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Abstract

We introduce the concept of an L! full group associated with a measure-preserving
action of a Polish normed group on a standard probability space. These groups carry a
natural Polish group topology induced by an L! norm. Our construction generalizes L'
full groups of actions of discrete groups, which have been studied recently by the first
author.

We show that under minor assumptions on the actions, topological derived sub-
groups of L! full groups are topologically simple and — when the acting group is
locally compact and amenable — are whirly amenable and generically two-generated.
L! full groups of actions of compactly generated locally compact Polish groups are
shown to remember the L' orbit equivalence class of the action.

For measure-preserving actions of the real line (also often called measure-preserving
flows), the topological derived subgroup of the L! full group is shown to coincide
with the kernel of the index map, which implies that L' full groups of free measure-
preserving flows are topologically finitely generated if and only if the flow admits
finitely many ergodic components. The latter is in striking contrast to the case of
Z-actions, where the number of topological generators is controlled by the entropy of
the action. We also prove a reconstruction-type result: the L' full group completely
characterizes the associated ergodic flow up to flip Kakutani equivalence.

Finally, we study the coarse geometry of L! full groups. The L! norm on the derived
subgroup of the L! full group of an aperiodic action of a locally compact amenable
group is proved to be maximal in the sense of C. Rosendal. For measure-preserving
flows, this holds for the L! norm on all of the L' full group.
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Chapter 1

Introduction

Full groups were introduced by H. Dye [15] in the framework of measure-preserving
actions of countable groups as measurable analogues of unitary groups of von Neumann
algebras, by mimicking the fact that the latter are stable under countable cutting and
pasting of partial isometries. These Polish groups have since been recognized as
important invariants as they encode the induced partition of the space into orbits. A
similar viewpoint applies in the setup of minimal homeomorphisms on the Cantor
space [23], where likewise the full groups are responsible for the orbit equivalence
class of the action.

Full groups are defined to consist of transformations which act by a permutation
on each orbit. When the action is free, one can associate with an element / of the full
group a cocycle defined by the equation 4 (x) = pj(x) - x. From the point of view of
topological dynamics, it is natural to consider the subgroup of those 4 for which the
cocycle map is continuous, which is the defining condition for the so-called topological
full groups. The latter has a much tighter control of the action, and encodes minimal
homeomorphisms of the Cantor space up to flip-conjugacy (see [23]).

A celebrated result of H. Dye states that all ergodic Z-actions produce the same
partition up to isomorphism, and hence the associated full groups are all isomorphic.
The first named author has been motivated by the above to seek for the analog of
topological full groups in the context of ergodic theory, which was achieved in [40] by
imposing integrability conditions on the cocycle. In particular, he introduced L! full
groups of measure-preserving ergodic transformations, and showed based on the result
of R. M. Belinskaja [8] that they also determine the action up to flip-conjugacy. Unlike
in the context of Cantor dynamics, these L! full groups are uncountable, but they carry
a natural Polish topology.

In this work, we widen the concept of an L! full group and associate such an
object with any measure-preserving Borel action of a Polish normed group (the reader
may consult Appendix A for a concise reminder about group norms). Quasi-isometric
compatible norms will result in the same L! full groups, so actions of Polish boundedly
generated groups have canonical L' full groups associated with them based on to the
work of C. Rosendal [52]. Our study also parallels the generalization of the full group
construction introduced by A. Carderi and the first named author in [11], where full
groups were defined for Borel measure-preserving actions of Polish groups.
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1.1 Main results

Let G be a Polish group with a compatible norm ||| and consider a Borel measure-
preserving action G ~ X on a standard probability space (X, u). The group action
defines an orbit equivalence relation R by declaring points x1,x2 € X equivalent
whenever G - x; = G - x,. The norm induces a metric onto each R -class via D (x1,x2) =
infgeg{lIgll : gx1 = x2}. Following [11], the full group of the action is denoted by
[Ri ] and is defined as the collection of all measure-preserving T € Aut(X, u) that
satisfy xR Tx for all x € X. The L' full group [G ~ X is given by those T € [Rg |
for which the map X > x — D(x, Tx) is integrable. This defines a subgroup of [R¢g ],
and we show in Theorem 2.10 that these groups are Polish in the topology of the norm
T = fX D(x,Tx) du(x). The strategy of establishing this statement is analogous to
that of [12], where the Polish topology for full groups [R¢ | was defined.

Understanding of the structure of various types and variants of full groups often
hinges on examining their derived subgroups (also called commutator subgroups). This
holds true for our setup as well. Since we’re dealing with full groups equipped with
non-discrete topologies, we focus on their topological derived subgroup, defined as
the closure of the subgroup generated by commutators.

Theorem 1.1. The topological derived subgroup of any aperiodic L' full group is
equal to the closed subgroup generated by involutions.

The argument needed for Theorem 1.1 is quite robust. We extract the idea used
in [40], isolate the class of finitely full groups, and show that under mild assumptions
on the action, Theorem 1.1 holds for such groups. We provide these arguments in
Section 3 and in Corollary 3.16 in particular. Alongside we mention Corollary 3.22
which implies that L full groups of ergodic actions are topologically simple.

For the rest of our results we narrow down the generality of the acting groups, and
consider locally compact Polish normed groups. In Chapter 4, we show thatif H < G is
a dense subgroup of a locally compact Polish normed group G then [H ~ X, is dense
in [G ~ X];. In fact, we prove a considerably stronger statement by showing that for
eachT € [G ~ X]and e > Othereis S € [H ~ X] such thatess sup,.x D(Tx,Sx) <e€.

Recall that a topological group is amenable if all of its continuous actions on com-
pact spaces preserve some Radon probability measure, and that it is whirly amenable
if it is amenable and moreover every invariant Radon measure is supported on the set
of fixed points. The following is a combination of Theorem 5.8 and Corollary 5.10.

Theorem 1.2. Let G ~ X be a measure-preserving action of a locally compact Polish
normed group. Consider the following three statements:

(1) G is amenable;

(2) the (topological) derived subgroup D([G ~ X)) is whirly amenable;

(3) the L' full group [G ~ X is amenable.



Main results 3

The implications (1) = (2) = (3) always hold. If G is unimodular and the action
is free, then the three statements above are all equivalent.

When the acting group is amenable and the orbits of the action are uncountable, we
are able to compute the topological rank of the derived L' full groups — that is, the
minimal number of elements required to generate a dense subgroup of the closure of
the commutator subgroup. Theorem 5.19 provides a stronger version of the following.

Theorem 1.3. Let G ~ X be a measure-preserving action of an amenable locally
compact Polish normed group on a standard probability space (X, w). If all orbits
of the action are uncountable, then the topological rank of the derived L' full group
D([G ~ X]1) is equal to 2.

It is instructive to contrast the situation with the actions of finitely generated groups,
where finiteness of the topological rank of the derived L! full group is equivalent to
finiteness of the Rokhlin entropy of the action [41].

Our most refined understanding of L! full groups is achieved for free actions of R,
which are known as flows. All the results we described so far are valid for all compatible
norms on the acting group. When it comes to the actions of R, however, we consider
only the standard Euclidean norm on it. Just like the actions of Z, flows give rise to an
important homomorphism, known as the index map. Assuming the flow is ergodic,
the index map can be described most easily as [R ~ X ], 5T /X lor| du, where
pr is the cocycle of T. Chapter 6 is devoted to the analysis of the index map for general
R-flows.

The most technically challenging result of our work is summarized in Theorem 10.1,
which identifies the derived L! full group of a flow with the kernel of the index map,
and describes the abelianization of [R ~ X];.

Theorem 1.4. Let ¥ be a measure-preserving flow on (X, ). The kernel of the index
map is equal to the derived L' full group of the flow, and the topological abelianization
of [FliisR.

Theorem 1.4 parallels the known results for Z-actions from [40]. The structure
of its proof, however, has an important difference. We rely crucially on the fact that
each element of the full group acts in a measure-preserving manner on each orbit. This
allows us to use Hopf decomposition (described in Appendix C) in order to separate
any given element 7' € [R ~ X into two parts — recurrent and dissipative. If the
acting group were discrete, the recurrent part would reduce to periodic orbits only.
This is not at all the case for non-discrete groups, hence we need a new machinery to
understand non-periodic recurrent transformations. To cope with this, we introduce the
concept of an intermitted transformation, which plays the central role in Chapter 8,
and which we hope will find other applications.
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Theorems 1.3 and 1.4 can be combined to obtain estimates for the topological rank
of the whole L! full groups of flows, which is the content of Proposition 10.3.

Theorem 1.5. Let F be a free measure-preserving flow on a standard probability
space (X, p). The topological rank tk([F 1) is finite if and only if the flow has finitely
many ergodic components. Moreover, if F has exactly n ergodic components then

n+1<rk([F]1) <n+3.

In particular, the topological rank of the L' full group of an ergodic flow is equal
to either 2, 3 or 4. We conjecture that it is always equal to 2, and more generally that
the topological rank of the L! full group of any measure-preserving flow is equal to
n + 1 where n is the number of ergodic components.

Our work connects to the notion of L! orbit equivalence, an intermediate notion
between orbit equivalence and conjugacy. It goes back to the work of R. M. Belinskaja [8]
but recently attracted more attention. Stated in our framework, two flows are L! orbit
equivalent if they can be conjugated so that the first flow is contained in the L' full
group of the second and vice versa. A symmetric version of Belinskaja’s theorem is
that ergodic Z-actions are L' orbit equivalent if and only if they are flip conjugate.
It is very natural to wonder whether this amazing result has a version for flows. Our
Theorem 10.14 implies the following.

Theorem 1.6. If two measure-preserving ergodic flows are L' orbit equivalent, then
they admit some cross-sections whose induced transformations' are flip-conjugate.

We do not know whether the above result is optimal, that is, whether having
flip-conjugate cross-sections implies L! orbit equivalence, but it seems unlikely. It is
tempting to think that the correct analogue of Belinskaja’s theorem would be a positive
answer to the following question.

Question 1.7. Let 71 and F> be free ergodic measure-preserving flows which are L!
orbit equivalent. Is it true that there is @ € R* such that F| and F, o my, are isomorphic,
where m o, denotes the multiplication by a?

Let us also mention that Theorem 1.6 implies that there are uncountably many
L! full groups of ergodic free measure-preserving flows up to (topological) group
isomorphism (see Corollary 10.16 and the paragraph right after its proof).

Finally, we also investigate the coarse geometry of the L! full groups. We establish
that the L! norm is maximal (in the sense of C. Rosendal [52], see also Appendix A.2) on
the derived subgroup of an L! full group of an aperiodic measure-preserving action of

I'We refer the reader to Definition 10.11 and the paragraph that follows it for details on the
measure-preserving transformation one associates to a cross-section.
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any locally compact amenable Polish group (Theorem 5.5). For the measure-preserving
flows, the L! norm is, in fact, maximal on the whole full group (Theorem 10.18).

Acknowledgments. We are deeply thankful to the referee for their careful reading and
numerous detailed remarks, which led to many improvements of the present monograph.

1.2 Preliminaries

We assume the reader is familiar with the fundamentals of real analysis and measure
theory, as presented in standard textbooks such as [17, 53]. For the necessary results in
descriptive set theory, we primarily rely on [31].

1.2.1 Ergodic theory

Our work belongs to the field of ergodic theory, which means that all the constructions
are defined and results are proven up to null sets. We occasionally phrase our results as
holding “for all x” when strictly speaking they hold only “for almost all x”. The only
part where certain care needs to be exercised in this regard appears in Chapter 2, where
we define L' full groups for Borel measure-preserving actions of Polish normed groups.
As in [11], these definitions require genuine actions rather than boolean actions—
a distinction that we clarify at the end of this section. This technicality vanishes
when considering the more restrictive setting of measure-preserving actions of locally
compact Polish groups.

By a standard probability space, we mean a unique (up to isomorphism) separable
atomless measure space (X, u) with u(X) = 1, i.e., the unit interval [0, 1] equipped
with the Lebesgue measure. Occasionally, in Chapter 5 and Appendices D and E, we
refer to a standard Lebesgue space, by which we mean a separable finite measure
space, ((X) < oo. Unlike a standard probability space, this concept allows for the
presence of atoms and does not require normalization.

Throughout, we frequently work with spaces of measurable functions identified
up to sets of measure zero. To simplify notation, we omit explicit references to the
underlying measure y. For example, we write L! (X, R) instead of L! (X, u, R) to denote
the Banach space of u-integrable functions X — R.

We denote by Aut(X, u) the group of all measure-preserving bijections of (X, )
up to measure zero. This is a Polish group when equipped with the weak topology,
defined by 7,, — T if and only if for all A C X Borel, u(7,,(A) A T(A)) — 0. The
weak topology is a Polish group topology, see [32, Sec. 1]. Given T € Aut(X, u), its
support is the set

suppT = {x € X : T(x) # x}.
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We often refer to measure-preserving bijections as (measure-preserving) transforma-
tions, although they could more precisely be called invertible transformations. Since
this work does not involve non-invertible transformations, this terminology should not
cause confusion. We also consider (measure-preserving) partial transformations,
which are Borel bijections 7 : A — B between Borel subsets A, B of X satisfying
u(T~1(C)) = u(C) for all Borel C C B. The set A is called the domain of T, denoted
dom 7, and B is its range, denoted rng 7.

A measure-preserving bijection T is called periodic when almost all of its orbits are
finite. The cardinalities of the finite orbits of T" are called the periods of T'. Periodicity
implies the existence of a fundamental domain A for 7, which is a measurable set
that intersects every 7T-orbit at exactly one point. Since the ambient measure y is finite,
the existence of a fundamental domain actually characterizes periodicity. We recall
that a transformation 7 is called aperiodic if it has no periodic points, meaning that all
of its orbits are infinite.

When considering actions of full group elements on orbits, we also need to deal with
bijections that preserve only the measure class on a possibly infinite o--finite standard
measured space. Such bijections are referred to as non-singular transformations.

As explained at the beginning of this section, full groups are constructed for (Borel)
measure-preserving actions of a given Polish group G on a standard probability space
(X, u). These actions, called spatial actions, are Borel maps @ : G X X — X such that for
each g € G, the transformation a(g) is measure-preserving. A related notions is that of
boolean actions, which are continuous group homomorphisms G — Aut(X, u). Unlike
spatial actions, boolean actions identify transformations up to null sets. Consequently,
a boolean action can a priori be lifted to an action map « such that, given g, h € G,
a(gh)x = a(g)a(h)x holds merely for almost every x € X. As discovered by E. Glasner,
B. Tsirelson and B. Weiss, boolean actions (also called near actions) of Polish groups
do not admit Borel realizations in general, and even when they do, it could happen that
different realizations yield different full groups. This subtlety disappears once we shift
our attention to locally compact group actions, which is the case for Chapter 4 and
onwards. All boolean actions of locally compact Polish groups admit Borel realizations
which are all conjugate up to measure zero (and hence have isomorphic full groups),
so null sets can be neglected just as they always are in ergodic theory. We refer the
reader to [24,25] for more information on this topic.

1.2.2 Orbit equivalence relations

Any group action G ~ X induces the orbit equivalence relation Rg~x, where two
points x, y € X are R~ x-equivalent whenever G - x = G - y. We will usually write this
equivalence relation simply as R¢ for brevity. For the actions Z ~ X generated by an
automorphism 7' € Aut(X, u), we denote the corresponding orbit equivalence relation
by Rr. For clarity, we may sometimes want to name a measure-preserving action as
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@ and write G ~ X. Then for all g € G we denote by @(g) the measure-preserving
transformation of (X, ) induced by the action of g.

We encounter various equivalence relations throughout this monograph. An equiva-
lence class of a point x € X under the relation R is denoted by [x]g and the saturation
of aset A C X is denoted by [A]g and is defined to be the union of R-equivalence
classes of the elements of A: [A]g = U,cal[X]®. In particular, [x]g, is the orbit of x
under the action of 7. The reader may notice that the notation for a saturation [A]g
resembles that for the full group of an action [G ~ X (see Chapter 2). Both notations
are standard, and we hope that confusion will not arise, as it applies to objects of
different nature — sets and actions, respectively.

1.2.3 Actions of locally compact groups

Consider a measure-preserving action of a locally compact Polish (equivalently, second-
countable) group G on a standard Lebesgue space (X, ¢t). A complete section for the
action is a measurable set C C X that intersects almost every orbit, i.e., u(X \ G - C) =0.
A cross-section is a complete section C C X such that for some non-empty neighborhood
of the identity U C G we have Uc N Uc’ = @ whenever ¢, ¢’ € C are distinct. When the
need to mention such a neighborhood U explicitly arises, we say that C is a U-lacunary
cross-section.

With any cross-section C one associates a decomposition of the phase space known
as the Voronoi tessellation. Slightly more generally, Appendix E.2 defines the concept
of a tessellation over a cross-section, which corresponds to a set ‘W C C x X for
which the fibers W, = {x € X : (c,x) € W}, ¢ € C, partition the phase space. Every
tessellation ‘W gives rise to an equivalence relation Ry, where points x, y € X are
deemed equivalent whenever they belong to the same fiber ‘W,.. The projection map
nmqy « X — C associates with each x € X the unique ¢ € C satisfying x € W,, and it
is therefore defined by the condition (74 (x),x) € W forall x € X.

When the action G ~ X is free, each orbit G - x can be identified with the acting
group. Such a correspondence g — g - x depends on the choice of the anchor point x
within the orbit, but suffices to transfer structures invariant under the right translations
from the group G onto the orbits of the action. For instance, if the acting group is
locally compact, then a right-invariant Haar measure A can be pushed onto orbits by
setting A, (A) = {g € G : g - x € A} as discussed in Section 4.2. Freeness of the action
G ~ X gives rise to the cocycle map p : Rg~x — G, which is well-defined by the
condition p(x, y) - x = y. Elements of the full group [G ~ X] are characterized as
measure-preserving transformations 7' € Aut(X, ) such that (T'(x), x) € Rg~x for
allx € X. Witheach T € [G ~ X] one may therefore associate the map pr : X — G,
also known as the cocycle map, and defined by pr(x) = p(x, Tx). Both the context
and the notation will clarify which cocycle map is being referred to.
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1.2.4 Measure-preserving free flows

All the previous concepts appear prominently in the chapters that deal with free measure-
preserving flows, namely free measure-preserving actions of R on standard probability
spaces. We use the additive notation for such actions: R X X 3 (r,x) — x +r € X. The
group R carries a natural linear order that is invariant under the group operation and can
therefore be transferred onto orbits. More specifically, given a free measure-preserving
flow R ~ X, we use the notation x < y whenever x and y belong to the same orbit and
y =x +r for some > 0. Every cross-section C of a free flow intersects each orbit in a
bi-infinite fashion — each ¢ € C has a unique successor and a unique predecessor in
the order of the orbit. One therefore has a bijection o¢ : C — C, called the first return
map or the induced map, which sends ¢ € C to the next element of the cross-section
within the same orbit. We also make use of the gap function that measures the lengths
of intervals of the cross-section, i.e., gap,(c) = p(c, o¢(c)), and of the projection
function ¢ : X — C which takes every x € X to the largest ¢ € C such that ¢ < x.

There is a canonical tessellation associated with a cross-section C which partitions
each orbit into intervals between adjacent points of C and is given by

We={(c,x) eCxX:c<x<oc(c)}.

The associated equivalence relation Ry, is denoted simply by R¢. It groups points
(x,y) € Rr~x which belong to the same interval of the tessellation, m¢ (x) = ¢ (y).
The R¢-equivalence class of x € X is equal to [x]g, = mc(x) + [0, gap, (mc(x))).

Often enough we need to restrict sets and functions to an R¢-class. Since such
a need arises very frequently, especially in Chapter 9, we adopt the following short-
hand notations. Given a set A C X and a point ¢ € C, the intersection A N [c]g,, is
denoted simply by A(c). Likewise, 1S (A) stands for A({t e R: c+1 € AN [c]r.})
and corresponds to the Lebesgue measure of the set A N [c¢]g,.

The phase space X can be identified with the subset Z¢ € C X R,

Zc ={(c,t) : 0 <t <gapp(e)},

via the map ¥ : Z¢ — X given by ¥(c, t) = ¢ + t. Through this identification, A,
corresponds to the Lebesgue measure on the fiber of Z¢ over c. Moreover, uniqueness
of the Lebesgue measure implies uniqueness of a finite measure v on C such that y is the
push-forward by W of the restriction of v X A to Z¢ (see, for instance, [37, Prop. 4.3]).
The natural disintegration of (C X R, v ® 1) corresponds to the disintegration of u
of the form u(A) = /c AS(A) dv(c) (see Appendix D for an overview of measure
disintegration).
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L! full groups of Polish group actions

We begin by introducing the central concept of this work, namely the L! full groups of
Borel measure-preserving actions of Polish normed groups on a standard probability
space. While our primary focus will be on actions of locally compact groups, especially
flows, the notion of an L' full group can be introduced for actions of arbitrary Polish
normed groups. In Section 2.1, we present the definitions in this general setting.

In Section 2.2, we examine the case when there is a natural choice (up to quasi-
isometry) of a norm on G, allowing us to speak of the L! full group of a G-action.
This framework is applicable to G = R, yielding the definition of L' full groups of
measure-preserving flows.

Returning to the general setting, the L! full group of an action of a Polish normed
group is itself equipped with a natural norm. In Section 2.3, we demonstrate that
the resulting metric space is remarkably large: it contains an isometric copy of the
infinite-dimensional Banach space L! (X, R).

We conclude this chapter in Section 2.4 by establishing the closure of the L! full
group under the operation of taking induced transformations. This result will play a
pivotal role in the subsequent chapters.

2.1 L full groups of Polish normed group actions

A Polish normed group is a Polish group equipped with a compatible norm (see
Appendix A.1). Let (G, ||-||) be a Polish normed group, and let G ~ X be a Borel
measure-preserving action on a standard probability space (X, ). Using the norm, we
define a metric D on X, which may take the value +oo, as follows:

D(x,y)=uit€1£{ lae]| : ux =y} for (x,y) € X x X. 2.1

Remark 2.1. By definition, the infimum of the empty set is +co. Thus, D (x,y) = +co
if and only if x and y belong to distinct G-orbits.

The fact that D is a metric is straightforward except, possibly, for the implication
D(x,y) =0 = x =y. To justify the latter, let u, € G, n € N, be a sequence such
that u, — e and u,x = y. The elements u, Yug, n € N, belong to the stabilizer of x.
By Miller’s theorem [46], stabilizers of all points are closed, whence uy = lim,, u,;l ug
fixes x. Thus, ugx = x, and x = y as claimed.

Remark 2.2. When the G-orbit of xo € X is identified with the homogeneous space
G /H, where H is the stabilizer of xg, the restriction of the metric D to the G-orbit of
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xg corresponds to the quotient metric on G/H induced by the right-invariant metric
associated with the given norm on G.

We can then use D to define a norm (which may take the value +o0) on Aut(X, u),
leading to the definition of L! full groups.

Definition 2.3. Let G ~ X be a Borel measure-preserving action of a Polish normed
group (G, ||-||) on a standard probability space (X, i), andlet D : X x X — R=0 U {400}
be the associated metric on X. The L'-norm of an automorphism 7' € Aut(X, y) is
denoted by ||T||; and is defined as the integral

171l = /X D (x. Tx) du(x).

In general, many elements of Aut(X, 1) may have an infinite norm. The L' full group
of the action consists of those automorphisms for which the norm is finite:

[G ~ X]1 = {T € Aut(X, u) : |IT]l; < +oo}.

Elements of [G ~ X ]; form a group under composition, as can be readily verified
using the triangle inequality for D and the fact that the transformations in the L! full
group are measure-preserving. Moreover, it is straightforward to check that ||-||; defines
anormon [G ~ X];. Our primary objective is to prove that this norm ||-||; induces
a Polish group topology on [G ~ X],. Before doing so, however, we establish a
connection to the full group of the action G ~ X, defined by

[G ~X] = {T € Aut(X, ) : (x,T(x)) € R for almost all x € X}.

Note that since the L'-norm is given by ||T||, = fX D(x,Tx) du(x),if ||T||; < +co, then
D(x,Tx) < +oco holds almost surely, implying T € [G ~ X . Thus, the L' full group
[G ~ X]; is a subgroup of the full group [G ~ X].

The full group of the action was shown to be a Polish group by A. Carderi and the first-
named author in [11] (where it is referred to as the orbit full group). Furthermore, when
the fixed group norm || - || is bounded, so is D, which implies that [G ~ X ]1 =[G ~ X].
Consequently, L! full groups encompass the full groups studied in [11]. To demonstrate
that L! full groups are Polish, we will adopt the same approach as in [11]. We first
provide an alternative definition of the L' full group, from which the Polishness of the
topology will follow directly, and then show that the two definitions yield isometrically
isomorphic structures. This alternative definition relies on understanding the cocycles
associated with elements of the L! full group.

Let us introduce some notation from Appendix B. For a standard Borel space Y, we
denote by LY(X, Y) the space of measurable maps X — Y. When Y is a Polish normed
group (G, ||-||), we define L' (X, G) to be the set of all f € L°(X, G) satisfying

/ 1l dut(x) < +oo.
X
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Furthermore, given a Borel measure-preserving action G ~ X, we define the map
®:L%X,G) = L%X, X) by ®(f)(x) = f(x) - x for f € L°%(X,G) and x € X.

Definition 2.4. Let G ~ X be a Borel measure-preserving action of a Polish group G
on a standard probability space (X, ). A function ¢ € L°(X, G) is called a cocycle of
T € [G ~ X]ifT(x) = c(x) - x holds for almost every x € X.

Note that if we identify Aut(X, ) with a subset of L°(X, X), then c is a cocycle
of T € [G ~ X] precisely when T = ®(c).

Definition 2.5. Consider a Borel measure-preserving action G ~ X of a Polish normed
group (G, ||-]|) on a standard probability space (X, u). The L! pre-full group PF! is
defined as

PE' = @' (Aut(X, u)) N L' (X, G).

In other words, the L! pre-full group consists of all integrable cocycles.

Remark 2.6. When the group norm ||-|| on G is bounded, the integrability condition
becomes trivial. In this case, PF! = ®~!(Aut(X, u)) coincides with the pre-full group
PF as defined in [11, p. 91]. The latter was shown to be Polish in the topology of
convergence in measure induced by L°(X, G), and our next result encompasses this in
view of Proposition B.8.

We equip the L! pre-full group with the topology induced by L' (X, G), which
arises from the norm

I X0 /X 1Ol dueC).

