑖)𝑖∈𝐼 . Therefore, 𝜇Γ (𝐵) = 𝑓 as claimed.

We conclude this appendix with a useful consequence of aperiodicity. Recall that
in Definition 3.6, we define a potentially uncountable subgroup 𝐺 ≤ Aut(𝑋, 𝜇) to be
aperiodic if it contains an aperiodic countable subgroup. Furthermore, this implies that
𝐺 contains a countable weakly dense aperiodic subgroup.

Lemma F.13. Let G ≤ Aut(𝑋, 𝜇) be an aperiodic full group. For each set 𝐵 ∈
MAlg(𝑋, 𝜇), there is an involution𝑈 ∈ G whose support is equal to 𝐵.

1A more constructive version of the whole argument can be found in [38, Prop. D.1].
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Proof. Let Γ ≤ G be a countable weakly dense aperiodic subgroup of G. Then, by
weak density, 𝑀Γ = 𝑀G and 𝜇Γ = 𝜇G. Theorem F.12 thus provides 𝐴 ⊆ 𝐵 such that
𝜇G(𝐴) = 𝜇G(𝐵)/2. We then have

𝜇G(𝐵 \ 𝐴) = 𝜇G(𝐵) − 𝜇G(𝐵)/2 = 𝜇G(𝐴),

and item (3) of Proposition F.10 provides an involution 𝑇 ∈ G satisfying 𝑇 (𝐵 \ 𝐴) = 𝐴
and supp𝑇 = (𝐵 \ 𝐴) △ 𝐴 = 𝐵.

Remark F.14. Lemma F.13 in fact characterizes the aperiodicity of full groups. If G
is not aperiodic, then there is some 𝐵 ∈ MAlg(𝑋, 𝜇) that is not the support of any
involution. This is because its 𝑀G-conditional measure cannot be split in half, as shown
in the proof of the direct implication in Theorem F.12.
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Aperiodic
– subgroup of Aut(𝑋, 𝜇), 21, 139
– transformation, 6

Cocycle, 11, 36
Commensurate sets, 57
Conditional expectation, 135
Conditional measure, 136
Conservative transformation, 42, 123
Convergence in measure, 113
Cross-section, 129
– cocompact, 130
– lacunary, 129

Derived L1 full group, 47
Derived subgroup, 22
Disintegration of measure, 125
Dissipative transformation, 42, 123

Ergodic decomposition, 129

Finitely full group, 20
Flip Kakutani equivalence, 103
Flow, 57
Full group, 10

Haagerup property, 107
Haar modulus, 37
Hopf decomposition, 41

Index map
– for self-commensurating automorphisms, 58
– on the L1 full group, 61
Induced map, 8
Induced transformation, 17
Induction friendly group, 23

L0 space, 113
L1

– full group, 10
– derived, 47

– norm, 10
– orbit equivalence, 43

– space, 116

Maharam’s lemma, 139
MAlg, 16, 135
Mass-transport principle, 38
Measure-preserving action, 6
– suitable, 33

Norm, 109
– additive, 29
– coarsely proper, 30, 111
– compatible, 109
– L1, 10
– large-scale geodesic, 30, 110
– maximal, 16
– proper, 110
– quasi-isometric, 15

Partial transformation, 6
Period of a transformation, 6
Periodic transformation, 6
Polish group
– amenable, 47
– boundedly generated, 15, 110
– coarsely bounded, 16
– extremely amenable, 50
– finitely full, 21
– generically 𝑘-generated, 52
– normed, 9, 109, 120
– topological rank, 3
– whirly amenable, 50
Pre-full group, 11
Pseudo full group, 65

Set
– arrival, 83
– coarsely bounded, 110
– copious, 85
– departure, 83
– evasive, 82
– saturation, 7
Suitable action, 33
Suspension flow, 103
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Symmetric subgroup, 22

Tessellation, 130
– Voronoi, 131, 132
Topological derived subgroup, 22
Topological rank, 3
Transformation, 6
– aperiodic, 6
– conservative, 42, 123
– 𝐻-decomposable, 31
– dissipative, 42, 123
– dissipatively supported, 81
– flip-conjugate, 99
– induced, 17
– intermitted, 73
– monotone, 83
– non-singular, 6
– partial, 6
– periodic, 6
– rank-one, 70
– support, 65
Transformation group
– aperiodic, 21, 139
– commensurating, 57
– finitely full, 20
– full, 19
– induction friendly, 23
– with many involutions, 43

Voronoi tesselation, 131, 132
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