By Proposition B.13, L (X, G) is a Polish normed group under pointwise multiplication.
Following the approach in [11, p. 91], we lift the composition law from Aut(X, 1)
to cocycles as follows: for f, g € PF! and x € X, define the multiplication by

(f*g)(x) = f(DP(g)(x))g(x),

and the inverse' by
inv(f)(x) = F( @) ()7

Proposition 2.7. PF! is a Polish group with the multiplication (f,g) +— (f * g) and

1
the inverse f +— inv(f). The function f — || f ||Il“ X6 s a compatible group norm

on PF!, and ® [ppi: PF! — Aut(X, p) is a continuous homomorphism.

The symbol £~ is already reserved for the pointwise inverse on L' (X, G). To avoid confu-
sion, we introduce a distinct notation for this new operation.
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Proof. First of all, we need to show that these operations are well-defined in the sense
that the functions f * g and inv( f) belong to L!(X, G) whenever f and g do. To this
end, observe that for f, g € PF',

If # gll- X0 = /X 11/ (@(g)(x)g ()l du(x)
< /X 1/ (@) Gl dalx) + /X g du ().

Now note that since ®(g) is measure-preserving, we have

/ 1 (@(g) )| du(x) = / 1O du).
X X
and therefore

1 1 1
I1f = glly 9 < / £l du(x) + / g du(x) = 17115 XD 4 gt %
X X

In particular, f * g € L1(X, G), and thus PF! is closed under multiplication. Similarly,
O(f) € Aut(X, u) implies

||1nV(f)||&‘1(X,G) — /”f(q)(f)—l(x))_l I du(x)
X
= [t = 71 .

Thus PF! is closed under taking inverses. We leave it to the reader to verify that the
operation * endows PF! with a group structure, where the inverse of an element f € PF!
is given by inv( f). Additionally, we have shown that ||- ||%l X6 defines a group norm
on PF'. It remains to establish the following properties:

* The topology induced by L' (X, G) on PF! is Polish.
+ The topology induced by L' (X, G) on PF! is a group topology.

¢ The restriction of the norm ||- ||Il“1 (X.6) 1o PF! is compatible with this group topology.

Note that the third property follows directly from the first two, as the norm ||'||Il‘l X.6)

determines the topology of L' (X, G), even though the latter is equipped with distinct
group operations.

We are thus left with verifying that the topology induced by L' (X, G) on PF' is a
Polish group topology. To achieve this, we equip X with a Polish topology that induces its
standard Borel structure and ensures the continuity of the G-action on X. Such a topology
is guaranteed by a well-known result of H. Becker and A. S. Kechris [6, Thm. 5.2.1].
With this topology in place, L°( X, X) can be endowed with the topology of convergence
in measure, and the evaluation map

®:L%X,G) 5 LY(X.X), ®(f)(x)=[f(x)-x,
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becomes continuous by Lemma B.4.

Since the topology of L! (X, G) refines that of L°(X, G), the restriction of ® to
L!(X, G) remains continuous under its Polish group topology. The continuity of the
group operations now follows directly from the continuity of ®, combined with the
continuity of the Aut(X, u)-action on L!(X, G) (Proposition B.11) and the fact that
L!(X,G) forms a topological group under pointwise multiplication (Proposition B.13).

We now establish that the induced topology on PF' is Polish by invoking Alexan-
drov’s theorem. This theorem states that a subspace of a Polish space is Polish under
the induced topology if and only if it is a G5 set (see [31, Thm. 3.9]). The forward
direction of Alexandrov’s theorem, together with Proposition B.12, implies that the
Polish group Aut(X, i) is a G 5 subset of L°(X, X). By the continuity of ®, it follows
that PF' = @~ (Aut(X, u)) NL'(X,G) is a G 5 subset of L' (X, G). Consequently, the
reverse implication of Alexandrov’s theorem ensures that PE! is Polish. ]

Remark 2.8. Our arguments rely fundamentally on the results of H. Becker and
A. S. Kechris [6], which allow us to transform Borel actions into continuous ones.
We note that the application of [6, Thm. 5.2.1] in the proof of Proposition 2.7 can be
replaced with the more straightforward result [6, Thm. 2.6.6]: every Borel G-action
admits a Borel embedding into a continuous G-action on a compact Polish space. By
equipping this space with the push-forward measure, we can proceed with our analysis,
as the Borel embedding ensures that the actions are isomorphic up to a null set.

Let K < PF' denote the kernel of ® Mpgt» and let |- ||11)Fl /K

induced by ||-||Il‘1 (X.6) (see Proposition A.3 regarding the properties of the quotient

norm). The factor group (PF!/K, |- ||TF1/ K) is evidently a Polish normed group, and it
turns out to be isometrically isomorphic to the L! full group introduced in Definition 2.3,
as we will now see. Let @ : PF' /K — Aut(X, 1) denote the homomorphism induced

by ® [, onto the factor group.

denote the quotient norm

Proposition 2.9. The homomorphism ® : PF' /K — Aut(X, u) establishes an isometric

isomorphism between (PF' /K, ||-||I1)F1/K) and ([G ~ X]1, Ill))-

PF/K

% = [|®(gK)|l1 holds for any gK € PF'/K.

Proof. We begin by showing that ||gK]||
By the definition of the quotient norm,

1 .
gk = inf / g Ykl dp ().
eK X

For any fixed k € K, we have g(x)k(x) - x = g(x) - x, and therefore

D(x,g(x)-x) < |lgx)k(x)|| for almost every x € X.
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PF'/K

] . For the other direction,

This readily implies the inequality ||®(gK)||; < ||gK]|
let € > 0 and consider the set

{(x,u) e XXG:g(x)-x=u-xand |[u]] < D(x,g(x)-x)+¢€}.

Using the Jankov—von Neumann uniformization theorem, one may pick a measurable
map go : X — G that satisfies go(x) - x = g(x) - x and ||go(x)|| < D(x,g(x) - x) + €
for almost all x € X. Since x — g(x)'go(x) € K, we have

1K)y = /X D, g(x) - x) du(x)
> / e (g ()" g0 ()| dux) —
X

PFl/K

> [IgKIl,

€.

1 ~
As € is an arbitrary positive real, we conclude that ||gK||I1)F /K~ [P (gK)|l;.
It remains to check that @ is surjective. For an automorphism 7 € [G ~ X],

consider the set
{(x,u) e XXG :Tx=u-xand ||u|| < D(x,Tx) + 1}.

Applying the Jankov—von Neumann uniformization theorem once again, we get a map
g € L%(X, G) such that ®(g) = T and ||g(x)|| < D(x,Tx) + 1. The latter inequality,
together with the assumption that 7 € [G ~ X, easily implies that g € L' (X, G),
and thus gK € PF!/K is the preimage of T under ®. |

Results discussed thus far can be summarized as follows.

Theorem 2.10. Let G ~ X be a Borel measure-preserving action of a Polish normed
group (G, ||-||) on a standard probability space. The L' full group [G ~ X]1 is a
Polish normed group relative to the norm ||T||| = fX D (x,Tx) du(x).

Remark 2.11. When the acting group is finitely generated and equipped with the word
length metric with respect to a finite generating set, it can be shown that the left-invariant
metric induced by the norm on the L' full group is complete (see [40, Prop. 3.4 and 3.5]
and the remark thereafter for a more general statement). Nevertheless, L! full groups
generally do not admit compatible complete left-invariant metrics, i.e., they are not
necessarily CLI groups. For instance, if G = R is acting by rotation on the circle, the
L! full group of the action is all of Aut(S!, 2), which is not CLI.

Let us point out a possibility to generalize our framework. Given a standard prob-
ability space (X, u), consider an extended Borel metric D on X, i.e., a Borel metric
that is allowed to take the value +oo (Eq. (2.1) provides such an example). Note that
the relation D(x, y) < +co is an equivalence relation. One can now define the L! full
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group of D in complete analogy with Definition 2.3 as the group of all 7 € Aut(X, u)
whose norm ||T||, = /x D (x,T(x)) du(x) is finite.

Question 2.12. Suppose that D restricts to a complete separable metric on each
equivalence class {y € X : D(x,y) < +o0}, x € X. Is the L! full group of D Polish in
the topology of the norm ||-||p ?

2.2 L! full groups and quasi-metric structures

When viewed as a normed group, the L! full group [G ~ X]; depends on the choice
of a compatible norm on G. The topological structure on [G ~ X |1, however, depends
only on the quasi-metric structure of the acting group. Recall that two norms ||-|| and
||-]|” on a Polish group G are quasi-isometric if there exists a constant C > 0 such that
forall g € G,

1 ’
cliell=C < ligll” = Cligl + €.

Lemma 2.13. Let ||-|| and ||-|| be two quasi-isometric compatible norms on a Polish
group G, and let G ~ (X, i) be a Borel measure-preserving action on a standard
probability space. The L' full groups associated with the two norms are equal as
topological groups.

Proof. The quasi-isometry condition implies that a function f : X — G satisfies
fX||f(x)|| du(x) < +oo if and only if /X||f(x)||’ du(x) < +co. In particular, the L!
full groups associated with these norms are equal as abstract groups.

Both topologies make the inclusion of [G ~ X]; into Aut(X, u) continuous
by Proposition 2.7, and, in particular, the inclusion map is Borel. Since injective
images of Borel sets by Borel maps are Borel (see, for example, [31, Thm. 15.1]), it
follows that both topologies induce the same Borel structure on [G ~ X]i, which
also coincides with the one induced by the weak topology on Aut(X, ). A standard
automatic continuity result (originally due to S. Banach [4, Thm. 4 p. 23]) then yields
equality of the two topologies (see also the second paragraph following [6, Lem. 1.2.6]).

]

When a Polish group G admits a canonical choice of the quasi-metric structure, L!
full groups [G ~ X]; are unambiguously defined as topological groups without the
need to choose any particular norm on G. This is the case for boundedly generated Polish
groups—the class of groups identified and studied by C. Rosendal in his treatise [52].
Appendix A.2 provides a succinct review of the concept of maximal norms on boundedly
generated Polish groups.

An example of this situation is given by G = R, where the usual Euclidean norm is
maximal in the sense of Definition A.5.
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Remark 2.14. We will see in the last chapter that the natural L' norm on the L! full
groups of R-actions is maximal so that it defines a quasi-metric structure which is
canonically associated with the topological group structure.

2.3 Embedding L! isometrically in L! full groups

We now present a general result on the geometry of L! full groups equipped with the
L! norm ||-||;, demonstrating that these groups are quite large.

Given a o-finite measured space (X, 8, 1), let MAlg f(X , 1) denote the space of
all finite-measure subsets B € $, identified up to measure zero. Endow MAIlg f(X ,A)
with the metric d,(B1, B2) = A(By A By), where A denotes the symmetric difference.

Proposition 2.15. Let G ~ X be a Borel measure-preserving action of a Polish
normed group (G, ||-||). If

[Gf\«X]l * [Gf\«X],

then the metric space (MAIlg ;(R, 2), dy) embeds isometrically into the L' full group
of G ~ X endowed with its L' metric, and hence so does L' (X, 1, R).

Proof. |G ~ X] is a full group, so any of its elements can be written as a product of
three involutions belonging to [G ~ X] by [55]. By assumption, [G ~ X ]| # [G ~ X],
so there must be an involution U € [G ~ X] which does not belong to [G ~ X ;.
Denote by By the o-algebra on supp U consisting of U-invariant sets, endowed with
the measure given by Ay (A) = ||Ua|l;, where Ua(x) = U(x) if x € A and U (x) = x
otherwise. Since supp U = |J,,{x € supp U : D(x, U(x)) < n}, the measure Ay is o-
finite. Also, Ay is non-atomic, because so is u, and infinite, because U ¢ [G ~ X ;.
There is only one o -finite standard atomless infinite measured space up to isomorphism
(namely (R, B(R), 1)), so we conclude that (MAlg ;(supp U, Av), dy,,) is isometric
to (MAlg;(R, 1), da). Composing this isometry with A — Uy, we get the desired
isometric embedding (MAlgf(R, A),dy) — [G~ X];.

Finally, we observe that L! (X, u, R) can be embedded into MAlg (X XR,u®4)
by taking a function f to its epigraph, namely the set of all (x, y) € X X R such that
f(x) <y <0o0r0 <y < f(x). Since there is again only one infinite o--finite standard
atomless measured space and (X X R, u ® 1) is such a space, we get an isometric
embedding L' (X, i, R) — MAIlg;(R, 1) as wanted. n

Remark 2.16. Full groups of actions of Polish groups are always coarsely bounded.
In fact, they are coarsely bounded even as discrete groups”, which is a result due to

2Being coarsely bounded as a discrete group is also called the Bergman property.
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M. Droste, W. C. Holland and G. Ulbrich [14] (see also [45, Section 1.8] for a more
general statement which encompasses the non-ergodic case). In particular, the above
result is actually a sharp dichotomy: every L! full group of a Polish normed group
action is either coarsely bounded, or it contains an isometric copy of L' (X, i, R).

Remark2.17. Proposition 2.15 significantly improves [41, Prop. 6.9], since R", endowed
with the ¢! norm, embeds isometrically into L' (X, u, R).

2.4 Stability under taking induced transformations

Some of the basic properties of L! full groups are discussed—in the wider generality
of induction friendly finitely full groups—in Chapter 3. The often-used fundamental
fact is the closure of L! full groups under taking the induced transformations, which is
a generalization of [40, Prop. 3.6]. We formulate this in Proposition 2.18.

Let T € Aut(X, u) be a measure-preserving transformation. Recall that for a mea-
surable subset A C X, the induced transformation 7', is supported on A and is defined
to be 7" (x) for x € A where n > 1 is the smallest integer such that 7" (x) € A. By the
Poincaré recurrence theorem, such a map yields a well-defined measure-preserving
transformation.

Proposition 2.18. Let G ~ X be a Borel measure-preserving action of a Polish normed
group (G, ||-||). For any element T € |G ~ X, and any measurable set A C X, the
induced transformation Ty belongs to [G ~ X]| and moreover ||T4||; < |IT||;-

Proof. Forn > 1, let A, be the set of elements of A whose return time is equal to n;
note that X = | |, |_|{’:_01 Ti(Ap). Let as before D : Rg — R=° be the metric induced
by the group norm ||-|| on the orbits of the action. To estimate the value of ||74]|;,
observe that

(o]

ITalh = [ DT dut) = Y, [ DG Tan) dut)
n=1 n

= ZA,,D(X’ T"x) du(x).
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Using the triangle inequality, we get

—

n—

/D(Tix, T %) du(x)

n

ITall; <

- o

S
|

/T D(x.Tx) d(u o T)(x)
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1=l
n—

Me iz iPe
M

[ om0 duco - /X D(x, Tx) du(x) = |,

-~ T preserves u =
T'(An)

1l
—_

n=1 i=0

Thus T4 € [G ~ X]; and ||Tall; < ||IT]|; as claimed.



Chapter 3

Polish finitely full groups

The primary focus of this work is the study of L! full groups of Borel measure-preserving
actions of Polish normed groups. However, several results are valid in the more general
context of what we call Polish finitely full groups. This generalization encompasses L'
full groups and provides a unified and extended context for addressing topics such as
topological simplicity and maximal norms, building on the results of [40,41].

Beginning with a Polish finitely full group as defined in Section 3.1, we construct
in Section 3.2 a natural closed subgroup, termed the symmetric subgroup, which is
analogous to V. Nekrashevych’s symmetric and alternating topological full groups [48].
We show that this closed subgroup coincides with the topological derived subgroup
under a mild hypothesis, satisfied by L! full groups, which we call induction friendliness.
Section 3.3 explores closed normal subgroups of the symmetric subgroup: we establish
their correspondence to invariant sets—a fact that easily yields topological simplicity
when the ambient Polish finitely full group is ergodic. Finally, in Section 3.4, we provide
a condition on a normed induction friendly Polish finitely full group that guarantees
the maximality of its norm’s restriction to the symmetric subgroup. Maximality is
understood in the sense of C. Rosendal, and Appendix A.2 contains a brief reminder
of the relevant notions.

3.1 Polish full and finitely full groups

H. Dye defined a subgroup G < Aut(X, i) as being full when it is stable under the
cutting and pasting of its elements along a countable partition: given any partition
(An)n of X and any sequence (g,), such that the family (g,(A,)), also partitions
X, the element T € Aut(X, u) obtained as the reunion over n € N of the restrictions
gn a, belongs to G. In particular, the group Aut(X, ) itself is full.

Given any G < Aut(X, u), the group obtained by cutting and pasting elements of
G along countable partitions is the smallest full subgroup containing G. We denote it
by [G] and call it the full group generated by G.

Recall that the uniform topology on Aut(X, u) is the topology induced by the
uniform metric d,, defined by

du(T,T2) = u({x € X : Tix # Tox}).
The following can essentially be traced back to H. Dye [15, Lem. 5.4].

Proposition 3.1. The metric d,, is complete on any full group G, and it is separable if
and only if the full group is generated by a countable group.
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Proof. Suppose that (T,), is a Cauchy sequence in the full group G. Taking a subse-
quence, we may assume that d, (T, T,+1) < 27" for all n. By the Borel-Cantelli lemma,
for almost every x € X there is some N € N such that 7,,x = Tyx foralln > N. Let
Tx = Tnx for such N = N(x), and note that T is a measure-preserving bijection' and
d,(T,,T) < 27!, By construction, T is obtained by cutting and pasting the elements
T,, of G along a countable partition so T € G, since G is full.

Suppose G is separable and let I" be a countable dense subgroup. The group [I']
is a countably generated full group which is dense in G, so G = [I"] by completeness.
The converse is obtained by noting that if I" generates G, then one can view G as the
full group of the equivalence relation generated by a realization of the action of I" on
(X, u), which is d,,-separable by [32, Prop. 3.2]. ]

The L! full groups that we are considering are not full in the sense of H. Dye unless
the norm on the acting Polish group is bounded, a case which was considered earlier
in [11]. They nevertheless satisfy the following weaker property.

Definition 3.2. A group G < Aut(X, u) of measure-preserving transformations is
finitely full if for any partition X = A; LU --- U A, and all elements g1,...,g, € G
such that the sets g1 Ay, . .., gn A, also partition X, the transformation T € Aut(X, u),
obtained as the reunion over i € {1,...,n} of the restrictions g; [4,, belongs to G.

We have the following useful relationship between fullness and finite fullness.

Proposition 3.3. The d,,-closure of any finitely full group G is equal to the full group
[G] generated by G. Moreover, every element T € [G] is a d,,-limit of elements of G
whose support is contained in the support of T.

Proof. Since full groups are d,-closed and using the definition of fullness, it suffices
to show that every element T € [G] is a limit of elements of G that belong to the full
group generated by 7.

Since every T € [G] is a product of three involutions in [T]” [55], it suffices to
show that every involution in [G] is a limit of elements of G whose support is contained
in the support of that involution. Let U be such an involution, let (A, ), be a partition of
X, and let (g,), in G be such that Ux = g, x for all x € A,,. Pick a fundamental domain
BforU,ie.,BNU(B) =2 andsuppU = BUU(B).If B, = A;, N B, then Ux = g,x
for all x € B, and, since U is an involution, Ux = g, Ix forall x € U(B,). Let

{ Ux ifxe Um<n (Bm U U(Bm)) >
Upx = LT
X otherwise.

IThis also follows from the fact due to P. Halmos [27] that Aut(X, ) is d,,-complete.

%In fact, we only need the much easier fact that every element is a limit of products of two
involutions from its full group, which follows by combining Theorem 3.3 and Sublemma 4.3
from [32].
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dy
Clearly U,, € G, since G is finitely full. Furthermore, U,, — U and supp U,, C supp U
by construction, which finishes the proof. u

Consider a finitely full group G which is a Borel subset of Aut(X, u) and therefore
inherits the structure of a standard Borel space. If G is Polishable, i.e., if it admits
a Polish group topology compatible with the Borel structure, then such topology
is necessarily unique and must refine the weak topology inherited from Aut(X, u)
(standard automatic continuity results can be found, for instance, in [6, Sec. 1.6]). We
refer to such Polishable groups G endowed with their unique Polish group topology
refining the weak topology as Polish finitely full groups. In this monograph, our
motivating example for introducing this class is of course L! full groups.

Remark 3.4. For clarity, we adopt the notation 7}, 5, T to mean convergence of the
sequence (7T;,) to T in the Polish topology of G.

For any subgroup G < Aut(X, u), there is the smallest finitely full group containing
G. Note that if H < Aut(X, u) is a finite group, then the finitely full group it generates
coincides with the full group it generates. This, in particular, applies to the group
generated by a periodic transformation with bounded periods.

Proposition 3.5. Suppose G is a Polish finitely full group, and U € G is a periodic
transformation with bounded periods. The topology induced by G on the full group
of U is equal to the uniform topology.

Proof. The weak and uniform topologies on [U ] coincide because U is periodic. We
have already mentioned that the topology of G refines the weak topology. Since [U ]
is Polish in the uniform topology, by the automatic continuity result [6, Thm. 1.2.6],
the topology induced by G on the full group of U is refined by the uniform topology.
Consequently, the uniform topology and the topology induced from G onto [U] must
coincide. |

We conclude this preliminary discussion with a definition of aperiodicity, which
applies to arbitrary subgroups of Aut(X, u). Such a notion was already worked out
by H. Dye [15, Sec. 2] when he introduced type II subgroups. An equivalent version,
which suffices for our purposes, is as follows.

Definition 3.6. A subgroup G < Aut(X, u) is aperiodic if it contains a countable
subgroup whose action on (X, ¢) has no finite orbits.

Since the weak topology on Aut(X, u) is separable and metrizable, every group
G < Aut(X, ) contains a countable weakly dense subgroup. Therefore, every aperiodic
G contains a countable weakly dense subgroup whose action on (X, ) has no finite
orbits. Further discussion of aperiodicity can be found in Appendix F.4.
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3.2 Derived subgroup and symmetric subgroup

Recall that the algebraic derived subgroup of a group G is the subgroup generated by
all commutators. If G is additionally equipped with a group topology, the topological
derived subgroup is defined as the closure of the algebraic derived subgroup. In
this work, we do not consider algebraic derived subgroups and use the term derived
subgroup exclusively to refer to the fopological derived subgroup.

Our goal in this section is to determine when the derived subgroup of a Polish
finitely full group is topologically generated by involutions—that is, when involutions
generate a dense subgroup of the derived subgroup. We begin by noting that aperiodic
finitely full groups admit many involutions in the sense of [18, p. 384].

Lemma 3.7. Let G be a finitely full aperiodic group. For every measurable nontrivial
A C X, there is a nontrivial involution g € G whose support is contained in A.

Proof. By Lemma F.13, there is an involution T € [G] whose support is equal to A.
By the moreover part of Proposition 3.3, T is the d,,-limit of g,, € G supported in A.
In particular, one of the g,’s is nontrivial and g = g, satisfies the statement of the
lemma. ]

The first and second items of the following definition constitute analogues of
V. Nekrashevych’s symmetric and alternating topological full groups [48], respectively.
In the setup of L! full groups, however, these notions coincide, as we will see shortly.

Definition 3.8. Given a Polish finitely full group G, we let

¢  S(G) be the closed subgroup of G generated by involutions, which we call the
symmetric subgroup of G.

¢ A(G) be the closed subgroup of G generated by 3-cycles, i.e., generated by periodic
transformations whose non-trivial orbits have size 3.

¢ D(G) be the closed subgroup generated by commutators, called the derived sub-
group.

All these groups are closed normal subgroups of G, and A(G) < S(G) N D(G)
because every 3-cycle is a commutator of two involutions from its full group.

Proposition 3.9. A(G) = S(G) for any aperiodic finitely full group G.

Proof. Weneed to show that every involution is a limit of products of 3-cycles. Let U € G
be an involution, and let D denote a fundamental domain of U; thus suppU = D L U(D).
By Lemma F.13, one can find an involution V € [G] whose support is equal to D. Since
G is finitely full, we may write D as an increasing union D = J,, Dy, D, € D4y,
where each D,, is V-invariant, and for every n € N the transformation V,, induced by V
on D, belongs to the group G itself. Let U, = Up, u(p,,) denote the transformation
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induced by U onto D,, LI U(D,,) and note that U,, — U in the uniform topology, and
hence also in the topology of G by Proposition 3.5. Our plan is to use the following
permutation identity

(12)(34) = (12)(23)(24)(23) = (123)(423), (3.1)

where U,, corresponds to (12)(34), V,, to (13), and U,V,,U,, corresponds to (24).
To this end, let C,, be a fundamental domain for V,,, put W,, = Uc,uu(c,) (Which
corresponds to the involution (12)), and, at last, set S,, = W,,V,,W,, (corresponding
to (23) = (12)(13)(12)). Figure 3.1 illustrates the relations between these sets and
transformations.

Un(Dp)

Un(cn) Uu,v,u, UnVn(Cn)

W, Sn
Cn Vu(Cn)
O [ w ] ®
D,

Figure 3.1. The involution U, is a products of 3-cycles via (12)(34) = (123)(234).

Eq. (3.1) translates into Uy, = (W, S,) ((UnVaUn)Sy), so Uy is a product of two
3-cycles, hence it belongs to A(G). Since U, R U, we conclude that U € A(G). =

We do not know whether 2(G) = D(G) holds for all finitely full groups, but here
is a convenient sufficient condition.

Definition 3.10. A Polish finitely full group G is called induction friendly if it is stable
under taking induced transformations and, furthermore, whenever T € G and (A,,), is

. . . . G
an increasing sequence of T-invariant sets such that | J,, A,, = A, then T4, — Ta.
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In the above definition, we require stability under taking the induced transformations,
and so T4, always belongs to G. However, for T-invariant A,,, the assertion T4, € G is
already a consequence of G being finitely full.

Observe that L! full groups of measure-preserving actions of Polish normed groups
are finitely full and also induction friendly. Indeed, finite fullness follows from a
straightforward computation, while induction friendliness is a direct consequence of
Proposition 2.18 and the Lebesgue dominated convergence theorem.

Lemma 3.11. In an induction friendly Polish finitely full group G, every periodic
element belongs to S(G).

Proof. Suppose T is periodic. For n € N, let A,, be the set of x € X whose T-orbit
has cardinality at most n. Each A, is T-invariant and | J,, A, = X. Moreover, T4, is
periodic, so it can be written as a product of two involutions from its full group (see
e.g., [32, Sublem. 4.3]). Since G is finitely full and the periods of T4, are bounded, these

. . . . . . G
two involutions belong to G, hence T4, € S(G). By induction friendliness, T4, — T,
which finishes the proof since S(G) is closed in G. [

Lemma 3.12. Let G be an induction friendly Polish finitely full group. Let T € G
and F C X be the aperiodic part of T, i.e.,

F:{xEX:Tkxixforallkth}.

Forany A C X such that F C Uyez Tk(A) one has TyS(G) = TS(G).

Proof. Since F C |Jyez T¥(A), the transformation T~ 'Ty is periodic and therefore
belongs to S(G) by Lemma 3.11. Hence

TS(G) =TT 'TAS(G) = TAS(G). -

Remark 3.13. The usefulness of the above lemma stems from the following simple
observation. If 7,7, U, U’ satisfy TS(G) = T"S(G) and US(G) = U’ S(G), then
[T,U] € S(G) if and only if [T’,U’] € S(G). In particular, for A as in Lemma 3.12,
[T,U] € S(G) whenever [T4, U] € S(G). This fact is used in the proof of the next
lemma.

Lemma 3.14. Suppose G is an induction friendly Polish finitely full group. If T,U € G
are aperiodic on their supports, then [T,U] € S(G).

Proof. Let C be a cross-section for the restriction of Ry onto supp 7. In other words,
C C X is a measurable set satisfying | J;cz T%(C) = supp T. The induced transformation
Ux\c commutes with 7, since their supports are disjoint. We would be done if supp U C
Ujez UH(X \ C). Indeed, in this case T&(G) = TcS(G), US(G) = Ux\cS(G) by
Lemma 3.12 and [T¢, Ux\c] is trivial, hence [T, U] € S(G).
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Motivated by this observation, we argue as follows. Pick a vanishing nested sequence
(Cy)nen of cross-sections for Ry Tsupp7, i.€., C 2 Cry1, Upez T*(C,) = supp T for
alln e N, and (,,eny Cn = @ (see also Lemma F.11). Such a sequence of cross-sections
exists since T is assumed to be aperiodic on its support. Define inductively sets B;,,
n € N, by setting Bj = X \ Co, and letting B;, be the part of X \ C, that does not belong
to the U-saturation of any B/, k < n,

B,=(x\co\ | JU'p.

k<nieZ

By construction, saturations under U of the sets B, are pairwise disjoint, and the
saturation of their union is the whole space, U;cz U’ (U, B,) = X, because sets Cy,
vanish.

Let B, = | g<n B;{, B=lren B;(, and note that Ug, ,Up € G, and Up, 9) Up by
the induction friendliness of G. By construction, the transformations 7¢c, and Up,, have
disjoint supports for each n and, therefore, commute. Since all sets C,, are cross-sections
for Rt lsupp 7, one has [T, Up,] € S(G) by Lemma 3.12 and Remark 3.13. Taking the
limit as n — oo, this yields [T, Ug] € S(G). Finally, the U-saturation of B is all of X,
and we use Lemma 3.12 and Remark 3.13 once again to conclude that [T, U] € S(G),
as claimed. |

Proposition 3.15. If G is an aperiodic induction friendly Polish finitely full group,
then S(G) = D(G).

Proof. Theinclusion A(G) < D(G) holds for any Polish finitely full group, and Proposi-
tion 3.9 gives S(G) < D(G). We therefore concentrate on proving the reverse inclusion:
given T, U € G, we need to check that [T, U] € S(G). Let Fr and Fy; be the aperiodic
parts of T and U respectively, so that TS(G) = Tr, S(G), US(G) = Ug, S(G) by
Lemma 3.12. By construction, 7r, and Uf,, are aperiodic on their supports and there-
fore [TF,,Ur,] € ©(G) by Lemma 3.14. It remains to use Remark 3.13 to conclude
that necessarily [T, U] € S(G), as needed. ]

Corollary 3.16. Let G be a Polish normed group, and let G ~ X be an aperiodic
Borel measure-preserving action on a standard probability space (X, u). The three
subgroups of [G —~ X introduced in Definition 3.8 coincide:

DG ~ X]1) =A([G ~ X]1) = &([G ~ X]1).

Moreover, they are all equal to the closure of the group generated by periodic elements
of [G ~ X].

Proof. Theequality D([G ~ X]1) =W([G ~ X ]1) =S ([G ~ X];) follows immedi-
ately from Propositions 3.9 and 3.15, since [G ~ X |; is both finitely full and induction
friendly. All these groups are equal to the closure of the group generated by periodic
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elements of [G ~ X in view of Lemma 3.11 and the fact that this group obviously
contains S([G ~ X];). ]

3.3 Topological simplicity of the symmetric group

We now move on to showing that symmetric subgroups of ergodic Polish finitely
full groups are always topologically simple. More generally, we describe the closed
normal subgroups of symmetric subgroups of aperiodic Polish finitely full groups. Our
argument abstracts from [40, Sec. 3.4]. In particular, we rely on conditional measures
associated with subgroups of Aut(X, u), whose construction and basic properties are
recalled in Appendix F. We begin with two lemmas on involutions.

Lemma 3.17. Let G be an aperiodic Polish finitely full group, let U,V € G be two
involutions whose supports are disjoint and have the same G-conditional measure.
Then U and V are approximately conjugate in S(G), i.e., there are T, € S(G) such

G
that T, UT;' — V.

Proof. Let A (resp. B) be a fundamental domain of the restriction of U (resp. V) to its
support. Then ug(A) = uc(B), and there is an involution T € [G] such that T(A) = B.

Since G is finitely full, there is an increasing sequence (A,,), of subsets of A such
that the involutions 7, induced by T on A,, U U(A,,) belong to G, and | J,, A, = A. Let
B, =T(A,) =T,(A,) and define involutions 7,, € G which almost conjugate U to V
as follows. For x € X, let

Tx ifxe A, UB,
VIUx iftxeU(A,)
UTVx ifxeV(B,)

X otherwise.

Tox =

For all n» € N and all x € X, an easy calculation yields that:

e ifxe(AUU(A))\ (A, UU(A,)), then T,,UT,x = Ux;

e ifxeB,UV(B,),thenT,UT,x = Vx;

e and T,,UT,x = x in all other cases.

In particular, d,,(T,UT,, V) — 0 and Proposition 3.5, applied to the full group of the
involution UV (which contains both U and V), guarantees that T,,UT, 9) V. [

Lemma 3.18. Let G be an aperiodic Polish finitely full group, let U € G be an involution,
and let A be a U-invariant subset contained in supp U. Suppose that there exists an
involution V € G such that V(A) is disjoint from supp U. Then for all G-invariant
functions f < 2ug(A), there is an involution W € G such that UWUW is an involution
whose support has G-conditional measure f.
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Proof. Let B C A be a fundamental domain for the restriction of U to A and note
that ug(B) = ug(A)/2. By Maharam’s lemma (Theorem F.12), there is C C B such
that ug(C) = f/4. The set D = C U U(C) is U-invariant and satisfies ug(D) = f/2.
Consider the involution W € G defined by

Wx:{ Vx ifx e DUV(D)

x  otherwise.

A straightforward computation shows that UWUW is an involution that coincides with
U on D, with VUV on V (D), and is trivial elsewhere. Hence, the support of UWUW
is equal to D U V(D) and has G-conditional measure f. [

Given a subgroup G < Aut(X, u) and a G-invariant set A, we let G 4 stand for the
subgroup {T € G : suppT C A}. Note that G 4 is a normal subgroup of G. Our focus
is on the case G = S(G), where G is an aperiodic Polish finitely full group. Every
subgroup S(G)4 is necessarily closed, because the topology of G refines the weak
topology. We show in Theorem 3.20 that all closed normal subgroups of S(G) arise in
this way.

Proposition 3.19. Let G be an aperiodic Polish finitely full group, let T € G, and
let A denote the G-saturation of supp T. Then the closed subgroup of G generated by
the S(G)-conjugates of T contains S(G) 4.

Proof. Let the closed subgroup of G generated by the S(G)-conjugates of T’ be denoted
by G. By [20, Lem. 7.2], we can find a set B C supp 7 whose T-translates cover
supp T and which satisfies B N T (B) = @. Since T-translates of B cover supp 7', we
conclude that the G-translates of B cover A, and so ug(B)(x) > 0 for all x € A. By
Maharam’s lemma (Theorem F.12), we can find C C B whose G-conditional measure is
everywhere at most 1/4, and is strictly positive on A. Take V € [G] to be an involution
such that V(C U T(C)) is disjoint from C U T (C). Such an involution exists because
uc(CuT(C)) < 1/2, and so, by Maharam’s lemma, we can find a subset contained
in X \ (C UT(C)) having the same conditional measure as C LI T(C). We can then
apply the last item from Proposition F.10.

Let W € [G] be an involution such that supp W = C, whose existence is guaranteed
by Lemma F.13. Using the facts that G is finitely full, that 7 € G and that V, W € [G],
one can find an increasing sequence (C,), of W-invariant subsets of C such that
U, Cn = C and for each n € N both W¢,, € G and Ve, ur(c,)uv(c,ur(c,)) € G. The
transformations W, TWCHT‘1 belong to G, and are, in fact, involutions whose support
is equal to C,, U T(C,) and has conditional measure at most 2ug(C) < 1/2. Let us
define for brevity

Un = VVCnTWCnT_1 €eG and Vn = Ve, ur(C,)uv(C,uT(Cp)) € G.
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For every n € N, let A, denote the G-saturation of C,,. Note that A = | J,, A, and
the union is increasing. Every involution supported on A is thus the uniform limit of
the involutions it induces on A,,’s. By Proposition 3.5, it therefore suffices to show that
G contains all the involutions which are supported on some A,,.

Let U be an involution supported on some A,. Let D be a fundamental domain
for the restriction of U to its support. Using Maharam’s lemma repeatedly, we can
partition D into a countable family (D) such that

uc(Dy) < ug(suppU,)/2  forall k € N. (3.2)

If we let E, = Dy L U(Dy), the sequence (Ey )y forms a partition of supp U into U-
invariant sets. In particular, U = limy ]—If.‘zo Ug, in the uniform topology and therefore
in the topology of G as well by Proposition 3.5. Moreover, the support of Ug, has G-
conditional measure at most uc(supp U,,) by Eq. (3.2). The set V,,(supp U,,) is disjoint
from supp U,, by construction. Lemma 3.18 applies and provides an involution in G
whose support has the same conditional measure as that of Ug, . Lemma 3.17 shows
that each Ug, belongs to G and therefore also U € G, as needed. n

Theorem 3.20. Let G < Aut(X, u) be an aperiodic Polish finitely full group. For
any closed normal subgroup N < S(G), there is a unique G-invariant set A such
that N = &(G)a4.

Proof. First, observe that for G-invariant A; and A,, any involution U € G supported
in A U A; decomposes into the product of one involution supported in Ay, and one
supported in A,. It follows that the closed group generated by S(G)a, U S(G)4,
is equal to S(G)4,u4,. Also, by Proposition 3.5, whenever (A,), is an increasing
sequence of G-invariant sets, one has

| J&(@)a, = 6@y, 4,

The set {A € MAlg(X, u) : A is G-invariant and S(G)4 < N} is thus directed and is
closed under the countable unions. It therefore admits a unique maximum element,
which is the set A we seek. Indeed, S(G)4 < N, and the reverse inclusion is a direct
consequence of Proposition 3.19.

It remains to argue that the set A satistying N = S(G) 4 is unique. Suppose towards
a contradiction that S(G)4, = S(G)a,for A} # Ay. By symmetry, we may assume
that u(A; \ Az) > 0. Lemma 3.7 provides an involution V € G whose support is
nontrivial and is contained in A; \ A2, thus V € S(G)y4, butV ¢ S(G)a,, contradicting
S(G)a, = S(G)a,. n

Corollary 3.21. Let G < Aut(X, u) be an aperiodic Polish finitely full group. The
group S(G) is topologically simple if and only if G is ergodic.
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Proof. If Gis ergodic, then G(G) is topologically simple by Theorem 3.20. Conversely,
suppose that G is not ergodic and let A C X be a G-invariant set with u(A) ¢ {0, 1}.
Then S(G)4 is a normal subgroup of G which is neither trivial nor equal to S(G) as a
consequence of Lemma 3.7 applied to A and its complement. u

Specifying the corollary above to L! full groups and using Corollary 3.16, we
obtain the following result.

Corollary 3.22. Let G be a Polish normed group, and let G ~ X be an aperiodic Borel
measure-preserving action on a standard probability space (X, ). The topological
derived subgroup of the L' full group of the action is topologically simple if and only
if the action is ergodic.

3.4 Maximal norms on the derived subgroup

The purpose of this section is to establish sufficient conditions for a norm on the derived
subgroup of an induction friendly Polish finitely full group to be maximal in the sense of
Section 2.2. Our argument follows closely the one given in [41, Sec. 6.2] for amenable
graphings. The main application of Proposition 3.25 will be given in Theorem 5.5,
but we hope that the setup of this section can be useful in other contexts, such as
w-integrable full groups [10].

Definition 3.23. A norm ||-|| on a subgroup G < Aut(X, ) is additive if ||7S|| =
[|IT]| +||S]| forall T, S € G with disjoint supports.

The following lemma parallels [41, Lem. 6.4] and is the key to showing that the
norm on the derived subgroup is both coarsely proper and large-scale geodesic.

Lemma 3.24. Let G < Aut(X, u) be a finitely full Polish group, and suppose that ||-||
is a compatible additive norm on G. For any periodic U € G with bounded periods
and for every n € N, there are periodic elements Uy, . ..,U, € G such that

U
U=U---U, and ||U;|| = uforeveryl <i<n.
n

Proof. Let M = ||U|| and A C X be a fundamental domain for U. We may identify A
with the interval [0, u(A)] endowed with the Lebesgue measure. Put A, = [0,7] N A,
0<t<u(A),andlet B; =,z U"(A;) be the U-saturation of A,. Note that Ug, € G
for all r € [0, u(A)] since B; is U-invariant and G is finitely full, and that ¢ — B, is
continuous.

The map [0, u(A)] 3¢t — Up, € [U] € G is thus continuous with respect to the
uniform topology on [U], and therefore also with respect to the topology of G by
Proposition 3.5. Whence the function ¢ : [0, u(A)] — R given by y/(¢) = ”UBtH is
also continuous.
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We have ¢ (0) = 0 and ¢ (u(A)) = M, so the intermediate value theorem yields
existence of reals 0 =19 <t < --+ < ty—1 < t, = u(A) such that y(#;) = % for all
ie€{0,...,n}.SetC; =B, \ By, , fori € {1,...,n}. By construction, each C; is U-
invariant and X = | || C;. Putting U; = Uy,, we get U = []}_, U;. Finally for each

i € {l,...,n} the equality C; = By, \ B;,_, and additivity of the norm gives
W) = 1B, Il = 10U, |l = Ul +11Us, || = Ul + (o),
hence |U;|| = @ for all i < n, as needed. [

Proposition 3.25. Let G < Aut(X, u) be an induction friendly Polish finitely full group
and let ||-|| be a compatible additive norm on it. If the set of periodic elements is dense
in D(G), then ||| is a maximal norm on D(G).

Proof. In view of Proposition A.10, it suffices to show that ||-|| is both large-scale
geodesic (see Definition A.8) and coarsely proper (see Definition A.9). Note that
induction friendliness yields density in D(G) of periodic automorphisms with bounded
periods.

To see that ||-|| is large-scale geodesic (with constant K = 2), let us take a non-
trivial T € D(G) and pick a periodic U € D(G) with bounded periods such that
||TU*1|| < min{2, ||T]| /2}. Note that

Wl = ot =r-"Tu = < T~ + ITu < 31T/2 (3.3)

Fix n € N large enough to ensure % < 2. By Lemma 3.24, we may decompose

U into a product of n elements Uy, . . ., U, each of norm at most % < 2. Therefore
T={TU") U Uy,
where TU ! and each of U;, 1 <i < n, has norm at most 2 and, in view of Eq. (3.3),

. - 17|
TU | + il < —+ <2t
Iro=|i ; Uil = == +1IUll < 21171,
thus concluding the proof that ||-|| is large-scale geodesic.

We now show that ||-|| is coarsely proper. Fix € > 0 and R > 0. Let n € N be so
large that ne > R + €. Then every element T € D(G) of norm at most R is a product
of n + 1 elements of norm at most €, namely one element TU =1 of norm at most €,
where U is periodic with bounded periods as provided by density, and U = U; - - - U,,,
where each U; has norm at most RZE < € as per Lemma 3.24. Thus ||-|| is both coarsely
proper and large-scale geodesic, and hence is maximal by Proposition A.10. |

Remark 3.26. We do not have an example of an induction friendly Polish finitely full
group G for which the periodic elements are not dense in D(G). A potential candidate
might be the L! full group of a free action of the free group on 2 generators, endowed
with the norm given by the word length with respect to the canonical generating set.



Chapter 4

Full groups of locally compact group actions

In this chapter, we narrow down the generality of the narrative and focus on actions of
locally compact Polish groups, or equivalently, of locally compact second-countable
groups. Such restrictions enlarge our toolbox in a number of ways. For instance, all
locally compact Polish group actions admit cross-sections to which the so-called
Voronoi tessellations can be associated. We use this to show in Section 4.1 a natural
density result for subsets of L! full groups defined from dense subsets of the acting
group (Theorem 4.2 and Corollary 4.3). For the reader’s convenience, Appendix E.2
contains a concise reminder of the needed facts about tessellations.

Another key property of free' actions of locally compact groups is the existence
of a Haar measure on each individual orbit. As we discuss in Section 4.2, elements
of the full group act by non-singular transformations and, in particular, admit the
Hopf decomposition (see Appendix C). Section 4.3 explains how these orbitwise
decompositions can be understood globally, yielding a natural generalization of the
periodic/aperiodic partition for elements of the full group of a measure-preserving
action of a discrete group. The periodic part in the latter case corresponds to the
conservative piece of the Hopf decomposition, which generally exhibits a much more
complicated dynamical behavior. We return to this in Chapters 7 and 8.

In the final Section 4.4, we connect L! full groups to the notion of L! orbit equiva-
lence for actions of locally compact compactly generated Polish groups.

4.1 Dense subgroups in L! full groups

Our goal in this section is to prove that any element of the full group [G ~ X | can be
approximated arbitrarily well by an automorphism that piecewise acts by elements of a
given dense subset of G.

Definition 4.1. A measure-preserving transformation 7" : A — B between two measut-
able sets A, B C X is said to be H-decomposable, where H C Aut(X, w), if there exist
a measurable partition A = | |; <y Ak and elements hy € H suchthatT [4,= hi [a,
for all k € N.

'Motivated by our focus on R-flows, this monograph primarily concentrates on free actions.
We note, however, that each orbit of a Borel action of a locally compact Polish group is a
homogeneous space, since point stabilizers are necessarily closed. In particular, orbits can be
endowed with the Haar measure, even without the freeness assumption.
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The property of being H-decomposable is similar to being an element of the full
group generated by H, except that we do not require the transformation to be defined
on all of X.

Theorem 4.2. Let G ~ X be a measure-preserving action of a locally compact
Polish group. Let ||-|| be a compatible norm on G with the associated metric on the
orbits D : Rg — R, and let H C G be a dense set. For any T € [G ~ X] and
any € > 0, there exists an H-decomposable transformation S € (G ~ X such that
esssup,.x D(Tx, Sx) < e.

Theorem 4.2 establishes the density of H-decomposable transformations in the
very strong uniform topology given by ess sup. In particular, this result also applies to
the L! topology.

Corollary 4.3. Let G ~ X be a measure-preserving action of a locally compact Polish
group, let ||| be a compatible norm on G, and let H C G be a dense subgroup. The L!
full group [H ~ X1]; is dense in [G ~ X];.

Remark 4.4. Theorem 4.2 is an improvement upon the conclusion of [12, Thm. 2.1],
which shows that [H ~ X ] isdense in [G ~ X | whenever H is a dense subgroup of G.
While the proof, which we present below, establishes density in a much stronger topology
through more elementary means, we note that, as already mentioned in [12, Thm. 2.3],
their methods apply to all suitable (in the sense of [5]; see also Definition 4.7) actions
of Polish groups, whereas our approach here crucially uses local compactness of the
acting group to guarantee existence of various cross-sections.

Let C be a cross-section for a measure-preserving action G ~ X, and let ‘W be
a tessellation over C (in the sense of Appendix E.2). Let vqy be the push-forward
measure (7mqy ). on the cross-section, and let (u.).cc be the disintegration of u over
(may, vaw) (see Appendix D and Theorem D. 1, specifically). Without loss of generality,
we assume, whenever convenient, that the set H in the statement of Theorem 4.2 is
countable.

Definition 4.5. Two Borel sets A, B C X are said to be

¢ ‘W-proportionate if the equivalence y.(A) =0 & u.(B) = 0 holds for vqy-
almost all ¢ € C;

¢ ‘W-equimeasurable if u.(A) = u.(B) for vqy-almost all ¢ € C.

For the context of Lemmas 4.6 through 4.11, we let N denote an open symmetric
neighborhood of the identity of G, and W stands for an N-lacunary tessellation. The
following lemma relies on the key fact that for any two “W-proportionate Borel sets
A,B C N -C, the equivalence AN (N -¢c) #@ <= BN (N -c) # @ holds for all
¢ € C after changing A and B on a null set.
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Lemma 4.6. If A, B C N - C are ‘W-proportionate Borel sets then
u(B\N*-A) =0.

Proof. By the defining property of the disintegration,
WBAN ) = [ e BAN 2 dvan(),
c

and so we need to check that .. (B \ N* - A) = 0 for vqy-almost all c. Since A and B are
“W-proportionate, it suffices to show that (B \ N> - A) = 0 whenever u.(A) # 0. For
any c € C satisfying the latter, one necessarily hasc € N - A (because A C N - C and Wis
N-lacunary, by assumption), and thus N - ¢ € N? - A. In particular, (B\ N>- A) NN -c =
@. It remains to use the inclusion B C N - C, which, together with the N-lacunarity of
W, guarantees that

pe(B\N*-A) = uc((B\N*-A)n N -¢) =0. =

For the proof of the next lemma, we need the notion of a suitable action, introduced
by H. Becker [5, Def. 1.2.7].

Definition 4.7. A measure-preserving Borel action G ~ X of a Polish group G is
suitable if for all Borel sets A, B C X one of the following two options holds:
(1) for any open neighborhood of the identity M C G there exists g € M such that
p(gANB) > 0;
(2) there exist Borel sets A” C A, B" C B such that u(A\ A’) =0 = u(B\ B’) and
an open neighborhood of the identity M € G suchthat M - A’ N B’ = 2.

All measure-preserving actions of locally compact Polish groups are known to be
suitable (see [5, Thm. 1.2.9]).

Lemma 4.8. For all non-negligible ‘W -proportionate Borel sets A, B C N - C, there
exists an open set U C N> such that (AN B) > O forall g € U.

Proof. Let H, = {h,, : n € N} be a countable dense subset of N> = NN~!, and put
A1 = H; - A. We apply the dichotomy in the definition of a suitable action to the sets
A1, B and show that item (2) cannot hold.

Indeed, suppose there exist A7 € A, B’ C B satistying

p(AL\ A} =0=pu(B\B),

and an open neighborhood of the identity M C G such that (M - A]) N B’ = @. Set A’ =
ﬂn(hglA; N A), and note that u(A\ A’) =0and (MH, - A’) N B’ = @, simply because
Cy- A’ C A].Since C| is dense in N2, we have N> C MH; and thus (N?- A’) N B’ = .
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Lemma 4.6, applied to A’ and B’, guarantees that (B’ \ N? - A’) = 0, which is possible
only when u(B’) = 0, contradicting the assumption that B is non-negligible.

We are left with the alternative of the item (1), and so there has to exist some
g € N such that u(gA; N B) > 0. Since A| = H; - A, there exists & € H; such that
u(ghA N B) > 0. It remains to observe that gh € N3 and that u(g’A N B) > 0 is an
open condition on g’. This follows from the continuity in the weak topology of the
group homomorphism G — Aut(X, u) associated with the measure-preserving action
of G on (X, u) (see, for instance, [12, Lem. 1.2]). n

Lemmad.9. Foranynon-empty openV C N and for any non-negligible Borel set A C X,
there exists h € H such that

u{xeA:hx e V-Candny(x) =ny(hx)}) > 0.

Proof. Let £ : X — ‘W be the Borel bijection {(x) = (w4 (x), x) and consider the
push-forward measure £, u, which for Z C ‘W can be expressed as

() = /C 1e(Z2) dvay(©).

Let (h,,)nen be an enumeration of H and set
W, ={(c,x) e W :ny(x) =ny(h,x) and h,x € V - C}.

We claim that | J,, W,, = “W. Indeed, for each (c, x) € W the set of g € G such that
gx € V - ¢ is non-empty and open, hence there is h, € H such that h,x € V - c.

Finally, A is non-negligible by assumption, i.e., 0 < u(A) = £,u(£(A)), so there
exists W,, such that Z,u(Z(A) N W,) > 0, which translates into the required

u({xeA:hyx eV -Candmqy(x) = may(h,x)}) > 0. [

Lemma 4.10. For all non-negligible ‘W -proportionate Borel sets A, B C X, there
exists h € H such that

u({x € A: hx € Band nay(x) = mqy(hx)}) > 0.

Proof. The plan s to reduce the setup of this lemma to that of Lemma 4.8. Let V C N be
a symmetric neighborhood of the identity that is furthermore small enough to guarantee
that W is V*-lacunary. Apply Lemma 4.9 to find ; € H such that for

A'={xeA:hx eV -Cand ry(x) = mqy(h1x)}

one has u(A”) > 0. Set A} = h1A’, B; = 717‘41/({0 € C: uc(Ay) > 0}) N B and note
that A; and B; are non-negligible “W-proportionate sets. Moreover, A} C V - C by
construction.
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Repeat the same steps for By and find s, € H such that for
B’1 ={xeB):hx eV -Cand ny(x) =nry (hyx)}

we have u(B) > 0. Set By = hyB] and Ay = A; N 7T,_M1/({C € C : uc(Bz) > 0}). Once
again, sets A, and B; are non-negligible, ‘W-proportionate and are both contained in
V-C.

We now apply Lemma 4.8 to sets A,, B, and ‘W, viewed as a V-lacunary tessellation,
yielding an open U C V3 such that u(gA, N By) > 0 for all g € U. Note that since
U C V3 and ‘W is, in fact, V4-lacunary, the equality 74y (x) = 74y (gx) holds for all
x eV -Candg e U. We conclude that,u(hz‘lghlA N B) > 0 for all g € U and hence
any h € h; 'Uh, N H satisfies the conclusion of the lemma. |

A measure-preserving partial transformation 7 : A — B is ‘W-coherent if y-almost
surely one has mqy (x) = my (Tx).

Lemma 4.11. For all ‘W-equimeasurable Borel sets A, B C X, there exists a ‘W-
coherent H-decomposable measure-preserving bijectionT : A — B.

Proof. Let (hy),en be an enumeration of H. Consider the set
Ay = {x € A: hox € Band mqy(x) = ﬂw(/’lox)},

and let By = hoAy. Note that the sets A \ Ap and B \ By are ‘W-equimeasurable, so we
may continue in the same fashion and construct sets Ay such that

Ag = {x e A\| |Ai: x e B\| | B and map(x) = nw(hkx)}.
i<k i<k
We define T : | ey Ak — Lken Bk by the condition Tx = hyx for x € Ag.

Sets A\ | lxen Ak and B\ | ey Bk are ‘W-equimeasurable. If either one of them
(and thus necessarily both of them) were non-negligible, Lemma 4.10 would yields an
element 7 € H that moves a portion of A \ | e Ak into B\ | | Bk, contradicting
the construction. We conclude that

n(A\ | A0 =0=p@B\| | By

keN keN

and T is therefore as required. u

Lemma 4.12. Suppose that ‘W is a cocompact tessellation over the cross-section C. Let
A, B C X be ' W-equimeasurable Borel sets. For any € > 0, and any ‘W -coherent partial
transformation T : A — B, there exists a ‘W-coherent H-decomposable T : A — B
such that ess sup,.c , D(Tx, Tx) < e.
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Proof. Let V be a K’-cocompact tessellation over some cross-section C” such that the
diameter of each region in “V is less than €. Suppose ‘W is K-cocompact. By LemmaE.2,
we can find a finite partition of C’ = | |;,, C/ such that each C/ is K’K*K’-lacunary,
which guarantees that, for each i, every ‘W, intersects at most one class V., ¢’ € C;.
Foreachi,j <nsetA( jy={x€A:nqy(x) € C/,ny(Tx) € Cj’.} and B(; jy =TA ).
We re-enumerate sets A(; ;) and B(; ;) as a sequence Ay, By, k < n? and note that for
all x,y € Ay one has

may (x) =y (y) = (7y(x) = 79/(y) and 7oy (Tx) = 7 (Ty)).

Moreover, sets Ax and T'(Ay) are ‘W-equimeasurable, so Lemma 4.11 yields ‘W-
coherent H-decomposable partial transformations Ty : Ay — T(Ay). The transforma-
tion T : A — B can now be defined by the condition Tx = Tj.x whenever x € Ay. Itis
easy to check that 7 is as claimed. ]

Proof of Theorem 4.2. By Proposition E.4, we have a sequence (Vy ) of cocompact
tessellations such that Rg = Uy R, Let Ag = {x € X : mq,(x) = mq;(Tx)}. Use
Lemma 4.12 to find an H-decomposable partial transformation T : Ag — T (Ap) that
satisfies the inequality esssup, .5, D (Tox, Tx) < €. Set

Ay = {x eX:my (x)=nqy (Tx)and x ¢ l<|—,|<AZ}

and note that Ay, k € N, form a partition of X because Rg = |J; R4, . Construct partial
transformations Ty : Ay — T(Ay) via repeated applications of Lemma 4.12 to the
tessellations V. The element S € [G ~ X | defined for x € Ag by Sx = Tyx satisfies
the conclusion of the theorem. ]

4.2 Orbital transformations

Let G ~ X be a free measure-preserving action of a locally compact Polish group on
a standard probability space. Recall that the identification of G with its orbits induces
the cocycle map p : Rg — G, defined by p(x, gx) = g. Moreover, every T € [R¢g] has
an associated cocycle pr : X — G determined by the condition 7'(x) = pr(x)x for all
x € X.

Fix a right-invariant Haar measure A on G. Since any orbit [x] g, can be identified
with the group G via the map G 3> g — gx € [x]g,, the measure A can be pushed
forward through this identification to define a collection of measures (Ay)xex on X.
These measures are given by A, (A) = A({g € G : gx € A}). The right invariance of A
ensures that 1, depends only on the orbit [x]g,, and is independent of the choice of
the base point; that is, 4, = 1, whenever xRgy.
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This section focuses on two main facts: the so-called mass-transport principle,
given in Eq. (4.1) below, and the non-singularity of the transformations induced by
elements of [G ~ X ] onto orbits of the action, formulated in Proposition 4.13. Both of
these topics have been discussed in the literature in various related contexts, including,
for instance, [12, Appen. A] and the treatise [2]. However, we are not aware of any
specific reference from which Eq. (4.1) and Proposition 4.13 can be readily deduced.
The following derivations are therefore included for the reader’s convenience, with the
disclaimer that these results are likely to be known to experts.

The freeness of the action allows us to identify the equivalence relation Rg with
XXxGviad: X XG — Rg, P(x,g) = (x, gx). The push-forward @..(u x 2) of the
product measure is denoted by M and can equivalently be defined by

M(A) = /X Le(Ay) dua(x),

where A C Rgand Ay ={y € X : (x,y) € A}

In general, the flip transformation o : Rg — R, o (x,y) = (y,x), does not preserve
the measure M. Set ¥ : X x G — X X G to be the involution ¥ = ®~! o o o @, which
simplifies to W(x, g) = (gx, g~ !). Following the computation as in [12, Prop. A.11],
one can easily check that W, (u X 1) = u X A, where 1 is the associated left-invariant
measure, Z(A) = A(A™1). If we define the measure M on R to be

T = 000D = [ T4 dut,
then o.M = M, and also O'*M = M, since !
and only if A = ;f, i.e., G is unimodular.

A function f : Rg — R is M-integrable if and only if X X G 5 (x, g) — f(x, gx) is
(u x A)-integrable. Using Fubini’s theorem and noting that ® o ¥~ =® o ¥ = ¢ o P,
we get the following chain of identities for such a function f:

= o. In particular, o is M-invariant if

/X /G £ () dA(g)du(x) = /X g0 d(ax Drg)

= fo®d(¥, (%)

XxG
= fo®o¥d(uxa)
XxG
:/ foooddux)
XxG

/X/Gf (x, 8) dA(g)dja(x) = /X /G F(gx.x) dA(g)du(g).

Let A : G — R>? be the left Haar modulus given for g € G by A(gA) = A(g)A(A).
Recall that A : G — R>? is a continuous homomorphism (see [47, Prop. 7]). The
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measures A and P} belong to the same measure class, with the Radon—-Nikodym derivative
%(g) =A(g™") for all g € G (see [47, p. 79]). The identities above translate into the
following:

/X /G Fr.g x) dA(g)du(x) = /X /G A (g -2 A du(x). (@)

When the group G is unimodular, this expression attains a very symmetric form and is
known as the mass-transport principle:

/X /G Fr.g %) dA(g)du(x) = /X /G Flg-xx) dAQdu(x).  (42)

Any automorphism T € [G ~ X induces, for each x € X, a transformation of the
o -finite measure space (X, Ay ). In general, T does not preserve A, ; however, it is always
non-singular, and the Radon—Nikodym derivative ddel’ix can be described explicitly.
Note that the full group [G ~ X ] admits two natural actions on the equivalence relation
R¢: the left action [ is given by I7(x, y) = (Tx,y), and the right action r is defined as
rr(x,y) = (x,Ty). A straightforward verification (see [12, Lem. A.9]) shows that [ is

always M-invariant. Since rr oo = o oly, forallT € [G ~ X], we have

(r1)sM = (rp 0 )M = (o 0 I7).M = o, M = M.

Let® =@ loryo®,ie., O(x,8) = (x, prg(x)). The equality (rr)eM = M is
equivalent to ®, (i X A) = u X A. The latter implies that for each Borel set B C G and
all measurable sets A C X, we have

[ 3B du = (ux DA xB) = 0.(ux DA x B
A
= (ux D) ({(x.8) € XX G : (x,prg(x)) € AX B})

Fubini’s theorem = /;l\({g € G : pre(x) € B}) du(x)
A

= /I({g € G :gx € T7'Bx}) du(x),
A

which is possible only if ;l\({g €G:gxeT 'Bx}) = A(B) for p-almost all x. Passing
to the measures on the orbits, this translates for each B into A, (T~ Bx) = A,(Bx).
If (By,)xen is a countable algebra of Borel sets in G that generates the whole Borel
o-algebra, then for each x € X, (B,x),en is an algebra of Borel subsets of the orbit
[x] . » which generates the Borel o-algebra on it. We have established that for p-almost
all x € X, the two measures, Zx and T*;l\x, coincide on each B,x, n € N, thus u-almost
surely Ix = T*;l\x.
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The equality Z—g(g) = A(g™") translates into z/li () = Alp(x,y)™H = A(p(y,x)),

and the Radon—Nikodym derivative dgj{ix can now be computed as follows:
dT.A dT,A dT. A dd
~()=—=0) ——) - =—=)
dax dT A dA, dax
~  dT.A, ddy dlc .y  diy
T preserves A, = —(y) - (y) = ==(T"'y) - ()
P T A T gy

dls 1 -1 dA,
:(ﬁxa ) W
=ApE,T'y) ") A(p(x, )™
=Alp(x, T™"y) - p(3,x)) = Alpr-1 ().

We summarize the content of this section into a proposition.

Proposition 4.13. Let G be a locally compact Polish group acting freely G ~ X on a
standard probability space (X, y1). Let A be a right Haar measure on G, A : G — R>0 be
the corresponding Haar modulus, and let (Ax)xex be the family of measures obtained
by pushing A onto orbits via the action map. Each T € [G ~ X] induces a non-
singular transformation of (X, Ay) for almost every x € X, and moreover, one has
A(T71A) = fA A(p-1(y)) dAx(y) for all Borel sets A C X. If G is unimodular, then
T Ax = Ay for p-almost all x € X.

For future reference, we isolate a simple lemma, which is an immediate consequence
of Fubini’s theorem.

Lemma 4.14. Let G be a locally compact Polish group acting freely on a standard
probability space (X, ). Let A, A, (Ax)xex, and (Ax)xex be as above. For any Borel
set A C X, the following are equivalent:

(1) pu(Aa)=0;
(2) Ax(A) =0 for u-almost all x € X;
3) IX(A) =0 for u-almost all x € X.

Proof. (1) & (2) Using Fubini’s Theorem on (X X G, u X 1) to rearrange the
order of quantifiers, one has:

HA)=0 & VgeGV'xeXgx¢gA
& VxeXV'geGgxg A & Vixe X A,.(A) =0.

(2) < (3)is evident, since A and A are equivalent measures, hence so are A, and
Ay forall x € X. n
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4.3 The Hopf decomposition of elements of the full group

Fix an element T € [G ~ X ] of the full group of a free measure-preserving action
of a locally compact Polish group G. As explained in Section 4.2, T acts naturally in
a non-singular manner on each G-orbit. This action thus has a Hopf decomposition
(see Appendix C). We will now explain how to interpret this decomposition globally,
thereby generalizing the fact that, when G is discrete, any element of the full group
decomposes the space into periodic and aperiodic parts.

Let C be a cocompact cross-section, and let V¢ be the Voronoi tessellation asso-
ciated with some proper norm on G (see Appendix E.2). Set 7¢ : X — C to be the
projection map given by the condition (7¢(x),x) € V¢ for all x € X. The dissipative
and conservative sets of the transformation 7 are defined as follows:

Dt = {x € X : 3n € NVk € Z such that |k| > n one has m¢(x) # nC(Tkx)},
Cr={x € X :V¥neN3ky,k, €Zsuch that

ki < —-n,n < kyand 7o (T*x) = no(x) = ﬂc(Tk2x)}.

In plain words, the dissipative set D7 consists of those points x whose orbit has a
finite intersection with the Voronoi region of x. The conservative set C7, on the other
hand, collects all the points whose orbit is bi-recurrent in the region. We argue in
Proposition 4.16 that the sets Dy and Cr induce the Hopf decomposition for 7' [ XIgy
for almost every x € X; in particular, Dy LI Cy is a partition of X, which is independent
of the choice of the cross-section C.

Lemma 4.15. The sets Dt and Ct partition the phase space: X = Dt U Cr.

Proof. Define sets N, and N_ according to

N, ={x e X\ (D7 UCr) : Yk > 1 n1c(T*x) £ nc(x)},
N_={xe X\ (DyruUCr):Vk >1nc(T*x) # nc(x)},

and note that X \ (D7 U Cr) € Ugez TF(N; U N_). To show that X = Dy U Cr it is
enough to verify that u(N,) = 0= u(N_).

This is done by noting that these sets admit pairwise disjoint copies using piecewise
translations by powers of 7. In view of the fact that 7' is measure-preserving, this
implies that N, and N_ are null. To be more precise, set N = N_ and define inductively
N = {T*X)x : x € N}, where k(x) > 1 is the smallest natural number such that
ne(T*X)x) = ne(x). Note that k(x) is well-defined, for otherwise x would belong
to Dr. Sets N", n € N, are pairwise disjoint, and have the same measure since 7 is
measure-preserving. We conclude that u(N_) = 0. The argument for u(N,) =0 is
similar. |
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Proposition 4.16 (Hopf decomposition). Let G ~ X be a free measure-preserving
action of a locally compact Polish group on a standard probability space (X, u).
Let A be a right Haar measure on G and (Ax)xcx be the push-forward of A onto the
orbits as described in Section 4.2. For any element T € [G ~ X, the measurable T-
invariant partition X = Dt U Cr defined above satisfies that for u-almost all x € X
the partition [x]g, = ([x]rs N D1) U ([x]r; N Cr) is the Hopf decomposition for
T Tx)g, O ([x]Rrg»Ax). Moreover, there is only one partition X = D U Cr satisfying
this property up to null sets.

Proof. According to Proposition 4.13, we may assume that for all x € X the map
T F[X]RG: [x]r; — [x]®s is a non-singular transformation with respect to A, and
satisfies A, (TA) = fA A(pr(y)) dA(y) for all Borel A C X.

Let [x]g; = Dx U Cy, x € X, denote the Hopf decomposition for T r[x]RG. For
any c € C, the set

W = {xe(Vo)e: T*x ¢ (Ve)e forall k > 1}

is a wandering set and therefore WC C D, uptoanull set. If x € D satisfies x € (V¢)e,»
¢ € C, then [x]g; N (Vc) is finite, and therefore [x]r,; N (Ve)e € Urez T*W,,
whence also
[x]g, N Dr C U UT"WC cD,.
ceCnlx]rg keZ

Claim. We have A ([x]gr; N Cr N D) =0 for each x € X.

Proof of the claim. Otherwise we can find ¢ € C N [x]g, and a wandering set W C
[x]rs N (Ve)e N Cr of positive measure, A, (W) > 0. Construct a sequence of sets
W, by setting Wy = W and

W, = {Tk"(y)y 1y € Wy and k,,(y) is minimal such that
e (T 0)) = ne(y) and Ty ¢ | Wi},

k<n

where the value of &, (y) is well-defined for each y € Wy and n € N, since all points in Cr

return to their Voronoi domain infinitely often. Define a transformation S, : Wo — W,

as S,(y) = Ty, and note that for all n € N one has ps, (v) € p((Ve)e» (Ve)e),

where, as earlier, p and ps, denote the cocycle maps. The region p((Ve)c, (Ve)e) is

precompact, since C is cocompact, and therefore using continuity of the Haar modulus

A : G — R>Y one can pick € > 0 such that A(ps, (y)) > e forall y € Wy and all n € N,
Since S, is composed of powers of T, Proposition 4.13 ensures that

L (SaWo) = /W Aps, (¥)) A (y).
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whence A, (S, Wy) > €l (W) for each n € N. We now arrive at a contradiction, as
Wy, n € N, form a pairwise disjoint infinite family of subsets of (V¢). whose mea-
sure is uniformly bounded away from zero by €A, (W), which is impossible, since
Ax((Ve)e) < oo by cocompactness of C. This finishes the proof of the claim.  Ocjaim

We have established by now that D7 N [x]g, € Dy and, up to a null set, Cr N
[x]rs € Cx by the claim above. Finally, (X \ (D7 U Cr)) =0implies viaLemma 4.14
Ax((Dr N [x]»s) U (Cr N [x]».)) = 0 for p-almost all x € X, and therefore

(D1 N [x]rg)ADx) =0 = A((Cr N [x]r) ACx)

p-almost surely. Sets D and Cr thus satisfy the conclusion of the proposition.
For the uniqueness part of the proposition, suppose Dr, Cr and D’., C}. are two
partitions of X such that

A(D7aDy) =0 = A,(D)ADy) and A, (CraCy) = 0 = A, (CpACy)

for p-almost all x € X. One therefore also has V¥x € X A, (DraD’) =0=A,(CrACY),
and hence u(DraD’) = 0 and u(CrAC}) = 0 by Lemma 4.14. ]

We end this section with a natural definition which will be useful for analyzing
elements of the full group.

Definition 4.17. Let G ~ X be a free measure-preserving action of a locally compact
Polish group on a standard probability space (X, u), andlet T € [G ~ X]. Consider
the T-invariant partition X = D U Cr provided by the Hopf decomposition of T as
per the previous proposition. We say that 7 is dissipative when Dy = X and that T is
conservative when Cy = X.

When G is discrete, observe that 7" is dissipative if and only if it is aperiodic (all its
orbits are infinite), and that 7' is conservative if and only if it is periodic (all its orbits
are finite).

Example 4.18. Let us give a general example of dissipative elements of the full group.
Let G A X be a free measure-preserving action of a locally compact Polish group on
a standard probability space (X, u). If g € G generates a discrete infinite subgroup,
then the element of the full group a/(g) is dissipative. Indeed, the action of a(g) on
each orbit is isomorphic to the g-action by left translation on G endowed with its right
Haar measure, which is dissipative since it admits a Borel fundamental domain and
has only infinite orbits. For instance, if G = R, such a domain is given by the interval
[0, g) (or (g, 0], if g is negative).

In Chapter 7, we build an interesting example of a conservative element in the full
group of any free measure-preserving flow: its action on each orbit is actually ergodic,
and its cocycle is bounded.
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4.4 L! full groups and L! orbit equivalence

We now restrict ourselves to the setup where the acting group G is locally compact
Polish and compactly generated, endowed with a maximal compatible norm ||-|| (the
existence of such a norm for locally compact Polish group is equivalent to being
compactly generated, see [52, Cor. 2.8 and Thm. 2.53]). For such a group, as explained
in Section 2.2, it makes sense to talk about the associated L! full group by endowing
the group with a maximal norm.

The following definition is the natural extension of the notion of L! orbit equivalence
to the locally compact case, stated in terms of full groups.

Definition 4.19. Let @ and 8 be the respective measure-preserving actions of two
locally compact Polish compactly generated groups G and H on a standard probability
space (X, 41). We say that & and 3 are L! orbit equivalent when there is a measure-
preserving transformation S € Aut(X, ) such that forall g € G and all h € H,

Sa(g)S~' e [HA X], and ST'B(h)S € [G A X]..

In other words, up to conjugating « by S, we have that the image of « is contained in
the L' full group of B, and the image of /3 is contained in the L' full group of a.

We now show that L! full groups do remember actions up to L' orbit equivalence
as abstract groups. This is done by finding a spatial realization of the isomorphism
between the full groups. Such techniques originated in the work of H. Dye [15] and
have been greatly generalized by D. H. Fremlin [18, 384D]. We recall that a subgroup
G of Aut(X, p) is said to have many involutions if for any non-trivial measurable
A C X there exists a non-trivial involution U € G such that supp U € A. The group of
quasi-measure-preserving transformations of (X, u) is denoted by Aut* (X, u).

Theorem 4.20 (Fremlin). Let G, H be subgroups of Aut(X, u) with many involutions.
For any isomorphism s : G — H there exists S € Aut*(X, u) such that (T) = STS™!
forall T € G.

Proposition 4.21. If the L! full groups of two ergodic measure-preserving actions of
locally compact compactly generated Polish groups are isomorphic as abstract groups,
then the two actions are L orbit equivalent.

Proof. Denote by G A and H rqv the two actions on the same standard probability
space (X, u). Since the L! full groups of ergodic actions have many involutions (see,

for example, Lemma 3.7), any isomorphism ¢ : [G A X 11— [H r{ X1 admits a
spatial realization by some S € Aut*(X, u). The Radon—Nikodym derivative of S,u

with respect to u is easily seen to be preserved by every element of [H rév X11, and
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hence must be constant by ergodicity. We conclude that S € Aut(X, u), and therefore
by the definition the actions @ and S are L! orbit equivalent. ]

Remark 4.22. Similarly to the finitely generated case [41, Sec. 8.1], one could define
L! full orbit equivalence between actions as equality of L' full groups up to conjugacy,
which is a strengthening of L! orbit equivalence (indeed the latter only requires inclusion
of each acting group in the L' full group of the other acting group). It would be
interesting to have examples of actions which are L' orbit equivalent, but not L! fully
orbit equivalent.

We end this section by showing that L! orbit equivalence is equivalent to a stronger
definition where we ask that, up to conjugating @ by S, we moreover have that, on a full
measure set Xo € X, the o and g orbits coincide. This will be a direct consequence of the
following proposition. The proof of this proposition is the same as that of [11, Prop. 3.8]
which was not stated in the level of generality we need. Since it is short, we reproduce
it here. We emphasize that when the acting groups are not discrete, the full measure set
Xo may very well fail to be a-invariant or S-invariant. In particular, when we say that
the orbits coincide on Xy we simply mean that they induce the same partition on Xj.

Proposition 4.23. Let G and H be two locally compact Polish groups acting in a
Borel measure-preserving manner on a standard probability space (X, i), denote by a
the G-action and suppose that «(G) < [H —~ X]. Then there is a full measure Borel
subset Xy C X such that

Rs N (Xp X Xo) € Ry.

Proof. Let A be the Haar measure on G. Since a(G) < [H ~ X], forall g € G and
almost all x € X, we have gx € Hx. By Fubini’s theorem, this implies that the Borel set

Xo={x € X : for A-almost all g € G, we have gx € Hx}

has full measure. Now let x € X, and let g; € G be such that g;x € Xy. We want to
show that g;x € Hx.
Since x and gx are in Xy, the sets

A={geG:gxcHx} and B={geG:gxec Hgx}

have full measure and so A N B has full measure. Take g € A N B, and note that
gx € Hx N Hgx, so the two orbits Hx and Hgx intersect, hence g1x € Hx. [ ]

Corollary 4.24. Let G and H be compactly generated locally compact Polish groups,
and let ||-||g and ||-||y be maximal norms on G and H, respectively. Two measure-
preserving actions of G and H on a standard probability space (X, u) are L' orbit
equivalent if and only if they can be conjugated so as to share the same orbits on a
full measure Borel subset Xo C X, i.e., Rg N (Xp X Xo) = Ry N (Xo X Xo), and there
exist Borel maps yg : G X Xo — H and yy : H X Xo — G such that:



L! full groups and L' orbit equivalence 45

(1) forallx € Xo, g - x =vg(g,x) -xand h - x = yg(h,x) - x whenever gx € X
and hx € Xo;

@) fio 76 (8.2l du(x) < +e0and [y llyer(hx)llg du(x) <-+ooforallg € G
and all h € H.

Proof. We may assume that the actions G ~ X and H ~ X are Borel. By the definition
of L! full groups, the conditions stated in the corollary are sufficient to establish L'
orbit equivalence. Conjugating the two actions, we may also assume that they share
the same full group. Since the L! full groups contain the acting groups, we can apply
Proposition 4.23 twice to obtain a full measure Borel subset Xo € X on which the
orbits of the two actions coincide.

Let ¥(G) and F (H) denote the Effros Borel spaces associated with G and H,
respectively. The orbit equivalence relations Rg and Ry are Borel, and consequently,
the maps

GxXo2(g,x)—>{heH:gx=hx}eF(H),
HxXy3 (hx)— {ge€eG:hx=gx}eF(G)

are also Borel [6, Thm. 7.1.2]. Note that {h € H : gx = hx} # @ whenever gx € X, and
similarly, {g € G : hx = gx} # @ provided that ix € Xj. By applying the Kuratowski—
Ryll-Nardzewski selectors [31, 12.13], we can find Borel maps ys and yg that satisfy
item (1) and the inequalities

e (& )la < Dulx,gx) +1, llyu(h,x)lc < DG (x, hx) +1,

where D and D¢ are the metrics induced on the orbits by the respective actions. The
integrability condition (2) now follows from the assumption that the actions have been
conjugated to satisfy G < [H ~ X]jand H < [G ~ X];. ]

We will demonstrate in the final chapter that there exist free ergodic R-flows that
are not L! orbit equivalent. This result will be established by connecting L! orbit
equivalence to flip Kakutani equivalence. In the discrete amenable setting, a key result
due to T. Austin shows that entropy is preserved under L' orbit equivalence [3].

Question 4.25. Let G be an amenable non-discrete non-compact compactly generated
locally compact Polish group. Are there free measure-preserving ergodic actions of G
which are not L' orbit equivalent?






Chapter 5

Derived L! full groups for locally compact amenable
groups

Given a measure-preserving action of a Polish normed group (G, ||-]|) on (X, u), the
derived L' full group D([G ~ X]) of the action is, by definition, the (topologi-
cal) derived subgroup of the L' full group [G ~ X]. Recall that this means that
D([G ~ X)) is the closure in [G ~ X ]; of the subgroup generated by commutators,
i.e., elements of the form TUT~'U~", where T, U € [G ~ X ;. Provided the G-action
is aperiodic, the latter can be described as a subgroup of [G ~ X, in three different
ways, using the fact that [G ~ X is induction friendly, as explained in Section 3.2
(see Corollary 3.16):

* D([G ~ X])) is the closure of the group generated by involutions;
* D([G ~ X];) is the closure of the group generated by 3-cycles;
* D([G ~ X])) is the closure of the group generated by periodic elements.

In particular, all periodic elements of [G ~ X]; actually belong to D([G ~ X ;)
(see Lemma 3.11 for the proof of this specific statement).

Compared to the previous chapter, we impose one further restriction on the acting
group, and consider actions of a locally compact amenable Polish normed group
(G, |Ill)- Appendix G of [7] contains an excellent review of amenability for both
general topological groups and locally compact groups. As before, we fix a measure-
preserving action G ~ X on a standard probability space (X, ), and let D : Rg — R=°
denote the family of metrics induced onto the orbits by the norm. To ensure our results
encompass both the non-compactly generated case and the situation in which the L!
full group coincides with the entire full group of the action (as in [12]), we do not
impose the condition that the norm be either proper or maximal. In particular, the norm
may be bounded, which in turn implies that the metric D on the orbits is also bounded.

In Section 5.1, we construct a dense increasing chain of subgroups in ®([G ~ X ]1).
This dense chain is utilized in the subsequent sections. In Section 5.2, we show that the
amenability of the group G is reflected in the whirly amenability of D([G ~ X]1).
Meanwhile, in Section 5.3, we prove, by a Baire category argument, that D([G ~ X ];)
contains a dense 2-generated subgroup.
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5.1 Dense chain of subgroups

An equivalence relation R € R is said to be uniformly bounded if there is M > 0
and X’ C X such that u(X \ X’) = 0 and sup,, .,)ex D(x1,%2) < M, where R’ =
RNX xX'.

Lemma 5.1. Let (G, ||-||) be a locally compact amenable Polish normed group acting
on a standard probability space (X, ). There exists a sequence of cross-sections Cy,
n € N, and tessellations ‘W,, over C,, such that for alln € N

(1) Ry, € Rw,,, and Uren Rw, = Ra (up to a null set);
(2) Raw, is uniformly bounded.

Proof. Let C be a cocompact cross-section, V¢ be the Voronoi tessellation over C,
nq, : X — C be the associated reduction, and v = (7, ). be the push-forward
measure on C. Recall that Ry, is uniformly bounded since C is cocompact. Let E be
the equivalence relation obtained by restricting R onto C. By a theorem of A. Connes,
J. Feldman, and B. Weiss [13], E is hyperfinite on an invariant set of v-full measure.
Throwing away a G -invariant null set, we may write E = | J,, E,,, where (E,),en is an
increasing sequence of Borel equivalence relations with finite classes. For m,n € N,
define A, ,, to be the set of points in the cross-section whose E;,-class is bounded in
diameter by m:

Apm = {c € C :D(cy,c2) <mforall ¢, cy € C such that ¢| E,,c and czEnc}.

Note that the sets A, ,,, are E,-invariant, nested, and | J,,, A, m = C for every n € N.
Pick m;,, so large as to ensure v(C \ Ay ;m,) < 27" and let B,, = (>, Ak,m,- The sets
B, are E,-invariant, increasing, and lim,, v(B,,) = v(C). Define equivalence relations
F,, on C by setting c1 F,,cy whenever ¢| = ¢ or c1, ¢y € B, and ¢ E,, c;. Note that
D(cy,c2) < m, whenever ci F,c;. Let C, C C be a Borel transversal for F;, and define
W, ={(c,x) € Cy X X : cFymq,(x)}. Itis straightforward to check that each ‘W, is a
tessellation over Cy,, and the equivalence relations R4y, satisfy the conclusions of the
lemma. ]

The equivalence relations Ry, produced by Lemma 5.1 give rise to a nested chain
of groups [Ryy, ] < [Rw,] < ---. Some basic facts about such groups can be found
in Appendix E.2. The following lemma establishes that such a chain is dense in the
derived L' full group.

Lemma 5.2. Let (G, ||-||) be a locally compact amenable Polish normed group acting
on a standard probability space (X, p) and let (R;)nen be a sequence of equivalence
relations as in Lemma 5.1. If the action is aperiodic, then the union | J,,[R,] is contained
in the derived L' full group D([G ~ X]1) and is dense therein.
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Proof. By definition, [R,,] is a subgroup of [R¢ ]. Since equivalence relations R,, are
uniformly bounded, we actually have [R, ] < [G ~ X], and the topology induced by
the L! metric on [R,,] coincides with the topology induced from [Rg ]. Moreover, in
view of Proposition D.7, [R,, ] is topologically generated by periodic transformations,
so we actually have [R,] < D([G ~ X]) as a consequence of Lemma 3.11 and
Corollary 3.16.

It remains to verify that the union (J,,[R, ] is dense in D([G ~ X ). To this end,
recall that by Corollary 3.16, the derived L' full group D([G ~ X];) is topologically
generated by involutions. Solet U € D([G ~ X ];) be an involution and set X, = {x € X :
(x,U(x)) € R,}, n € N. Note that X,, is U-invariant since U is an involution. Moreover,
u(X,) — lasJ, Ry = Rg, and thus the induced transformations Uy, € [R,,] converge
to U in the topology of [G ~ X];. We conclude that | J,,[R, ] is dense in the derived
L! full group. ]

Corollary 5.3. Let (G, ||-||) be a locally compact amenable Polish normed group
acting on a standard probability space (X, u). Suppose that almost every orbit of the
action is uncountable. There exists a chain Hy < Hy < --- < D([G ~ X 1) of closed
subgroups such that | J,, H, is dense in D([G ~ X1]1), and each H,, is isomorphic
10 LYy, v, Aut([0, 1], 2)) for some standard Lebesgue space (Y, vyp). If. moreover,
each orbit of the action has measure zero, then one can assume that all (Y, v,) are
atomless and each H, is isomorphic to L°([0, 1], 2, Aut([0, 1], 2)).

Proof. Apply Lemmas 5.1 and 5.2 to get a dense chain of subgroups [Ro] < [R1] <
-+ < D([G ~ X]1) and use Corollary E.9 to deduce that each [R,, ] has the desired
form. ]

Corollary 5.4. Let (G, ||||) be a locally compact amenable Polish normed group
acting on a standard probability space (X, u). If the action is aperiodic, then the set of
periodic elements is dense in the derived L' full group D([G ~ X]1).

Proof. Consider a chain of subgroups [R,, ] given by Lemma 5.2. Periodic elements are
dense in these groups for their natural topology (see Proposition D.7 and the discussion
preceding it). These topologies are compatible with the standard Borel structure of
Aut(X, i) induced by the weak topology and therefore must refine the L! topology by
the standard automatic continuity arguments [6, Sec. 1.6]. Hence, periodic elements
are dense in all of D([G ~ X]}), as claimed. [

Corollary 5.4, together with Proposition 3.25, shows that the L' norm is maximal
on derived L' full groups of aperiodic measure-preserving actions of locally compact
amenable Polish normed groups (see Section 2.2 for a brief reminder on the maximality
of norms). In particular, such groups are boundedly generated by [52, Thm. 2.53].
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Theorem 5.5. Let (G, ||-||) be a locally compact amenable Polish normed group acting
on a standard probability space (X, i). If the action is aperiodic, then the L' norm is
maximal on the derived L' full group D([G ~ X ]1).

We do not know if the amenability hypothesis can be removed, even when G is
discrete and the action is free.

5.2 Whirly amenability

Lemma 5.2 is a powerful tool to deduce various dynamical properties of derived L' full
groups. Recall that a Polish group G is said to be whirly amenable if it is amenable
and, for any continuous action of G on a compact space, any invariant measure is
supported on the set of fixed points of the action. In particular, each such action has to
have some fixed points, so whirly amenable groups are extremely amenable, meaning
that all their continuous actions on compact spaces have fixed points.

Proposition 5.6. Let R be a smooth measurable equivalence relation on a standard
Lebesgue space (X, p). If u is atomless, then the full group [R] is whirly amenable.

Proof. In view of Proposition D.6, the full group [R] is isomorphic to

LO([0, 1], 4, Aut([0, 1], ) x Aut([0, 1], ) x [ [L°([0,1],, &,)*,

n>1

where &, is the group of permutations of an n-element set, and €, € {0, 1}, kg < Np.
Since a product of whirly amenable groups is whirly amenable, it suffices to show that
the groups appearing in the decomposition above, namely L°([0, 1], A, Aut([0, 1], 1)),
Aut([0,1], 1), and L°([0,1], 4, S,), n > 1, are whirly amenable.

The group Aut([0, 1], 1) is whirly amenable by [22] (it is, in fact, a so-called Levy
group). Finally, we apply a theorem of V. Pestov and F. M. Schneider [50], which asserts
thata group L°([0, 1], A, G) is whirly amenable if and only if G is amenable. This readily
implies the whirly amenability of L°([0, 1], 2, S,,) and L°([0, 1], 2, Aut([0,1],1)). =

Remark 5.7. The assumption of u being atomless cannot be omitted in the proposition
above. Indeed, [R] will factor onto &,, for some n > 2, as long as an R-class contains
at least 2 atoms of u of the same measure. However, if all u-atoms within each R-class
have distinct measures, then the restriction of [R] onto the atomic part of X is trivial,
which suffices to conclude the whirly amenability of the group [R].

Theorem 5.8. Let G ~ X be a measure-preserving action of an amenable locally
compact Polish normed group on a standard probability space (X, w). If the action
is aperiodic, then the derived L' full group D([G ~ X11) is whirly amenable. In
particular, |G ~ X is amenable.
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Proof. Lemma 5.2 shows that D([G ~ X ;) has an increasing dense chain of sub-
groups H, of the form [R, ], where R,, are smooth measurable equivalence relations
on X. Proposition 5.6 applies and shows that the groups H,, are whirly amenable. The
latter is sufficient to conclude the whirly amenability of D([G ~ X]1), as any invariant
measure for the action of the derived group is also invariant for the induced H,,-actions.
Hence, it has to be supported on the intersection of the fixed points of all H,,, which
coincides with the set of fixed points for the action of D([G ~ X];).

The fact that [G ~ X ]| is amenable now follows from the fact that every abelian
group is amenable and that every amenable extension of an amenable group must itself
be amenable (for instance, see [7, Prop. G.2.2]). [

Remark 5.9. Note that, in general, [G ~ X]; is not extremely amenable. For flows, it
factors onto R via the index map (see Chapter 6). Since R admits continuous actions
on compact spaces without fixed points, [R ~ X]; is not extremely amenable (and in
particular, it is not whirly amenable) for any free measure-preserving flow.

Corollary 5.10. Let G ~ X be a free measure-preserving action of a unimodular
locally compact Polish group on a standard probability space (X, u). The following
are equivalent:

(1) G is amenable.

(2) [G ~ X]; is amenable.

(3) The derived L full group D([G ~ X11) is amenable.

(4) The derived L' full group D([G ~ X]1) is extremely amenable.
(5) The derived L' full group D([G ~ X11) is whirly amenable.

Proof. We established the implication (1) = (5) in Theorem 5.8. The chain of impli-
cations (5) = (4) = (3) is straightforward, and (3) = (2) follows from the stability
of amenability under group extensions, which was already discussed in Theorem 5.8.

For the last implication (2) = (1), first recall that the orbit full group of the
action is generated by involutions. It follows that the orbit full group is topologically
generated by involutions whose cocycles are integrable (actually, one can even ask that
the cocycles are bounded). In particular, the L! full group [G ~ X]; is dense in the
orbit full group, and so, assuming (2), we conclude that the orbit full group [G ~ X ]
is amenable. The amenability of G then follows from [12, Thm. 5.1]. ]

Remark 5.11. We have to require unimodularity to apply [12, Thm. 5.1]. It seems likely
that the unimodularity hypothesis can be dropped in this result, but we do not pursue
this question further.
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5.3 Topological generators

We now concern ourselves with the question of determining the topological rank of
derived L! full groups. Our approach will be based on the dense chain of subgroups
established in Corollary 5.3, and the first step is to study the topological rank of the
group LO([0, 1], Aut([0, 1])).

Let (Y, v) and (Z, 1) be standard Lebesgue spaces. Consider the product space
Y X Z equipped with the product measure v X A and let R be the product of the discrete
equivalence relation on Y and the anti-discrete on Z; in other words, (y1, z1)R(y2, z2)
if and only if y; = y,. As discussed in Appendix D, the following two groups are one
and the same:

(1) the full group [R];

(2) the topological group LO(Y, v, Aut(Z, 1)).

In particular, we may and do endow [R] with the Polish group topology induced by its
natural identification with L°(Y, v, Aut(Z, 1)).

Suppose additionally that (Z, 2) is atomless. Pick a hyperfinite ergodic measure-
preserving equivalence relation E on (Z, 1). We claim that APER(Z) N [E] is dense
in Aut(Z, 1), where APER(Z) stands for the collection of aperiodic automorphisms
of Z. Indeed, first note that by [32, Prop. 3.1], the full group [E] is weakly dense in
Aut(Z, 2). Let us then pick any aperiodic T’ € [E ]. It follows from [32, Thm. 2.4] that
the Aut(Z, 1)-conjugacy class of T is weakly dense in Aut(X, 1). By the continuity
of the conjugacy action and weak density, the [E ]-conjugacy class of T is weakly
dense as well, which proves our claim since this conjugacy class is clearly contained in
APER(Z) N [E].

Now set Ry = idy X E to be the equivalence relation on Y X Z given by the condition
(y1,z21)Ro(y2, z2) whenever y; = y; and z; Ez. A standard application of the Jankov—
von Neumann uniformization theorem yields the following lemma.

Lemma 5.12. APER(Y X Z) N [Ro] is dense in [R] =~ LO(Y, v, Aut([0, 1], 2)).

Our first goal is to establish that the topological rank of [R] is 2. We do so by
first verifying this under the assumption that (¥, v) is atomless and then deducing the
general case.

We say that a Polish group G is generically k-generated, where k € N, if the set of
k-tuples (g1, ...,gx) € G* that generate a dense subgroup of G is dense in GX. Note
that the set of such tuples is always a G s set, so if G is generically k-generated, then a
comeager set of k-tuples generates a dense subgroup of G.

Proposition 5.13. Suppose that (Y, v) is atomless. The Polish group [R] is generically
2-generated.
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Proof. By [39, Thm 5.1], the set of pairs
(S,T) € (APER(Y X Z) N [Ro]) X [Ro]

such that (S, T) = [Rp] is dense G s for the uniform topology. In view of Lemma 5.12,
this implies that [R] is generically 2-generated. ]

Lemma 5.14. For all Polish groups G and H, one has
k(G x H) > max{rk(G),rk(H)}.
If G X H is generically k-generated, then so are G and H as well.

Proof. The inequality on ranks is immediate from the trivial observation that if
(g1, h1), ..., (gk, hr)) is dense in G X H, then {g{, ..., gx) is dense in G and
{hi,...,h)isdensein H.

Suppose G x H is generically k-generated. Pick an open set U C G* and note that
U x H* corresponds to an open subset of (G x H)* via the isomorphism (G x H)* =~
G* x H*. Since G x H is generically k-generated, there is a tuple (g;, h[)l{‘:] e (G x H)k
that generates a dense subgroup and (g;, h;)% | € U x H*. We conclude that (g,)* | € U
generates a dense subgroup of G, and the lemma follows. |

Lemma 5.15. For any Polish group G
tk(L°([0, 1], 4, G)) = tk(L°([0, 1], 2, G) x G™).

If L°([0, 1], A, G) is generically k-generated for some k € N, then so is the group
L%([0,1], 4, G) x G™.

Proof. In view of Lemma 5.14, tk(L°([0, 1], 2, G)) < rk(L°([0, 1], 4, G) x G*'), and
since the group G is separable, we only need to consider the case when the rank
tk(LY([0, 1], A, G)) is finite.

It is notationally convenient to shrink the interval and work with the group

L%([0,1/2],4,G) x G¥

instead, as it can naturally be viewed as a closed subgroup of L°([0, 1], A, G) via the
identification f X (g;)ien > £, where

) = f@) if0<tr<1/2,
e if1-27"l<r<1-2""2forieN.

Pick families (&;);ex dense in LO([0,1/2], 4, G), and (%,,)men dense in G.
Let us call a function @ : N — N a multi-index if a(i) = 0 for all but finitely
many i € N. We use N<¥ to denote the set of all multi-indices. Given & € N<N, we
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define hy = (ha(i))ien € G". Note that {h, : @ € NV} is dense in GV, and thus
{£&/ X hy 1 1 € N, @ € NV} is a dense family in L°([0, 1/2], 2, G) x GV.

Pick a tuple fi,..., fx € L°([0, 1], 2, G) that generates a dense subgroup. For each
pair (1, @) € N x N<N_ there exists a sequence of reduced words (wf;“)neN in the free
group on k generators such that wf;“( S1.- .., fx) converges to & X h, in measure. By
passing to a subsequence, we may assume that wf;a( fls vy f&) = &1 X hg pointwise
almost surely. In other words, the set

Pro={tel0,1]:wk(fi,.... fi) (1) = (& X ha) (D)}

has Lebesgue measure 1 for each (I, @) € N x N<¥, and hence so does the set

P=() () Pre

leN geN<N
Pick some#; € PN [1—-277711-27772) j € N, and set

F() = fi(t) for0<r<1/2,
S A for1=277" << 1-27"2for j €N,

Elements f; naturally belong to L°([0, 1/2], 1, G) x G, and we claim that they generate
a dense subgroup therein, witnessing rk(L°([0, 1/2], 1, G) x G) < k. To this end,
recall that wﬁ[“( fis s fx) = & X hg pointwise almost surely. In particular,

wh(fis s f) Noj21= €1 X ha Mo.1j2)
in measure and, for each j € N,
Wi (fro o (1) = (X ha) (1)) = hagj)
is guaranteed by choosing 7; € P. We conclude that
Wi (fir s i) = & X ha
in L°([0, 1/2], 4, G) x GV, and therefore
tk(LY([0,1/2],4,G) x GM) < k.

Finally, suppose that L°([0, 1], 1, G) is generically k-generated. Choose open
sets U; € L°([0,1/2],4,G) x GM,1 <i < k. Shrinking them if necessary, we may
assume that all U; have the form U; = Aé X A’i X e X Af1 x GY, where A6 is open in
LY([0,1/2],4,G), and A; j =1, are openin G.

Pick V; € LY([0,1],14,G), 1 <i < k, to consist of those functions f satisfying
flio.1/2] € Ag and f(t) € Aj forallt € [1 —27/71,1-27772), 1 < j < n. Note that
V; NnL%([0,1/2],4,G) x GY = U;.
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Since L°([0, 1], 2, G) is assumed to be generically k-generated, there is a tuple
(fi. .., fx) generating a dense subgroup in L°([0, 1], A, G) such that f; € V; for each
i. Running the above construction, we get a tuple

(A, ..., fi) €L°(]0,1/2],4,G) x G

such that f; € U;, 1 <i < k, whence L°([0,1/2],4,G) x G" is generically k-generated.
u

Lemma 5.15 remains valid if we take the product with a finite power of G, which
follows from Lemma 5.14.

Corollary 5.16. For any Polish group G and any m € N, one has
tk(LY([0, 1], 4, 6)) = tk(L°([0, 1], 2, G)) x G™.

If tk(LO([0, 1], A, G)) is generically k-generated for some k € N, then so is the group
L%([0,1],4,G) x G™.

We may now strengthen Proposition 5.13 by dropping the assumption on (Y, v)
being atomless.

Proposition 5.17. Let (Y, V) be a standard Lebesgue space and (Z, ) be a standard
probability space. The Polish group LO(Y, v, Aut(Z, d)) is generically 2-generated.

Proof. Let Y, be the set of atoms of Y, put Yo =Y \ Y, and vo = v ly,. The group
LO(Y, v, Aut(Z, 1)) is naturally isomorphic to

LO(Yo, vo, Aut(Z, 1)) X Aut(Z, /1)|Ya|'

An application of Proposition 5.13 together with Lemma 5.15 or Corollary 5.16 (depend-
ing on whether Yy, is infinite or not) finishes the proof. u

Proposition 5.18. Let G be a Polish group and let Hy < H| < --- < G be a dense
chain of Polish subgroups, \J,, H, = G. If each H,, is generically k-generated, then G
is generically k-generated.

Proof. We need to show that for any open U C G* and any open V C G there is a
tuple (g1,...,8%) € U suchthat (gi,...,gx) NV # @. Since groups H,, are nested and
U, Hy is dense in G, there is n so large that U N H,]f # @and V N H, # @. It remains
to use the fact that H,, is generically k-generated to find the required tuple. ]

Theorem 5.19. Let G ~ X be a measure-preserving action of a locally compact
amenable Polish normed group on a standard probability space (X, u). If almost every
orbit of the action is uncountable, then the derived L' full group D([G ~ X1,) is
generically 2-generated and has topological rank 2.
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Proof. In view of Corollary 5.3, there is a chain of subgroups

Ho < Hy < <D(G ~ X11), | JH,=D(G ~X]),

where each H,, is isomorphic to L(Y,,, v,,, Aut([0, 1], 1)) for some standard Lebesgue
space (Y, v,). By Proposition 5.17, every H,, is generically 2-generated, and we may
apply Proposition 5.18 to conclude that D([G ~ X]) is generically 2-generated.
In particular, its topological rank is at most 2. To see that its topological rank is
actually equal to 2, simply note that D([G ~ X];) is not abelian (e.g., by the proof of
Proposition 3.9). |

The assumption for orbits to be uncountable is essential, and Theorem 5.19 is in
striking contrast to the dynamical interpretation of the topological rank of derived L'
full groups for actions of discrete groups. As shown in [41, Thm. 4.3], given an aperiodic
measure-preserving action of a finitely generated group I' ~ X, the topological rank
of D([I" ~ X)) is finite if and only if the action has finite Rokhlin entropy.



Chapter 6

The index map for L! full groups of flows

We now turn our attention to flows, i.e., measure-preserving actions of R. Since the
group of reals is locally compact, amenable, unimodular, and, of course, Polish, all of the
results in the previous chapters apply to R-flows. A much more in-depth understanding
of L! full groups of flows is possible and is based on the existence of the so-called
index map, which we define and investigate in this chapter. This map is a continuous
homomorphism from the L! full group of the flow to the additive group of reals, which
can be thought of as measuring the average shift distance. When the flow is ergodic,
such averages are the same across orbits. By taking the ergodic decomposition of the
flow ¥, we can adopt a slightly more general vantage point and view the index map 7
as a homomorphism into the L! space of functions on the space of invariant measures
(&.p). I :[Fl1 »LYE, p.R).

Understanding the kernel of the index map is a task of fundamental importance.
We will subsequently identify ker 7 with the topological derived subgroup of [F |,
(Theorem 10.1). This will allow us to describe the abelianizations of L! full groups of
flows and estimate the number of their topological generators.

It has already been mentioned that any element 7 of a full group of a flow induces
Lebesgue measure-preserving transformations on orbits (Section 4.2). When T fur-
thermore belongs to the L! full group, these transformations are special—they leave
“half-lines” invariant up to a set of finite measure. Such transformations form the so-
called commensurating group. Let us therefore begin with a more formal treatment
of this group, which has already appeared in the literature before, for instance in [51].

6.1 Self-commensurating automorphisms of a subset

Consider an infinite measure space (Z, 1). We say that two measurable sets A, B C Z
are commensurate if the measure of their symmetric difference is finite, A(AAB) < oo.
The relation of being commensurate is an equivalence relation, and all sets of finite
measure fall into a single class. Note also that if A and B are both commensurate to
some C, then so is the intersection A N B; in other words, all equivalence classes of
commensurability are closed under finite intersections.

Let €(B) denote the set of all measurable A C Z that are commensurate to B. Fix
some Y € Z and consider the semigroup of measure-preserving transformations between
elements of €(Y). More precisely, let Iso* (Y, 1) be the set of measure-preserving partial
bijections T : A — Bbetween sets A, B € €(Y), which we call the self-commensurating
semigroup of (Y, ).
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Recall that we denote the domain of 7" as dom T and its range as rng 7'. For partial
transformations S : A —» Band T : A’ — B’, the composition T o S has a domain given
by AN S~1(A’). As always, we identify two maps if they differ only on a null set. Since
the classes of commensurability are closed under finite intersections, the set Iso* (Y, )
forms a semigroup with respect to composition.

This semigroup carries a natural equivalence relation: 7 ~ S whenever the transfor-
mations disagree on a set of finite measure, A({x : Tx # Sx}) < oo. This equivalence
is, moreover, a congruence, i.e., if 71 ~ Sy and 7, ~ Sy, then Ty o T; ~ §1 0 S5. One
may therefore push the semigroup structure from Iso* (Y, 1) onto the set of equivalence
classes, which we denote by Aut* (Y, 1). An important observation is that Aut* (Y, 1) is
a group. Indeed, the identity corresponds to the map x — x on Y, and for a representative
T € Iso* (Y, A), its inverse inside Aut* (Y, 1) is, naturally, givenby 7! : rngT — domT.
We call Aut*(Y, 2) the self-commensurating automorphism group of Y.

The self-commensurating semigroup admits an important homomorphism into the
reals, 7 : Iso*(Y, 1) — R, called the index map and defined by

I(T)=A(domT \ rngT) — A(rng T \ domT).
Lemma 6.1. Forall T € 1s0* (Y, A), the index map satisfies the following:
(1) if A € €(Y) is such that domT C A and rngT C A, then
I(T)=A2(A\rngT) — A(A\ domT);
(2) if T" € Iso*(Y, Q) is a restriction of T’, that is T' =T 4om71, then I (T’) =
(7).
Proof. (1)If A C Z is commensurate to Y and dom7 C A, rngT C A, then
I(T)=A(domT \rngT) — A(rngT \ domT)
=A(A\mgT) —A(A\ (domT UrngT))
— (A1(A\domT) - A(A\ (domT UrngT)))
=A(A\mgT) — A(A\ domT).
Q) If T’ € Iso* (Y, A) is a restriction of T, then
T(domT \domT’) =rngT \ rngT".
Thus, for any A € €(Y) containing both dom 7 and rng 7', item (1) implies
I(T)=A2(A\domT)—A(A\rngT)
=A(A\domT’) — A(domT \ domT") — (A(B\rngT’) — A(rng T \ rng T"))
=A(A\domT") —A(A\ngT’) = I(T’),

where the equality A(domT \ dom7"’) = A(rng T \ rng7”) is based on T being measure-
preserving. |
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Proposition 6.2. The index map I : Iso* (Y, 1) — R is a homomorphism. Moreover,
if T,S € 1so*(Y, ) are equivalent, T ~ S, then I (T) = 1(S).

Proof. In view of Lemma 6.1(2), to check that 7 (T} o T») = I (Ty) + I (T»), we may
pass to restrictions of these transformations and assume that rng 7, = dom 7. Pick
a set A € €(Y) large enough to contain the domains and ranges of 77 and 7,. By
Lemma 6.1(1),

I(T)oTy) =A(A\ngT;) — A(A \ domT>)
=A(A\rmngT)) —A(A\domT}) + A(A\mgT,) — A(A \ domT7>)
= I(Tl) +I(T2).

For the moreover part, suppose that T', S € Iso}, (Y, A) are equivalent. Let U be the
restriction of T and S onto the set {x : Tx = Sx}. Using Lemma 6.1(2) once again, we
get 7 (T) = I (U) = I(S). Hence, the index map is invariant under the equivalence
relation ~. |

The proposition above implies that the index map respects the relation ~, and hence
gives rise to a map from Aut* (Y, A) to the reals.

Corollary 6.3. The index map factors to a group homomorphism

T :Aut*(Y,1) - R.

6.2 The commensurating automorphism group

Let us again consider an infinite measure space (Z, 1) and Y C Z a measurable subset.
We now define the commensurating automorphism group of Y in Z as the group of
all measure-preserving transformations 7' € Aut(Z, 1) such that A(Y AT (Y)) < co. We
denote this group by Auty (Z, 2).

Every T € Auty (Z, 1) naturally gives rise to an element of Aut* (Y, 1) by considering
its restriction T Ty. The following lemma shows that in this case we may use any other
set A commensurate to Y instead without changing the corresponding element of the
commensurating group.

Lemma 6.4. Let T € Aut(Z, 1) be a measure-preserving automorphism. If T €
Is0* (Y, ) for some A € €(Y), thenT g€ 1s0*(Y,A) and T Ig~T [aforall Be E(Y).

Proof. Since commensuration is an equivalence relation and A is commensurate to Y,
the assumption T’ [ 4€ Iso* (Y, 1) is equivalent to A(AAT(A)) < co. Moreover, given
B € €(Y), we only need to show that A(BAT(B)) is finite in order to conclude that
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T g€ Iso*(Y, ). So we compute

A(BAT(B)) =A(B\T(B)) + A(T(B) \ B)
<A(A\T(A) +A(B\A)+A(T(A\ B))
+A(T(A)\A)+A(A\ B) + A(T(B\ A))
=A(AAT(A)) +2A(AAB) < .

Thus, the measure A(BAT(B)) is finite. Hence T g€ Iso*(Y, 1) for all B € €(Y).
Finally, T T~ T [p, since these transformations agree on A N B. [ ]

To summarize, if T [ 4€ Iso* (Y, A) for some A € €(Y), then all restrictions T | g,
B € €(Y), are pairwise equivalent. Hence, they correspond to the same element T' [y e
Aut*(Y, 2). According to Proposition 6.2, the index 7 (T [y) of this element can be
computed as 7 (T y) = A(B\ T(B)) — A(B\ T~'(B)) forany B € €(Y).

6.3 Index map on L! full groups of R-flows

Let £ = R ~ X be a free measure-preserving Borel flow, let [F ]; be the associated
L! full group, where we endow R with the standard Euclidean norm, and let 7' € [F ];.
The action of r € R upon x € X is denoted additively by x + r. Recall that the cocycle
of T is denoted by pr : X — R and is defined by the equality 7'(x) = x + pr(x) for
all x € X. We are going to argue that, on every orbit, T induces a measure-preserving
transformation that belongs to the commensurate group of R=%, when the orbit is
identified with the real line.
Consider the function f : R — {-1,0, 1} defined by

1 ifx<y<T(x),
fl,y)=4-1 ifT(x) <y<x,

0 otherwise.

One can think of f as a “charge function” that spreads charge +1 over each interval
(x,T(x)) and —1 over (T (x), x). Note that we have both

/f(x,xﬂ) dA(r) = pr(x) and /If(x,xﬂ”)l dA(r) = |pr(x)|.
R R
Since T belongs to the L! full group, its cocycle is integrable, which means that f is

M-integrable (see Section 4.2). By the mass-transport principle, the following integrals
are equal and finite:

/X /R 1 G+ 1) dAP)du(x) = /X /R £ G+ ron)] dAGr)du().



Index map on L1 full groups 61

In particular, the integral fR | f(x +r,x)| dA(r) is finite for almost all x.

Let Ty € Aut(R, 2) denote the transformation induced by T onto the orbit of x
obtained by identifying the origin of the real line with x, which is measure-preserving
by Proposition 4.13. One can reinterpret the integral fR |f(x +r,x)| dA(r) as follows:

/ |f(x +7,x)| dA(r) = A(RZO\ T (RZ?)) + (T (RZ?) \ RZ?)
R
= A(R=% A T (R20)).

In particular, T =0 belongs to the commensurating group of R=%. Observe that we
also have

/ fx+7,x)dA(r) = AR\ T, (RZ%)) — A(T (RZ) \ RZ?),
R

which is equal to the index of T, z=0. By Section 6.2, 7 (T [g>0) = I(Ty Ig=0)
whenever xR#y. For any T € [F |1, we therefore have an ¥ -invariant measurable map
ht : X — R given by hr(x) = /R f(x+r,x)dA(r). Note that for any F -invariant set
Y C X, the mass-transport principle yields

/mm@m=/mmww. 6.1)
Y Y

Let (&, p), X 2 x > v, € &, be the ergodic decomposition of (X, u, F) (see
Appendix E.1). Since the map Ay is F-invariant, it produces a map iz : & — R via
h(v) = h(x) for any x such that v = v, or, equivalently, via

hr(v) = /X/Rf(x +r,x)dA(r)dv(x).
Note also that

‘éwwmwwsééuuﬂwnMmmm:Lmﬂmwwx(M)

thus 7 € L'(&, p, R). We can now define the index map of a (possibly non-ergodic)
flow as a function 7 : [F]; — LY(&, p,R).

Definition 6.5. Let ¥ = R ~ X be a free measure-preserving flow on a standard
probability space (X, u); let also (&, p) be the space of ¥ -invariant ergodic probability
measures, where p is the probability measure yielding the disintegration of u. The
index map is the function 7 : [F]; — L'(&, p,R) given by

I(T)(v) = hr(v) = /X/Rf(x +r,x)dA(r)dv(x).
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Proposition 6.6. For any free measure-preserving flow ¥ = R ~ X, the index map
I :[F1i = LY&, p,R) is a continuous and surjective homomorphism. Furthermore,
its kernel consists of all T € [F |1 satisfying, for almost all y € X,

Ay({x e suppT : x <y <Tx}) =A,({x € suppT : Tx < y < x}). 6.3)

Proof. The index map is a homomorphism, since, as we have discussed earlier, A7 (x) is
equal to the index of T [r=o0. Continuity follows from the fact that 7 is 1-Lipschitz as a
direct consequence of Eq. (6.2). To see surjectivity, pick any 7 € L' (&, p, R) and view
itas amap h : X — R via the identification &(x) = h(v,). Define the automorphism
T € Aut(X, u) by T(x) = x + h(x). It is straightforward to check that T € [#]; and
I(T)=h.

Finally, according to the definition of the index map, the kernel is the set of all
T € [F ], for which, almost everywhere in X, the condition A7 (y) = 0 holds. By the
definition of &7 and the charge function f, this translates to the relationship

Ay({x € suppT :x <y <Tx}) =A,({x € suppT : Tx < y < x}).

Since Ay is atomless, the above equality is equivalent to the desired condition. ]
The quotient group [F ];/ker I naturally inherits the quotient norm given by
ITker Il = _inf 7S], .

By Proposition 6.6, the index map induces an isomorphism between [F ]; /ker I and

L!(&, p,R). We argue that this isomorphism is, in fact, an isometry.

Proposition 6.7. The index map I induces an isometric isomorphism from [F |1 /ker I
onto L1(&, p,R), where the former is endowed with the quotient norm and the latter
bears the usual L' norm.

Proof. Since /X |hr(x)| du(x) = /8 |A7(v)| dp(v), it suffices to show that for all T €

[9 ]l
inf ||TS||, = hr|du.
SelkerI ” ”1 /X| |

LetT € [F]1. We first show the inequality inf ||TS]|; > / |hr| du.
Seker I X

Pick any S € ker 7. For any ¥ -invariant measurable Y C X, A, ps du =0 and

[ orsau= [ prseyau+ [ psodue = [ prau= [ hran

where we rely on Eq. (6.1) and S being measure-preserving. Consider the ¥ -invariant
sets
Y<'={xeX:hr(x) <0} and YZ"={xe X:hr(x)>0}.
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The norm ||7S||; can be estimated from below as follows.

71 = [ lprsdu= [ lprsldus [ lorsldu
X Y<0 Y =0
/ Prs du / PTS dﬂ‘
y <0 Yy 20
/ hT d,u / hT d,u‘
Y<0 YZO
:—/ th#+/ th#:/|hT|d.U~
Y<0 YzO X

inf ||TS]; > hr|du.
Jint 7Sl > [ Thrl da

>

+

+

‘We conclude that

For the other direction, consider a transformation 7” defined by 7’ (x) = x + hr(x);
note that T’ € [F |1, pr+ (x) = hy (x) = hy(x) forallx € X,and T~ !T” € ker I'. Therefore

inf ||TS|l, < |777'T’||, = 1T’y = [ |heldu= | |hz|dy,
ganf /1 I < [l = 17"1l; /X|T|ﬂ /XlTI,U

and the desired equality of norms follows. u

Using similar reasoning, we obtain the following characterization of the L! full
group and the index map, where for all T € [R#], we let rr be the measure-preserving
transformation of (R, M) given by rr(x,y) = (x,T(y)) (see Section 4.2).

Proposition 6.8. Let ¥ =R ~ X be a free measure-preserving R-flow. Consider the
set RZ0 = {(x,y) € Ry :x > y}. Then for every T € [R ~ X], we have

Tl = M (R 8 rr(RZ0)).

In particular, the L' full group of F can be seen as the commensurating group of R=°
inside the full group of R. Moreover, in the ergodic case, the index of T as defined
above is equal to its index as a commensurating transformation of the set R=" in the
sense of Section 6.1.

Proof. Through the identification (x,t) — (x, x + t), the measure-preserving transfor-
mation r7 is acting on X x R as idx X Ty, and the set R=? becomes X x R=?. We then
have

M(RZ° & r(RZ)) = /XA(RZO A (T(R*)) du(x)

=/|PT| di
X
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by the mass-transport principle, which yields the conclusion, since by the definition of
the norm ||Tly = [, lor| du.
The moreover part follows from a similar computation. |

Remark 6.9. The full group of R embeds via T +— rp into the group of measure-
preserving transformations of (R, M). One could use this and the fact that the com-
mensurating automorphism group of R=? is a Polish group in order to give another
proof that L! full groups of measure-preserving R-flows are themselves Polish.



Chapter 7

Orbitwise ergodic bounded elements of full groups

The purpose of this chapter is to contrast some of the differences in the dynamics of the
elements of full groups of Z-actions and those arising from R-flows. Let S € [Z ~ X]
be an element of the full group of a measure-preserving aperiodic transformation, and let
psk : X — Zbe the cocycle associated with S¥ for k € Z. Since Z is a discrete group, the
conservative part in the Hopf decomposition for S (see Appendix C) reduces to the set
of periodic orbits. In particular, an aperiodic S € [Z ~ X ] has to be dissipative, hence
|psk (x)] — o0 as k — co. When S belongs to the L! full group of the action, a theorem
of R. M. Belinskaja [8, Thm. 3.2] strengthens this conclusion and asserts that for almost
all x in the dissipative component of S, either pgx (x) — +co or pgi (x) — —oo.

Given an arbitrary free measure-preserving flow R ~ X, we construct an example
of an aperiodic S € [R ~ X, for which the signs in {pg« (x) : k € N} keep alternating
indefinitely for almost all x € X. In fact, we present a transformation that acts ergodically
on each orbit of the flow (in particular, it is conservative and globally ergodic as soon
as the flow is ergodic). Moreover, we ensure it has a uniformly bounded cocycle. Our
argument uses a variant of the well-known cutting and stacking construction adapted
for infinite measure spaces. Additional technical difficulties arise from the necessity to
work across all orbits of the flow simultaneously. The transformation will arise as a
limit of special partial transformations we call castles, which we now define.

The pseudo full group of the flow is the set of injective Borel maps ¢ : dom ¢ —
rng ¢ between Borel sets dom ¢ C X, rng ¢ C X, for which there exists a countable
Borel partition (A;);en of the domain dom ¢ and a countable family of reals (#,),en
such that ¢(x) = x +1,, for every x € A,,. Such maps are measure-preserving isomor-
phisms between (dom ¢, i I'qom o) and (rng ¢, u Mg ), in other words they are partial
transformations. The support of ¢ is the set

suppg = {x e domg : ¢(x) #x} U {x emge: ¢ '(x) # x}.
Given g in the pseudo full group and a Borel set A C X, we let
©(A) = {e(x) : x € Andomgp}.

In particular, p(A) = @ if A is disjoint from dom ¢. A castle is an element ¢ of the
pseudo full group of the flow such that for B = dom ¢ \ rng ¢ the sequence (¢* (B))xen
consists of pairwise disjoint subsets which cover its support. Since ¢ is measure-
preserving, for almost every x € B there is k € N such that ¢*(x) ¢ dom ¢. It follows
that ¢! is also a castle. The set B is called the basis of the castle, and the basis of
its inverse C is called its ceiling, which is equal to rng ¢ \ dom ¢. Observe that if two
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castles have disjoint supports, then their union is also a castle. We denote by ¢ : B — C
the element of the pseudo full group which takes every element of the basis of ¢ to the
corresponding element of the ceiling.

Remark 7.1. Equivalently, one could define a castle as an element ¢ of the pseudo full
group which induces a graphing consisting of finite segments only (see [33, Sec. 17]
for the definition of a graphing). It induces a partial order <., defined by x <, y if and
only if there is k € N such that y = ¢¥(x). The basis of the castle is the set of minimal
elements, while the ceiling is the set of maximal ones. Finally, ¢ is the map which
takes a minimal element to the unique maximal element above it.

Theorem 7.2. Let R ~ X be a free measure-preserving flow. There exists S € [R ~ X |
that acts ergodically on every orbit of the flow and whose cocycle is bounded by 4.
Moreover, the signs in {pgr (x) : k € N} keep changing indefinitely for almost all x € X.

Proof. Fix a free measure-preserving flow R ~ X, and let C C X be a cross-section.

We recall some notation from Section 1.2.4. Since C is lacunary, for any ¢ € C, the
function gap(c) =min{r > 0: ¢ +r € C} is well-defined. This gives the first return map
o¢ : C — Cviaog(c) = ¢+ gap,(c), which is Borel. There is also a natural bijective
correspondence between X and the set {(c,7) e CxR=:ceC,0<1t < gap,(c)}.
Let A be the “Lebesgue measure” on ¢ + [0, gap(c)) given by

A(A)=1({reR:0<r< gapeo(c),c+r € A}).

The measure ¢ on X can then be disintegrated as u(A) = fc AS(A) dv(c) for some
finite (but not necessarily probability) measure v on C, as explained at the end of
Section 1.2.4.

Let (Cy)nen be a vanishing sequence of markers—a sequence of nested cross-
sections C; D Cp D Cs - - - with an empty intersection: (),,cxy C = @. We may arrange
C\ to be such that gap, (¢) € (2,3) forall ¢ € Cy. Put

Co={c+k:ceC,ke{0,1,2}}

andY = C; + [0,2). Note that u(X \ Y) < % Our first goal is to define an element ¢
of the pseudo full group with domain and range equal to Y such that for almost every
x €Y, the action of ¢ on the intersection of the orbit of x with Y is ergodic and has a
cocycle bounded by 3. It will then be easy to modify ¢ to an element of the full group
whose action on each orbit of the flow is ergodic at the cost of increasing the cocycle
bound to 4.

Our first partial transformation ¢ will arise as the limit of a sequence of castles
(¢n)nen, with each ¢, belonging to the pseudo full group of R¢, . We also use another
family of castles (/,,),en Which allows us to extend ¢, by “going back” from its ceiling
to its basis while keeping the cocycle bound (this is our main adjustment compared to



Bounded elements of the full group 67

the usual cutting and stacking procedure). Both sequences of castles will have their
cocycles bounded by 3. Here are the basic constraints that these sequences have to
satisfy:

(1) foralln > 1,Y = supp ¢, LI supp ¢,;
(2) forall n > 1, ¢, extends ¢,;
(3) p(suppyy,) tends to O as n tends to +co.

The bases and ceilings of (¢, ),en and (¥ ,,)nen Will satisfy additional constraints
that will enable us to make the induction work and ensure ergodicity on each orbit
of the flow. In order to specify these constraints properly, we introduce the following
notation.

Each orbit of the flow comes with the linear order < inherited from R via x < y if
and only if y = x + ¢ for some ¢ > 0. Set k¢, (x) to be the minimum of the intersection
of C, with the cone {y € X : y > x}.

Let D1 =C; +2 C Cy and D, be the set of those x € D; which are maximal in
Kall (¢) among points of D, for some ¢ € C,; in other words,

Dy ={xeD;:(x,kc,(x)NCy=2}.

Note that by construction, the distance between x and k¢, (x) is less than 1 for each
x € D,. Let t, be the map C,, — D,, which assigns to ¢ € C, the <-least element of
D, that is greater than c.

C D1 G D G D G D1 G D1 G
° . « @ o . ° . . ° . o ° o °

0) Dy & Dy G

Figure 7.1. An example of cross-sections Cy (all points), C; (dots of size e and above), C, (marked
as @) and Dy, D;.

The bases and ceilings of ¢, and i, are as follows:

« the basis of ¢, is A, = C, + [0, %)

(Sl

L
mo

1.
+2—n),

« the ceiling of Y, is F, = Gy + [3, 1 + ZL)

» the ceiling of ¢, is B, = D, + [_%

e thebasisof ¥, is E,, = D, + [—

=

1
2

Furthermore, we impose two translation conditions, which help us to preserve the
above concrete definitions of the bases and ceilings at the inductive step when we
construct ¢, and Yp41:
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. an(c+t)=Ln(c)+t—%—2lnforallc€Cn and all 1 € [O,ZL,[).

© Gud+n =g () 41+ Lforalld e Dy andallr e [-4, -1+ ).

The first step of the construction consists of the castle ¢ : x — x + 1, which has
basis A; = C; + [0, %) and ceiling By = Dy + [-1, —%), and the castle ] : x > x — 1
with basis E; = D; + [—4,0) and ceiling Fi = C; + [, 1).

We now concentrate on the induction step: suppose ¢, and ¥,, have been built for
some n > 1; let us construct ¢,,+1 and ¥4

The strategy is to split the bases of ¢,, and ¢,, into two equal intervals and “interleave”
the “two halves” of ¢,, with “one half” of ,, followed by “gluing” adjacent ceilings
and bases within the same C,,+; segment (see Figure 7.2). To this end, we introduce
two intermediate castles ¢,, and ,, that will ensure that ¢, “wiggles” more than ¢,,,
yielding ergodicity of the final transformation.

Define two new half-measure subsets of the bases A, and E,, respectively:

1 .

. Al=c,+[o, —2,,”),
1 1 .

* E)=D,+ [_§+W’_§+_)’

and let

1 1 1 1
2 o’ 9 on+l |7

BY =Gu(A) =Dy +

and
FO=y, (E9=C,+

1 1 1 1
PRETE AT b
where the two equalities are consequences of the translation conditions. Let G,, be the

Y, -saturation of £ 2, and note that the restriction of i, to G, is a castle with support
G, whose basis is E? and whose ceiling is F°. Finally, let

A=A\ Al =C, +

1 1
on+l’ 2_n ’
We define the partial transformation &, : B U FO — E9 11 AY to be used for “gluing
together” ¢, and the restriction of ¢, to G,;:

© &u(b) = b+ 55 € EJ forall b € B) and
o &(f)=f-1eAlforall feF..

Set $n = ¢n U &, UG, whereas i, is simply the restriction of ¢, onto the com-
plement of G,,. Observe that @, has basis A} and ceiling

B! =B,\B =D, +

1 1 1
2T
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while ,, has basis

E'=E,\NE’=D, +

Lo
27 2 on+l

and ceiling

Fl=F,\F’=¢C, +

11 1

=, =+ .

2’2 on+l

We continue to have Y = supp @,, LI supp ¥/,,, but the support of i, is half the support
of yr,,, meaning that u(supp ¥r,,) = %,u(supp Un).

n n 7 n
n

Figure 7.2. Inductive step.

The ceiling of @, is equal to B} = D,, + [—% - 2,3“ , —%), whereas we need the

ceiling of ¢,1 to be equal to B+ = Dpy1 + [—% - Q,IIT —%) We obtain the required

@n+1 and Y41 out of @, and i, respectively, by “passing through each element of
Cn \ Cn+1 .

Note that D, is equal to the set of d € D,, such that k¢, (d) € Cy41. Eachx € B} \
B,,+1 can be written uniquely asx = d + ¢t where d € D, \ D, andt € [—% - 2,}“ , —%)
Set

) 11
En(x) = ke, (d) +1+ 5% Sl

and note that &, (x) belongs to (C, \ Cuy1) + [0, 2n—1+1) = A}l \ An+1, hence &, is a

measure-preserving bijection from B,ll \ B, onto A,ll \ At

The transformation ¢,4; is set to be @, LI £, and we claim that it is a castle with
basis A1 and ceiling B,;. This amounts to showing that for all x € A,;, there is
k € N such that Lpfl 41 () is not defined. Pick x € A, and write it as co + ¢ for some



70 Bounded elements of the full group

co € Cuyp and t € [0, Q,JT). Let ¢ be the successor of ¢ in C,,, which we suppose is
not an element of C,.1. By the construction of @, and &, there is k € N such that
£ (gk(x)) e ¢ + 0, 2,,%), which means that goflﬂ(x) ec +]0, ﬁ). Iterating this
argument, we eventually find kg, p € N such that gofl(jr] (x) € cp + [0, 2,%) for some
¢p € G, such that the successor ¢ 41 of ¢, in C, belongs to Cp41. By the definition
of ¢, we must have some / € N such that goﬁ(jjl (x) = gﬁﬁl(goﬁ‘jrl (x)) € By41, whereas
gofl‘:m (x) is not defined. Thus, ¢,,4+; is indeed a castle.

The extension ¥,+1 of ¥, is defined similarly by connecting adjacent segments
of F! and E] by a translation. More specifically, each x € F,} \ F,;1 can be written
uniquely as x = ¢ + ¢ forsome ¢ € C, \ C,41 and f € [%, % + 2,,%). The restriction of k¢,
to D, is abijection D,, — C,. We denote its inverse by p, and let &, (x) = pp(c) +1 - 1.
The map ¢ ,41 = ¥, U &)’ can be checked to be a castle with basis E,.; and ceiling
F,41 as desired. It also follows that the translation conditions continue to be satisfied
by both ;.41 and ¥ry41.

The transformations ¢, extend each other, so ¢ = | J,, ¢, is an element of the pseudo

full group supported on Y = supp ¢, LI supp ¢,,. Note also that

1 (Supp ¥pys1) = u(supp¥r,) /2,

and therefore dom ¢ =Y = rng ¢. We claim that ¢, seen as a measure-preserving
transformation of Y, induces an ergodic measure-preserving transformation on (y +
R) NY for almost all y € Y, where y + R is endowed with the Lebesgue measure.
This follows from the fact that ¢ induces a rank-one transformation of the infinite
measure space (y +R) NY: for all Borel A C (y + R) NY of finite Lebesgue measure
and all € > 0, thereare BC (y+R) NY, k € N, and a subset F C {0,..., k} such that
B, ¢(B), ..., ¢*(B) are pairwise disjoint and

WAs (| | B)) <e

feF

Indeed, at each step n for every ¢ € C,, the iterates of ¢ + [0, %) by the restriction of

©n to the interval [c, ¢,,(c)) are disjoint “intervals of size 27", i.e., sets of the form
t+ [0, 2%), and these iterates cover a proportion 1 — 2% of [c,t,(c)) (the rest of this
interval being [c, t,,(¢)) N supp ¥ p).

It remains to extend ¢ supported on Y to a measure-preserving transformation S
with supp S = X. Let Z = X \ Y be the leftover set,

Z={c+t:ceC:2=<1<gapg ()},

and put
Z' ={c+t:ceC, 2-gapg (c) <t <2}.

Figure 7.3 illustrates an interval between ¢ € Cj and ¢’ = o, (¢). Within this gap, Z
corresponds to [c +2,¢ +2 + gap, (¢)), and Z’ is an interval of the exact same length
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adjacent to it on the left. Note that Z” C Y by construction. Letny : Z" — Z be the natural

translation map, 17(x) = x + gap, (c) for all x € Z’ satisfying x € ¢ + [0, gap¢, (¢)).
Observe that 7 is a measure-preserving bijection, and its cocycle is bounded by 1.

zZ  Z

Figure 7.3. Construction of the transformation S.

We now rewire the orbits of ¢ and define S : X — X as follows (see Figure 7.3):

w(x) ifx¢ZUuZ’;
S(x) =1 n(x) ifxeZ;
o '(x)) ifxeZ.

It is straightforward to verify that S is a free measure-preserving transformation,
and the distance D (x, Sx) < 4 for all x € X because |[p,(x)| < 3 and [p,(x)| < 1 for
all x in their domains. Note that for every y € Y, the intersection of the S-orbit with
Y coincides with its p-orbit. Since ¢ is ergodic on each orbit of the flow intersected
with Y, and considering that X = Y LU Z and S~'(Z) C Y, it follows that S is ergodic
on every orbit of the flow. Therefore, S satisfies the conclusion of the theorem. u

Remark 7.3. The bound 4 in the formulation of Theorem 7.2 is of no significance, as
by rescaling the flow, it can be replaced with any € > 0.






Chapter 8

Conservative and intermitted transformations

Interesting dynamics of conservative transformations is present only in the non-discrete
case, as it reduces to periodicity for countable group actions. Chapter 7 provides an
illustrative construction of a conservative automorphism and shows that they exist in
L! full groups of all free flows. The present chapter is devoted to the study of such
elements. The central role is played by the concept of an intermitted transformation,
which is related to the notion of induced transformation. Using this tool, we show that all
conservative elements of [R ~ X]; can be approximated by periodic automorphisms,
and hence belong to the derived L! full group of R ~ X; see Corollary 8.8.

Throughout the chapter, we fix a free measure-preserving flow R ~ X on a stan-
dard Lebesgue space (X, ). Given a cross-section C C X, recall that we defined an
equivalence relation R¢ by declaring xRy whenever there is ¢ € C such that both x
and y belong to the gap between ¢ and o¢(c). More formally, xR¢y if there is c € C
such that p(c,x) = 0, p(c,y) = 0 and p(x,oc(c)) > 0, p(y,0¢c(c)) > 0. Such an
equivalence relation is smooth.

Now let T € [R ~ X] be a conservative transformation. Under the action of 7,
almost every point returns to its R-class infinitely often, which suggests the idea of
the first return map.

Definition 8.1. The intermitted transformation 7, : X — X is defined by
Tgox = T"¥x,  where n(x) = min{n > 1 : xRcT"¥x}.

The map T, is well-defined, since T is conservative, and it preserves the measure
1, since Tg,, belongs to the full group of 7.

Remark 8.2. The concept of an intermitted transformation T makes sense for any
equivalence relation E for which the intersection of any orbit of 7" with any E-class is
either empty or infinite. In particular, intermitted transformations can be considered for
any conservative T € [G ~ X in a full group of a locally compact group action. For
instance, with a cocompact cross-section C we can associate an equivalence relation
of lying in the same cell of the Voronoi tessellation (see Appendix E.2). Such an
equivalence relation does have the aforementioned transversal property, and hence the
intermitted transformation is well-defined.

Note also the following connection with the more familiar construction of the
induced transformation. Let 7 € Aut(X, ), and let A C X be a set of positive measure.
Recall that the induced transformation T4 € Aut(X, u) is supported on the set A and is
defined for x € A by Tax = T"¥)x, where n(x) = min{n > 1 : T"x € A}. Define A to
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be the equivalence relation with two classes: A and X \ A. The induced transformations
T4 and Tx\ o commute and satisfy Ty o Tx\a = T71.

The next lemma forms the core of this chapter. It shows that the operation of
taking an intermitted transformation does not increase the norm. As we discuss later
in Remark 8.5, the analog of this statement is false even for R?>-flows, which perhaps
justifies the technical nature of the argument.

Lemma 8.3. Let T € [R ~ X]; be a conservative automorphism, and let C be a cross-
section. Let also Y be the set of points where T and Tg, differ: Y = {x € X : Tx # Tg,x}.

One has [, |pry, | du < [, |pr| dp.

Proof. By the definition of Y, for any x € Y, the arc from x to Tx crosses at least one
point of C. We may therefore represent | o7 (x)| as the sum of the distance from x to
the first point of C along the arc plus the rest of the arc. More formally, for x € X, let
nc(x) be the unique ¢ € C such thatx € ¢ + [0, gap(c)). Define o : ¥ — R=9 by

a@):{vmmadﬂdwhh if p(x, Tx) > 0,
lo(x, 7c (1)) i p(x, Tx) < 0.

Note that a(x) < |pr(x)], and set B8(x) = |pr(x)| — a(x), so that

/Mﬂ@=/aw+/B@-
Y Y Y

For instance, in the context of Figure 8.1, a(x4) = p(x4, c3) and B(x4) = p(c2,x5). Let
us partition Y =Y’ L1 Y", where

Y = {x €Y : p(x,Tx) and p(x, Tg.x) have the same sign or Tg,x = x }

andY” =Y \ Y’ consists of those x € Y for which the signs of p(x,Tx) and p(x, Tg,xX)
are different. For example, referring to the same figure, xo € Y/, while x, € Y’.
To prove the lemma, it is enough to show two inequalities:

[ 1ol < [ ato duco) (3.1)
Y’ Y

[ 1ol dut) < [ 50 duco). 82)
Y” Y

Eq. (8.1) is straightforward, since the equality of signs of p(x,Tx) and p(x, Tr,xX)
implies that Tg.x is closer than x to the point ¢ € C, which is crossed by the arc from
x to Tx. For example, the point x, in Figure 8.1 satisfies

lo1r, (x2)| = p(x2,x4) < p(x2,¢2) = @(x2).
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Thus |PT7<C (x)] € a(x) forall x € Y’, and so

/Iprﬁcldﬂsfadﬂsfadu,
Y’ Y’ Y

which establishes (8.1). The other inequality will require a bit more work.

Forx € Y”,let N(x) > 1 be the smallest integer such that the sign of p(x, TN *)*1x)
is opposite to that of p7(x). In less formal terms, N (x) is the smallest integer such that
the arc from TN %) x to TNV (X)*+1 x jumps over x. In particular, points T¥x, 1 < k < N(x),
are all on the same side relative to x, while TN )*1x is on the other side of it. We
consider the map i : Y/ — X given by (x) = TN (X) x. The properties of this map will
be crucial for establishing the inequality (8.2), so let us provide some explanations first.

Y /\/\m

Xy Xy Cz X3 C3 4
\\//\//

Figure 8.1. Dynamics of a conservative orbit.

Consider once again Figure 8.1, which shows a partial orbit of a point xq for
x; =Tixg up to i < 9 and several points ¢; € C. First, as we have already noted before,
Xo €Y, since =xgRcx; moreover, xo € Y”, since xg = T, X is to the left of xq, while
x1 is to the right of it, so p(xg, x1) and p(xg, x9) have opposite signs. Also, N(xg) =7
because xg is the first point in the orbit to the left of x¢, thus 77(x¢) = x7. In general, we
have TN ()+1y 2 Tr,x. However, the equality TN+ Tg,x holds when x € Y’
and the points 7V )*1y and x are R-equivalent.

The next point in the orbit x; is not in ¥, whereas x, € Y but x, ¢ Y/, because
Tr.x> = x4 and both p(x2,x3) and p(x2, x4) are positive. The point x3 belongs to Y’
and has N(x3) = 1 with 57(x3) = x4. The points x4, x5, X6 are in Y, but whether any of
them are elements of Y’ is not clear from Figure 8.1, as the orbit segment is too short
to clarify the values of T x;, i = 4,5, 6. However, if x4, x5, x¢ happen to lie in Y”’, then
N(xs) =1 with n(xs) = x6, and N(x4) =3, N(xe) = 1, n(x4) =1(x6) =x7 =1(x0). In
particular, the function x + 7(x) is not necessarily one-to-one, but we are going to
argue that it is always finite-to-one.

Claim 1. If x,y € Y" are distinct points such that n(x) = n(y), then ~xRcy.

Proof of the claim. Suppose x,y € Y satisfy n(x) = n(y). The definition of r implies
that x and y must belong to the same orbit of 7', and we may assume without loss of
generality that y = T%0x for some k¢ > 1. If the orbit of x and y is aperiodic, it implies
that N(x) > kg and N(y) + ko = N(x), N(y) > 1. However, even if the orbit is periodic,
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either N(y) + ko = N(x) for the smallest positive integer ko such that y = TXox or
N(x) + k(= N(y) for the smallest positive integer k, such that x = T*%y. Interchanging
the roles of x and y if necessary, we may therefore assume that N(y) + ko = N(x) holds
for some ko > 1, TXx = y, regardless of the type of orbit we consider.

Suppose x and y are R¢-equivalent. Let k > 1 be the smallest natural number for
which x and T*x are Rc-equivalent. By the assumption xRy and the choice of ko we
have k < ko < N(x). By the definition of N(x), all points Tx, 1 <i < N(x), are on
the same side of x. In particular, this applies to 7x and T*x, which shows that p(x, Tx)
and p(x, Tg.x) have the same sign, thus x ¢ Y"’. Oclaim

The above claim implies that the function x +— 7 (x) is finite-to-one, for the arc from
n(x) to Tn(x) intersects only finitely many R-equivalence classes, and the preimage
of n(x) picks at most one point from each such class. Note also that (x) € Y for all
x € Y”, but n(x) may not be an element of Y”/. Among the R-equivalence classes that
the arc from 7(x) to Tn(x) crosses, two are special: the intervals that contain Tr(x)
and 7(x), respectively. Our goal will be to bound the sum of | PTr, (x)| over the points
x with the same 77(x) value by B(n7(x)) (see Claim 3 below). For a typical point x, we
can bound | PT, (x)| simply by the length of the interval of its R-class. For example,
Figure 8.1 does not specify T'r, x4, but we can be sure that | Pz, (xa)| < p(c1,¢2). In
view of Claim 1, such an estimate comes close to showing that the sum of | PTx, (x)]
over x with the same image 1(x) is bounded by |p(17(x), Tn(x))|. It merely comes close
due to the two special R¢-classes mentioned above, where our estimate needs to be
improved. The next claim shows that one of these special cases is of no concern as x is
never Rc-equivalent to n(x).

Claim 2. Forall x € Y"”, we have —xRcn(x).

Proof of the claim. Suppose, towards a contradiction, that xR¢n(x), and let k£ > 1 be
the smallest integer for which xR T* (x); in particular, Trox = T*x. Note that k < N (x)
by the assumption, and by the definition of N(x), p(T*x, x) has the same sign as pr(x),
whence x ¢ Y. Oclaim

Pick some y € Y with non-empty preimage n~'(y), and let z;,...,z, € Y be all
the elements in 777! (y). For instance, in the situation depicted in Figure 8.1, we may
have n = 3 and z; = x¢, 22 = X4, 23 = X, and y = x7. The following claim unlocks the
path toward the inequality (8.2).

Claim 3. In the above notation, 3!, |PTRC (z0)] < B(y).

Proof of the claim. Recall that the arc from y to Ty crosses at least one point in C. If
¢ € C is the closest to y among such points, then S(y) is defined to be |p(c, Ty)|. For
instance, in the notation of Figure 8.1, B(x7) = |p(c4, xg)|. Each point z; is located
under the arc from y to 7'y, and by Claim 2, no point z; belongs to the interval from ¢
to y. In the language of our concrete example, no point z; can be between c4 and x7.
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As discussed before, | PTx, (x)| is always bounded by the length of the gap to which
x belongs. This is sufficient to prove the claim if no z; is equivalent to Ty, as in this
case the whole R¢-equivalence class of every z; is fully contained under the interval
between ¢ and T'y, and distinct z; represent distinct R-classes by Claim 1. This is the
situation depicted in Figure 8.1, and our argument boils down to the inequalities

lo7r, (X0)| + |7, (Xa) | + |7, (X5)] < |p(co. c)| + [p(c1, e2)| + |p(c2, c3)]

< |p(co, ca)| < B(x7).

Suppose there is some z; such that z;RcTy. By Claim 1, such z; must be unique,
and we assume without loss of generality that z;R¢T'y. For example, this situation
would occur if in Figure 8.1 T'x7 were equal to xg. Let ¢’ be the first element of C over
which goes the arc from z; to T'z; (it would be the point c; in Figure 8.1). It is enough to
show that | PT, (z1)| £ |p(Tr.z1, )|, as we can use the previous estimate for all other
|PIRC (zi)|, i > 2. Note that Tg,z; = Ty, and z; € Y” by assumption, which implies
that the signs of p(z1,Tr.21) and p(z1, ¢’) are different. The latter is equivalent to
saying that z; is between Tr,z; and ¢’, i.e., |p(Tr,21,¢")| = |.0T1<C (zp)| + lp(z1, ),
and the claim follows. Oclaim

We are now ready to finish the proof of this lemma. We have already shown
that 7 is finite-to-one, so let ¥,” C Y, n > 1, be such that x — n(x) is n-to-one on
Y. Let R, = n(Y,’), and recall that R, C Y. The sets R, are pairwise disjoint. Let
dkn: Rn — Y, 1 <k < n,be Borel bijections that pick the kth point in the preimage:
Y, = IiL; ¢k,n(Ry). Note that the maps ¢, : R, — dx.»(R,) are measure-preserving,
since they belong to the pseudo full group of 7', and 3} _, | P1r, (i (x))| < B(x) for
all x € R, by Claim 3. One now has

/ P ] ) = /¢ ol 1o

n
"' ¢n.k are measure-preserving = / Z | PTx, (qb,;ln (x))] du(x)
Rn =1

. Claim 3 < /R B(x) du(x).

Summing these inequalities over n, we get

e @lanto =3 ] ol dunto

< i /R B0 du() < /Y B du(x),
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where the last inequality is based on the fact that the sets R,, are pairwise disjoint. This
finishes the proof of the inequality (8.2) as well as the lemma. ]

Several important facts follow easily from Lemma 8.3. For one, it implies that for
any cross-section C, the intermitted transformation Tg,, belongs to [R ~ X ;. In fact,
we have the following inequality on the norms.

Corollary 8.4. For any intermitted transformation Tg,, one has ||Tg. |1 < [IT||;.

Proof. By the definition of the set Y in Lemma 8.3, pr (x) =pr(x) forallx ¢7,

hence
/ o1, | dp = / loTr, | dpt + / loTr, | di
X X\Y Y
" Lemma 8.3 S/ Iprldu+/lprld#=/|pr|du,
X\Y Y X
which shows || Tg.[l1 < ||T]l;. n

Remark 8.5. As we discussed in Remark 8.2, the concept of an intermitted transfor-
mation applies more broadly than the case of one-dimensional flows. We mention,
however, that the analog of Lemma 8.3 and Corollary 8.4 does not hold even for free
measure-preserving R?>-flows. Consider an annulus depicted in Figure 8.2a and let T
be the rotation by an angle a around the center of this annulus. Let the equivalence
relation E consist of two classes, each composing half of the ring. For a point x such
that —-xETx, Tgx will be close to the other side of the class. It is easy to arrange the
parameters (the angle o and the radii of the annulus) so that || o7, (x)]| > ||pr(x)|| for
all x such that Tx # Tgx.

V4 :

|
|
TE)C !
1

() (b)

Figure 8.2. Construction of a conservative transformation 7 with ||Tgl|l; > ||T]|;.

Every free measure-preserving flow R? ~ X admits a tiling of its orbits by rect-
angles. The transformation 7 € [R?> ~ X can be defined similarly to Figure 8.2a
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on each rectangle of the tiling by splitting each tile into two equivalence classes as
in Figure 8.2b. The resulting transformation 7 will have bounded orbits and satisfy
ITell1 > ||T||1 relative to the equivalence relation E whose classes are the half tiles.

When the gaps in a cross-section C are large, x and Tx will often be R¢-equivalent,
and it is therefore natural to expect that T, will be close to T'. This intuition is indeed
valid, and the following approximation result is the most important consequence of
Lemma 8.3.

Lemma 8.6. Let T € [R ~ X | be a conservative transformation. For any € > 0,
there exists M such that for any cross-section C with gap,(c) > M for all c € C, one
has ||T o T7;C1||1 <e.

Proof. Let Ak = {x € X : |pr(x)| = K}, K € R=?, be the set of points whose cocycle
is at least K in absolute value. Since T € [R ~ X ], we may pick K > 1 so large that
/AK lor| du < €/4. Pick any real M such that 2K?/M < e/4. We claim that it satisfies
the conclusion of the lemma. To verify this, we pick a cross-section C with all gaps
having a size of at least M. Set as before Y = {x € X : Tx # Tg,x}. Since

|IT o T/l = /Y D(Tx, Tryx) dpu(x),

our task is to estimate this integral. This can be done in a rather crude way. We can
simply use the triangle inequality D (Tx, Tr,x) < |pr(x)| + | P, (x)], and deduce

[ ren due < [lpridu [ lprgldi<2 [ lorlda

where the last inequality is based on Lemma 8.3.

It remains to show that /Y lor| du < €/2. Let X = {c + [K, gapo(c) = K] :c e C}
be the region that leaves out intervals of length K on both sides of each point in C. Note
that for any x € X \ Ak one has xR¢Tx and thus Tg,x = Tx for such points. Therefore,
Y C Ak U Bk, where Bg = X \ ()?U Ak), and thus

/|PT|d,uS/|PT|dM+/|PT|d/1<€/4+K'2K/M<E/2- .
Y Ak Bk

Lemma 8.7. Let T € [R ~ X ]| be a conservative transformation. For any € > 0 there
exists a periodic transformation P € [T] such that |T o P™||; < e.

Proof. By Lemma 8.6, we can find a cocompact cross-section C such that ||T o qucl | <
€/2. Let M be an upper bound for gaps in C. Recall that the cocycle | PTx, (x)] is
uniformly bounded by M, and, in fact, the same is true for any element in the full group
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of Tg,. In particular, we may use Rokhlin’s lemma to find a periodic P € [Tg, ] such
that ||Tg, o P~'|| < €/2M, and conclude that ||Tg, o P~!||; < €/2. We therefore have

ITo Pl < IT o TRl lh + ITre 0 7M1 < €. =

Corollary 8.8. If T € [R ~ X is conservative, then T belongs to the derived L full
group D([R ~ X]1). In particular, its index satisfies I (T) = 0.

Proof. By Lemma 8.7, every conservative transformation 7 € [R ~ X1 lies in the
closed subgroup generated by the periodic elements. This subgroup is equal to the
derived L! full group D([R ~ X];) by Corollary 3.16. Since the range of T is abelian,
its kernel contains all commutators, and thus D([R ~ X];) C ker . ]



Chapter 9

Dissipative and monotone transformations

The previous chapter studied conservative transformations, whereas this one concen-
trates on dissipative ones. Our goal will be to show that any dissipative T € [R ~ X,
of index 7 (T) = 0 belongs to the derived subgroup D([R ~ X];). Recall that con-
versely, every element of the (topological) derived group D([R ~ X];) has index zero
since the index map is a continuous group homomorphism taking values in an abelian
topological group. We begin by describing some general aspects of the dynamics of
dissipative automorphisms.

Recall that according to Proposition 4.16, any transformation 7' € [R ~ X ] induces
a T-invariant partition of the phase space X = Cr U D such that T'|c,. is conservative
and T'|p, is dissipative. Formally speaking, a transformation is said to be dissipative
if the partition trivializes to D7 = X. For the purpose of this chapter, it is, however,
convenient to widen this notion just a bit by allowing T to have fixed points.

Definition 9.1. A transformation 7' € [R ~ X] is said to be dissipatively supported
if Dy = supp T, where D1 is the dissipative element of the Hopf decomposition for 7.

9.1 Orbit limits and monotone transformations

We begin by showing that the dynamics of dissipatively supported transformations in
L! full groups of R-flows is similar to those in L' full groups of Z-actions. We do so by
establishing an analog of R. M. Belinskaja’s result [8, Thm. 3.2]. Recall that a sequence
of reals is said to have an almost constant sign if all but finitely many elements of the
sequence have the same sign.

Proposition 9.2. Let S be a measure-preserving transformation of the real line that
commensurates the set R™. Suppose that S is dissipatively supported. Then for almost
all x € R, the sequence of reals (S*(x) — x)ren has an almost constant sign.

Proof. Let Q be the set of reals x such that the sequence (S*(x) — x)xen does not
have an almost constant sign. Assume, to the contrary, that Q has positive measure.
Since S is dissipative, we can find a Borel wandering set A € R for S that intersects
Q non-trivially. All the translates of Q’ = Q N A are disjoint, and for all x € Q’, the
sequence (S*(x) — x)xen does not have an almost constant sign.

Since S is dissipatively supported, for almost all x € Q’, the sequence of absolute
values (|S*(x)|)xen tends to +oo (see Proposition C.4). In particular, there are infinitely
many points y in the S-orbit of x such that y < 0 but S(y) > 0. Because the map
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Q’ x Z — R, which sends (x, k) to S¥(x), is measure-preserving, it follows that the
set of y < 0 such that S(y) > 0 has infinite measure. This contradicts the fact that S
commensurates the set R™. |

Corollary 9.3. LetT € [R ~ X be dissipatively supported. For almost all x € suppT,
the sequence (p(x,T*(x)))xen has an almost constant sign.

Proof. LetT € [R ~ X];. For all x € X, denote by T the measure-preserving trans-
formation of R induced by T on the R-orbit of x. By the proof of Proposition 6.8, the
integral

/X ARZ® & (T, (R2%))) du(x)

is finite. In particular, for almost every x € X, the transformation 7, commensurates
the set R=°. The conclusion now follows directly from the previous proposition.  m

For any dissipatively supported transformation in an L' full group of a free locally
compact Polish group action and for almost every x € X, p(x,T"x) — oo asn — oo, in
the sense that p(x,7"x) eventually escapes any compact subset of the acting group. In
the context of flows, Corollary 9.3 strengthens this statement and implies that p (x, 7" x)
must converge to either +oco or —co.

Corollary 9.4. If T € [R ~ X, is dissipatively supported, then for almost every
point x € supp T, either lim p(x,T"x) = +oc0 or lim p(x,T"x) = —co. [
n—oo n—oo

In view of this corollary, there is a canonical 7-invariant decomposition of supp T
into “positive” and “negative” orbits.

Definition 9.5. Let T € [R ~ X]; be a dissipatively supported automorphism. Its
support is partitioned into X LI X, where

X = {x €suppT : lim p(x,T"x) = +oo},

X = {x €suppT : lim p(x,T"x) = —00}.
n—oo

The set X is said to be positive evasive, and X is negative evasive.

According to Corollary 9.3, for almost every x € supp T, eventually either all T"x
are to the right of x or all are to the left of it. There are points x for which the adverb
“eventually” can, in fact, be dropped.

Corollary 9.6. Let T € [R ~ X be a dissipatively supported transformation, and

let
A={xeX:px,T"'x)>0foralln > 1},

A= {x e X: o(x,T"x) < Oforalln > 1}.

The set A = A Ul A is a complete section for T |supp -
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Proof. We need to show that almost every orbit of 7 intersects A. Let x € supp T and
suppose for definiteness that x € X. Since lim,_ p(x, T"x) = +co, we can define
no = max{n € N : p(x,T"x) < 0}, and then T"x € A. [

Definition 9.7. A dissipatively supported transformation 7’ € [R ~ X ]; is monotone
if p(x,Tx) > 0 for almost all x € X, and p(x,Tx) < O for almost all x € X.

Corollary 9.8. Let T € [R ~ X be a dissipatively supported transformation. There
is a complete section A C supp T and a periodic transformation P € [R ~ X |1 N [T]
such that T = P o T4 and Tx is monotone.

Proof. Take A to be as in Corollary 9.6 and note that P =T o Tgl is periodic and
satisfies the conclusions of the corollary. ]

As we discussed at the beginning of the chapter, our goal is to show that the kernel of
the index map coincides with the derived subgroup of [R ~ X ];. Note thatif T=P o Ty
is as above, then 7 (T) = I (T4 ), and coupled with the results of Chapter 8, it will suffice
to show that all monotone transformations of index zero belong to D([R ~ X];). This
will be the focus of the rest of this chapter and will take some effort to achieve, but the
main strategy is to show that such transformations can be approximated by periodic
transformations, which is the content of Theorem 9.16 below.

9.2 Arrival and departure sets

Throughout the rest of this chapter, we fix a cross-section C € X and a monotone
transformation T € [R ~ X];.

Let us recall a few definitions and facts from Section 1.2.4. The lacunarity of C
provides the gap function gap, : C — (0, +o0), and the induced map o¢ : C — C
taking ¢ to ¢ + gap(c), whose orbits are the intersections of the flow’s orbits with C.
We let AS be the Lebesgue measure on ¢ + [0, gap(c)) given by

A6(A) = A({r € [0, gape(c)) e+t € A}).

The measure u can be disintegrated as u(A) = /c A€ (A) dv(c) for some finite (but
not necessarily probability) measure v on C. Finally, we use the convenient notation
A(c)=AnN (c+[0,gapc(c)) = AN [c]g,. Note that 2. (A(c)) = AE (A) forall ¢ € C,
where A, denotes the Lebesgue measure on the whole orbit of c.

We now introduce some essential additional terminology concerning our fixed
monotone transformation 7 € [R ~ X ];. The arrival set A¢ is the set of the first
visitors to R¢ classes: A¢ = {x € suppT : -xR¢T~'x}. Analogously, the departure set
D¢ is defined tobe D¢ = {x € suppT : ~xRcTx}. We also let IZC denote Ac N X and
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NN NAT N NV NV
X € /TC T*x € 50'

T feW=4

Figure 9.1. Arrival and departure sets.

Kc =AcnN X; likewise for 50 and BC. Note that T(D¢) = Ac, and thus T~ (A¢) =
D . There is, however, another useful map from A¢ onto D.
We define the transfer value 7 : A¢c — N by the condition

te(x) =min{n >0:T"x € D¢}

and the transfer function 7 : A¢c — D¢ is defined to be ¢ (x) = 7%¢(X) x. Note that
T¢ 1s measure-preserving. The transfer value introduces a partition of the arrival set
Ac = Lnen A, where AY, = t&l (n). By applying the transfer function, we also obtain
a partition for the departure set: D¢ = | |, en D{:, Where DY, = 7¢(A7).

In plain words, #¢(x) + 1 is the number of points in [x]g, N [x] .. Therefore if
A¢ (AZ) 2 /lg(A’C’?) for some n > m then also ACC([A'CI,]RT) > AE([A’Z,’]QT) since

A8 ([ALry) = (n+ DA (AL) = (m + 1D)AE(AD) = AS([AL]R,).

In Sections 9.3 and 9.4, we modify the transformation 7 on the arrival and departure
sets, and we want to do this in a way that affects as many orbits as possible, as measured
by /lcc. This amounts to using sets A/, (and D) with as high values of n as possible.
The next lemma will be helpful in conducting such a selection in a measurable way
across all of ¢ € C.

Lemma9.9. Let A C X be ameasurable set with a measurable partition A= _|,, A,, and
let £ : C — R=0 be a measurable function such that &(c) < /lg (A) forall c € C. There
are measurable v : C — Nand r : C — R=0 such that for any ¢ € C for which &(c) > 0,
one has

AS(([ ] An) U (Avie) 0 (e + 0. 7(0)]))) = £(0). ©.1)

n>v(c)

Proof. For ¢ € C such that £(c) > 0, set

v(c) =min{n e N : /lcc(l_| Ar) < £(0)}.

k>n

Note that one necessarily has AS (A, (¢)) = &€(c) = AS (Upsy (o) An) > 0. Set

r(c) =min{a = 0: A5 (Ay(e) N (¢ +[0,a])) = £(c) — S ( |_| A}

n>v(c)
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These functions v and r satisfy the conclusions of the lemma. |

Remark 9.10. Note that Eq. (9.1) does not specify the functions v and r uniquely. For
instance, although /ICC(AV(C)) > 0, there might be 6 > 0 such that, for some ¢ € C,

A8(Ayey N (e +[r(e),r(c) +6])) = 0.

In this case, replacing r(c) with r(c¢) + 6 does not change the validity of Eq. (9.1).

Definition 9.11. Consider the partition of the positive arrival set /YC =11, Z’é and let

E:C— R0 r:C - R2% and v : C — N be as in Lemma 9.9. The set Zg defined
by the condition

As(e)=| | At(eyu (A A (¢ +[0,7(c)])) forallceC

n>v(c)

is said to be the positive £-copious arrival set. The positive £-copious departure
set is given by Dg = Tc(Ag). The definitions of the negative £-copious arrival and

L.« <n . .
departure sets use the partition A¢ = | |, A, of the negative arrival set and are
analogous.

Copious sets maximize the measure A¢ of their saturation under the action of 7.
In other words, among all subsets A’ C AC for which A¢(A’) = £(c), the measure
AS([A’]®,) is maximal when A’(c) = /Tg(c). In particular, if /lf(gg) is close to
AE(A’C), then we expect /lcc.([f_\)g]RT) to be close to AE([A)C]RT). The following
lemma quantifies this intuition.

Lemma 9.12. Let & : C — R>" be such that £(c) < AS (A¢) forall ¢ € C, and let A°,
be the &-copious arrival set constructed in Lemma 9.9. If there exists 1/2 > § > 0 such
that £(c) > (1 - 6)AS(Ac) forall ¢ € C, then

/lf()?) forall c € C,

AR\ AE@lgy) < 2

and therefore also p([Ac \ A5)g,) < 55 u(X).
An analogous statement is valid for the negative arrival set ZC.

Proof. Let v be as in Lemma 9.9 and note that

| | Ak ciboc || A

k>v(c) k>v(c)
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whenever ¢ € C satisfies £(¢) > 0. Recall that for x € Z’é we have xRoT* for all
0 < k < nand the sets T* (Z'é) are pairwise disjoint. In particular,

AEX) 2 28([| | AL(0)],) = (@) + DAS(| | Ak(0))

k2v(c) k2v(c)
> (v(e) + DAC(AY) = (v(e) + Dé (o). 9:2)

Note also that £(¢) = (1 — 6)/15(50) implies
A8 (A \ A) < £(0)s/(1 - 9). 9.3)
For any ¢ € C, we have

A8([Ac(e) \ AS()]gy) < AS({TFx 1 x € Ac(e) \ A5(c),0 < k < 7(c)})
< (¥(c) + DS (Ac \ A%)
(9.3) < (¥(c) + DE(c)5/(1 = 6)
7 (9.2) < A(X)5/(1 - 6).

The inequality for the measure u follows by disintegrating u into f c A(-)dv(c), as
discussed at the outset of this section.
The argument for the negative arrival set is completely analogous. ]

9.3 Coherent modifications

We remind the reader that our goal is to show that any dissipatively supported transforma-
tionT € [R ~ X]; ofindex 7 (T) = 0 can be approximated by periodic transformations.
One approach to “loop” the orbits of 7' is by mapping ﬁc(c) to ;lc(c) and f)c(c)
to /Tc(c) (cf. Figure 9.6). For such a modification to work, the measures Af(ﬁc(c))
and /ICC(;XC(C)) have to be equal. Recall that 7 (T') = 0 implies that for almost every
¢ € C, the measure of points x such that x < ¢ < Tx equals the measure of those y
for which Ty < ¢ < y. If one could guarantee that T(ﬁc(c)) = A)C(O'C (c)), then the
aforementioned modification would indeed work. In the case of Z-actions, the discrete-
ness of the acting group allows one to find a cross-section C for which this condition
does hold. For flows, however, we must deal with the possibility that T(l_jc (¢)) can be
“scattered” (see Figure 9.4) along the orbit and be unbounded, which is the key reason
for the increased complexity compared to the argument for Z-actions.

Since we cannot hope to “loop” all the orbits of 7', we will do the next best thing,
and apply the modification of Figure 9.6 on “most” orbits as measured by 1¢. Copious
sets discussed in Section 9.2 have large saturations under 7, but, generally speaking,
fail to satisfy T(ﬁg(c)) = Kg(ac(c)) for the same reason as do the sets 5C(c). Our
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strategy is to leverage the “e of room” provided by the difference 5@(6’) \ D_)g(c) to
transform T into 7’ that will retain the same arrival and departure sets as 7, while
additionally satisfying the condition T ’(5g(c)) = A'g(ac(c)). In this section, we
describe two abstract modifications of dissipatively supported transformations, and the
approximation strategy outlined above will later be implemented in Section 9.4.
Since we are about to consider arrival and departure sets of different transforma-
tions, we use the notation IZC [U] to denote the positive arrival set constructed for a
transformation U; likewise for negative arrival and departure sets, etc.

Lemma 9.13. Let ¢ and ¢’ be measure-preserving transformations on X subject to
the following conditions:

(1) supp(¢) < D¢, supp(¢’) € Ac;
(2) ¢(D¢) = De, ¢(Dc) = D, and ¢/ (Ac) = Ac, ¢ (Ac) = Ac;
3) xR¢ ¢(x) and x Re ¢’ (x) for all x € suppT.

The transformation Ux = ¢'T¢(x) is monotone, Ux = Tx for all x ¢ D¢, and the
sets D¢, Ac remain the same:

X[Ul=X X[U] =X,
DclU] = D¢ Dc[U] = De,
AclU] = Ac AclU] = Ac.

Moreover, the integral of lengths of “departing arcs” remains unchanged:
[ outau= [ tprlan.
and the following estimate on fX D(Tx,Ux) du(x) is available:

/ D(Tx, Ux) du(x) <2 / 17 ()] du ().
X De

Proof. Figure 9.2 illustrates the definition of the transformation U. The equality of the
arrival and departure sets is straightforward to verify. Note that ¢(D¢(c)) = D¢(c)
for all ¢ € C, and therefore ff)c p¢ du = 0. In fact, the following four integrals vanish:

[P¢ du=/«p¢ du =/JW d/~t=/~p¢f dp = 0. 9.4
DC DC AC AC

Observe that py; is positive on 50 and negative on 5(;; thus

lou| dp = [p¢rr¢ dp — /« Py Al
D¢ D¢

D¢
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X gz e mnnn
Dc(c) T Ac(oc(c))
oc(c)

Aco)  1beloe(e)

Figure 9.2. The transformation U = ¢’T ¢ defined in Lemma 9.13.

- cocycle identity =‘/Bp¢ du + /BpT(gb(x)) du(x) + /13p¢/ (Te(x)) du(x)

- /D Podu- /D PTG dix) - /D Por(T6() du(x)

=ﬁp¢du+/prdu+/p¢f du
D¢ D¢ Ac
—/«p¢dﬂ—/«prdu—/«p¢'dﬂ
D D¢ Ac

~ Eq. (9.4)=[prdu—[prd#=/Iprldu-
D¢ D¢ D¢

Finally, note that for any x € D ¢, the arc from x to Tx intersects the arc from T~ ¢’ T (x)
to ¢'T¢(x) (both arcs go over the same point of C), and therefore

D(Tx,Ux) < |pr(x)| + pr(T™'¢'Te(x))|.

Integration over D yields

/ D(Tx,Ux) du(x) = / D(Tx,Ux) du(x) < 2/ lor (x)] du(x). [
X D¢ D¢

Lemma 9.14. Let T € [R ~ X ]| be a monotone transformation. Let F C D ¢ be such
that /lf(ﬁ) = /lg(f’)for all ¢ € C, and the function C > ¢ — AS (F) is oc-invariant (i.e.,
AS(F) = /lf, (F) whenever ¢ and ¢’ belong to the same orbit of the flow). Let Z C A¢ be
the arrival subset that corresponds to F, i.e., Z =T(F). Let i : F— Zand 1/ F>Z
be any measure-preserving transformations such that y(x)Rex and ¥’ (x)Rex for
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all x in the corresponding domains. Define V : X — X by the following formula:

y(x) ifxeF,
Vx={y'(x) ifxeF,

Tx otherwise.

The transformation V is a measure-preserving automorphism from the full group
[R ~ X1, and Vx = Tx for all x ¢ F. The integral of distances D(Tx,Vx) can be
estimated as follows:

/ D(Tx, V) du(x) <2 / 17 ()] du ().
X De

The following figure illustrates the notions of Lemma 9.14.

T
B, F - N 2
X R ‘/
/
v/ ¢ Sy
< Y ‘..
X \“_\f‘f?ff . ///////:_/.
Z \/ F
T

Figure 9.3. The transformation V defined in Lemma 9.14.

Proof. 1t is straightforward to verify that V is a measure-preserving transformation.
For the integral inequality, note that for any x € F one has

D(Tx,Vx) < |pr(x)| + |pr(T™'x)|,

and therefore

[D(Tx,Vx)dﬂ(x)S [|pr|du+ / o7l du = / o7l du < / 7] du.
F F F F D¢

A similar inequality holds for /f? D(Tx,Vx) du, and the lemma follows. |

9.4 Periodic approximations

We now have all the ingredients necessary to prove that monotone transformations
can be approximated by periodic automorphisms. Our arguments follow the approach
outlined at the beginning of Section 9.3.



90 Dissipative and monotone transformations

In the following lemma, we assume that the Lebesgue measure of those x € X that
jump over any given ¢ € C is bounded from above by some (3, and that most of such
jumps — of measure at least y — are between adjacent R¢-classes. We are going to
construct a periodic approximation P of the transformation 7 with an explicit bound on
/X D (Tx, Px) du(x), which can be made small for a sufficiently sparse cross-section C.
When the flow is ergodic, this lemma alone suffices to conclude that 7 € D([R ~ X]1).
Theorem 9.16 builds upon Lemma 9.15 and treats the general case.

Lemma 9.15. Let T € [R ~ X ]| be a monotone transformation, let K > 0 be a
positive real, and let J = {x € suppT : |pr(x)| = K}. Let C be a cross-section such
that gap(c) > K forall c € C. Let 0 < 'y < f8 be reals such that for all ¢ € C:

A°({x € X 1 x < o¢(c) < Tx,TxR¢ ae(c)}) > v,
A({xeX :Tx <c <x,TxR¢ az'(©)}) > .
/lcc.({x eX:x< ocl(c) £Tx}) < B,
/lg({xej_(:Tx<ch})<ﬁ.

There exists a periodic transformation P € [R ~ X such that supp P C supp T and

@u(supp 7).

[ o paue <5 [ loridus [ loriaue
X Dc J

Proof. Let D¢ and A be the departure and arrival sets of 7. Figure 9.4 depicts the
arrival set Zc(c) and the departure set 5c(c) for an element ¢ of the cross-section
C. Note that the preimages 7! (A)C(c)) may come from different (possibly infinitely
many) Rc-equivalence classes; likewise, the images T(ﬁc(c)) of the departure set
may visit several R¢-equivalence classes.

X . ° voe oo \._/ Ry \./ .
— S~
Ac(c) Dc(e)

Figure 9.4. The arrival set ;{C(c) and the departure set l_jc(c) for some ¢ € C.

Set £(¢) = vy to be the constant function. In view of the assumptions on y, we may
apply Lemma 9.9 to get positive and negative £-copious arrival sets A g € Ac and ;\g -

Ac, as well as the corresponding departure sets Bg = TC(IZg) and 132 = TC(;\g). For
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the sets Ag = f_{g (W ;\g and Dg = 55, (W 52 we have /lg(Ag(c)) =2y = /lg(Dg(c))
forall c € C. Let

AL = {x € Xc T 'xRe a&l(nc(x))} U {x € }_XC T 'xRe O'C(nc(x))},

D¢ = {x € 130 TxRe O'C(ﬂc(x))} U {x € bc TxRe 0'51(7rc(x))},
be the set of arcs that jump from/to the next Rc-equivalence class. By the assumptions

of the lemma, we have ﬂg(ﬁ"c(c)) > vy and AE(AE(C)) >y forall c € C. Let ¢ be
any measure-preserving transformation such that:

* ¢ is supported on Dg;
* ¢(D¢) = Dcand ¢(De) = De;
e ¢p(x)Rexforallx € X;
and moreover
¢(D%) € D. 9.5)
Select a transformation ¢’ such that
* ¢ is supported on Ac;
« ¢'(Ac) =Acand ¢/ (Ac) = Ac:
e ¢'(x)Rexforallx € X;
and moreover

¢ (T 0 p(DY)) = A, (9:6)

Figure 9.5 illustrates these maps. Note that while in general 7¢ (A"’ (c)) # D° (¢), one
has 7¢ (IKE () = D¢ (¢) for all ¢ € C by the definition of the £-copious departure set.

- TC -
Ag(e) De(o)
X errrrrrirrin e nma G555 s 00, LR
~_ 7 ~- _/¢’ 1A N ¢
S S
A%(c) Di(c)

Figure 9.5. Automorphism ¢ maps Dg(c) into D, (c) and (¢")~! sends Ag(c) into AZ.(c).

Let U be the transformation obtained by applying Lemma 9.13 to T, ¢, and ¢’.
The automorphism U satisfies U(ﬁg(c)) = Ag(ac(c)) and U(Eg(c)) = ;\g(a&l ()
for all ¢ € C. Choose a measure-preserving transformation ¢ : 132: - ;&g such that
xR ¥ (x) for all x in the domain of y. Set " = Tal oy~lo 751 : bg - A)é Let V be
the transformation produced by Lemma 9.14 applied to U, ¢, and ¢’ (see Figure 9.6).
Finally, set P : X — X to be
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— —
N /\ /\ /\
X ,,,,,,,, RAARA OSSN 4444444444444.@3 23003300
Aoy -1 -1 -1 !
= o [} !
3 c :zp T 7/ T (ﬁv
X ° 207 °

<& TC <&
Dc(C) Ac(C)

Figure 9.6. Construction of the automorphism V from U, ¥, and y’.

b |V ifxe [DElgy
X otherwise.

We claim that P satisfies the conclusions of the lemma. It is periodic, since the trans-
formation ¥’ o ¢ o ¥ o ¢ is the identity map, and supp P C supp T by construction.
It remains to estimate fX D(Tx, Px) du(x).

/ D(Tx, Px) du(x) < / D(Tx,Ux) du(x) + / D(Ux, Vx) du(x)
X X X
+ / D(Vx, Px) du(x)
b'¢
< [Estimates of Lemma 9.13 and Lemma 9.14]

<4 |pT|du+/D(Vx,Px)du(x).
D¢ b'¢

We concentrate on estimating fX D(Vx, Px) du(x). Recall that Tx = Ux = Vx for all

x ¢ D¢; hence, pr(x) = py(x) forx ¢ D¢. Set ¥ = ()? U )?) \ [Dé]r}zv and note that
Vx = Ux for x € W. Therefore, using the conclusion of Lemma 9.13, we have

/ |Pv|d/l=/ |pU|dus/ |pU|dﬂ:/ prlde.  ©.7)
Dcﬂ\y Dcﬂ\y D¢ D¢

The integral fX D (Vx, Px) du(x) can now be estimated as follows.
[ o P du = [ lpvian
b'¢ v

s/ |,0v|d/l+/ vl du
Y\D¢ Dcn¥

" Tx=Vxforx ¢ D¢ and Eq. (9.7) < / loT| du +/ lor| du.
D¢ D¢

\
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Finally, we consider the integral fw\DC |or| du and partition its domain ¥ \ D¢ as
UINWP\De)U((W\ Dc)\J), which yields

/ |pT|dus/|pT|du+Ku<lP>
W\De J
K —
< /J lpr| dia+ #u(suppn,

where the last inequality follows from Lemma 9.12 with 6 = 1 — y/B. Combining all
the inequalities together, we get

/ D(Tx, Px) du(x) < 5 / o7l du + / lorldu + u(suppT).  m
X De J

K(B-7v)
Y
Lemma 9.15 allows us to approximate, with a periodic transformation, a monotone

T for which the Lebesgue measure of points jumping over any given ¢ € X is roughly

constant across orbits. To deal with the general case, we simply need to split the phase

space X into countably many segments that are invariant under the flow and apply

Lemma 9.15 on each of them separately. Small care needs to be taken to ensure that the

values (8 — )/, which appear in the formulation of Lemma 9.15, remain uniformly

small across the partition of X. Details are presented in the following theorem. Let us
recall that 4. denotes the Lebesgue measure on the entire orbit of ¢, as discussed in

Section 4.2 (the measure /lcc, which we have used throughout this chapter, corresponds

to the Lebesgue measure restricted to the interval ¢ + [0, gap,(c)) ).

Theorem 9.16. Let T € [R ~ X]| be a monotone transformation that belongs to
the kernel of the index map. For any € > 0, there exists a periodic transformation
P € [R ~ X such that supp P C supp T and fX D(Tx, Px) du(x) < €.

Proof. Without loss of generality, we assume € < 1. Let K¢ > 1 be such that for the set
Je={xesuppT : |pr(x)| = K¢}
one has /JE lor| du < €/18. Pick a cross-section C with gaps so large that
2K§/gapc(c) < €/15
for all ¢ € C, which ensures
Ke-u(Dg\Je) < €/15. 9.8)

Note also that Eq. (9.8) holds for any cross-section C’ C C, since D¢ € D¢ and
gape:(c) > gapp(c) forallc € C'.
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For any positive real & > 0, the positive real 6 (@) = ea/(5 - 3K ) satisfies 6 () < @
and 26(a)/(a — 6(@)) < €/3K .. We may therefore pick countably many positive reals
an > 0,6, >0,n>1,suchthat R>° = | J, (a,, — 6,/2, ap, +6,/2) and

(anzf”én) < 316(6 Vi > 1. 9.9)

Define intervals I, = (@, — 6,,/2, @y + 0, /2), n > 1.
Let / : C — R=Y be the map that measures the set of forward arcs over its argument:

L(e) = ({xe X :x <c <Tx}).

Our assumption that 7" lies in the kernel of the index map implies that £ also measures the
set of backward arcs over its argument. Specifically, by Eq. (6.3) from Proposition 6.6,
after discarding an invariant null set, we have for every c € C,

Ac({x esuppT :x <c <Tx}) =A.({x € suppT : Tx < ¢ < x}).

Set C1 = ¢~1(1y) and construct inductively C, = 7' (1,) \ [Uk<n Ck] &> Where R
denotes the orbit equivalence relation induced by the flow R ~ X. The sets C, are
pairwise disjoint, and moreover, (ci,c2) € Rforall c; € Cy,, ¢2 € Cy,, 11 # no. Let
Xn : Cq — N, n > 1, be the function defined by

xn(€) :min{m eN:
Ac({x € X:x<c<Tx,D(x,c) <m,D(Tx,c) < m}) > ¢(c) = 6n/2
and . ({x € X:Tx<c<x,D(x,c) <m,D(Tx,c) < m}) > (c) —6n/2}.

SetC, | = x; (1) and define inductively Com= x H(m)\ [Uk<m C;L,k]yz' Let X, m
denote the saturated set [C}, ,,,| . Finally, for all m,n > 1, let G, ,» € C,, ,, be a sub-
section satisfying gap, ~(c) > m for all ¢ € G .. The sets Cy, i and Xy, satisfy the
following conditions: ’

(1) Cy,m 1s a cross-section for the restriction of the flow onto X, ,,,;
(2) the sets X, ,,, m,n > 1, are pairwise disjoint.
(3) ¢(c) € I, and, for all ¢ € C,_;, we have

/lg"""({x eX:x< ¢y () <Tx}) > @y — 6, and

ﬂg"‘m({x eX:Tx<c< x}) > ay = 6p.
Let T, ,, denote the restriction of T onto X, ,,,. Apply Lemma 9.15 to the transforma-

tion 7;, ,, cross-section C,,_,, with gaps of size at least K¢, and 8=, + 65,y =@y — Op-
Let P, be the resulting periodic transformation on X, . Set P = | |, ,,, P . We
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claim that P satisfies the conclusions of the theorem. Set C” = [ |,, ,,, Cyr,m and note that
C’ € C, whence D¢ € D . We can now split the integral fX D(Tx, Px) du(x) as:

/X D(Tx, Px) du(x) = ; /X 5 D(Tyy X, Ppx) du(x).

Applying Lemma 9.15, we obtain the following chain of inequalities:

D(Tx, Px) du(x) < 5 / lor] du + / o7l du
‘/X n’Zn:'l DCn,m nz’n;l Jemxn,m
20,
+ ;KG (an _ 6n):u(Xn,m)

“EBq.(9.9) <5 /

D¢

< 5/ |pT|dﬂ+6/ ol du + /3
DC\JE JE

"+ choice of Ko < 5K u(De \Je) +€/3+¢€/3
. Eq. (9.8) <,

lor] du + /J Lol du + (e/3)u(X)

and the theorem follows. [ ]

Corollary 9.17. Let R ~ X be a measure-preserving flow and T € [R ~ X ]| be a
dissipatively supported transformation. If I (T) =0, then T € D([R ~ X]y).

Proof. By Corollary 9.8, there is a monotone transformation U and a periodic transfor-
mation P such that T = U o P. Since P € D([R ~ X]) by Corollary 3.16, it remains
to show that U belongs to the derived subgroup. The latter follows from Theorem 9.16,
since 7 (U)=1(T)-I(P)=0. [






Chapter 10

Conclusions

Our objective in this last chapter is to draw several conclusions regarding the structure
of the L! full groups of measure-preserving flows. The analysis conducted in Chapters 8
and 9 leads to the most technically challenging result of our work, which is the following
theorem.

Theorem 10.1. Let ¥ : R ~ X be a free measure-preserving flow on a standard
probability space. The kernel of the index map coincides with the derived subgroup
DUAF ).

Proof. The inclusion D([F ]1) C ker ] is automatic since the image of I is abelian. For
the other direction, pick a transformation 7" € ker 7 and consider its Hopf decomposition
X = C U D provided by Proposition 4.16. We have T = T¢ o Tp, where T¢ € [F]1 is
conservative and Tp € [F]; is dissipatively supported. According to Corollary 8.8,
I(Tc) =0and T¢c € D([F ]1), whence I (Tp) = I(T) — I (T¢) = 0. Therefore, the
dissipative part Tp satisfies the assumptions of Corollary 9.17, which yields Tp €
D([F]1), and hence T € D([F ]1) as desired. n

10.1 Topological ranks of L! full groups

Empowered with the result above and Theorem 5.19, we can estimate the topological
ranks of L! full groups of flows. We recall the following well-known inequalities.

Proposition 10.2. Let ¢ : G — H be a surjective continuous homomorphism of Polish
groups. The topological rank 1k(G) satisfies

rk(H) < rk(G) < tk(H) + rk(ker ¢).

Proposition 10.3. Let ¥ : R ~ X be a free measure-preserving flow on a standard
probability space (X, u). The topological rank tk([F |1) is finite if and only if the
flow has finitely many ergodic components. Moreover, if ¥ has exactly n ergodic
components, then

n+1 <rtk([F]1) <n+3.

Proof. Let & be the space of probability invariant ergodic measures of the flow, and
let p be the probability measure on & such that u = fs vdp(v) (see Appendix E.1).
Proposition 6.6 shows that the index map 7 : [F]; — L'(&, p) is continuous and
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surjective. An application of Proposition 10.2 yields
tk(LY(&, p)) < tk([F11) < tk(LY(E, p)) +rk(ker I) = k(L' (&, p)) +2, (10.1)

where the last equality is based on Theorem 10.1 and Theorem 5.19. Since L! (&, p)
is a Banach space, its topological rank is finite if and only if its dimension is finite,
which is equivalent to (&, p) being purely atomic with finitely many atoms. We have
shown that rk([¥];) is finite if and only if the flow has only finitely many ergodic
components. The moreover part of the proposition follows from the inequality (10.1)
and the observation that k(L' (&, p)) = dim(L' (&, p)) + 1. ]

As already mentioned in the introduction, we conjecture that the topological rank
completely remembers the number of ergodic components.

Conjecture 10.4. Let F be a free measure-preserving flow. If it has exactly n ergodic
components, then tk([F]1) =n+ 1.

Provided the conjecture holds, we have a priori no way of distinguishing L' full
groups of ergodic flows as topological groups. For Z-actions, it is a consequence of
Belinskaja’s theorem that there are many L! full groups. The following two sections
explore analogues of her result for flows, demonstrating the existence of numerous
L! full groups associated with free ergodic flows. While we currently lack a concrete
method to distinguish these groups, their geometric properties—discussed in the final
section—may provide valuable insights in this direction.

10.2 Katznelson’s conjugation theorem

R. M. Belinskaja [8] showed that if measure-preserving transformations 7', U € Aut(X, u)
generate the same orbit equivalence relation, i.e., R = Ry, and U € [T']y, then T and
U are conjugated. Y. Katznelson found a different argument and isolated a sufficient
condition for the conjugacy of measure-preserving transformations (see [10, Theo-
rem A.1]). In the following, for T € Aut(X, u), x € X, and A C Z, we let T4x denote
the set {T*x : k € A}.

Theorem 10.5 (Katznelson). Suppose T,U € Aut(X, u) are measure-preserving trans-
Jformations that generate the same orbit equivalence relation, Rt = Ry. If the symmetric
difference TNx A UNx is finite for almost all x, then T and U are conjugated by an
element from the full group [T] = [U].

The analog of this result for free measure-preserving flows will be proved shortly
in Theorem 10.9. But first, we discuss an important application of Theorem 10.5.
Consider a free measure-preserving flow 7 : R ~ X. Given a dissipatively supported
transformation 7 € [ ] (in the sense of Definition 9.1), Proposition C.4 implies that
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almost every non-trivial T-orbit [x]g, is a discrete subset of [x]g unbounded both
from below and from above. The order induced on [x]g, by the flow may disagree
with the T-order of points. One may therefore define the ¥ -reordering of 7' to be the
first return transformation 7" induced by the ordering of the flow on the orbits of T":

Tx=x+min{r >0:x+r € [x]g,} for x € suppT.

Note that T and T generate the same orbit equivalence relation, Ry = Ry.

If T belongs to the L' full group of the flow, either 7%x A TNx or TVx A T Nx is
finite, depending on whether lim,, p(x, 7"x) = +o0 or lim,, p(x,T"x) = —oo (cf. Corol-
lary 9.4). Which symmetric difference is finite may depend on the point x € X, and
Theorem 10.5 can be used to show that T and its reordering T are flip-conjugate.

Definition 10.6. Let (X, u;) and (X3, up) be standard probability spaces, and let
T; € Aut(X;, u;), i = 1, 2. Measure-preserving transformations 77 and 75 are flip-
conjugate if there exist an isomorphism of measure spaces S : X; — X, and measurable
partitions X1 = X, U X{, Xo = X; U XJ such that

(1) S(X;) =X; and S(X{) = XJ;

@ X7, X1+ are Ty-invariant, and X, X; are T»-invariant;

(3) STy Ixr S™' =T Ixr and STy Ix; S™' =T Iy,

Note that when one of the 7;’s is ergodic, our definition of flip-conjugacy coincides
with the standard one, which requires X or X7 to have full measure.

Proposition 10.7. Any dissipatively supported T € [F |1 and its F-reordering T are
flip-conjugated by an element from the full group [T = [T].

Proof. Consider the decomposition supp T = X U X into the positive and negative

orbits as in Definition 9.5. In particular, TNxATNx and TNxAT Nx are finite for x € X

and x € X, respectively. Theorem 10.5 implies that there exist automorphisms S| €
-1 _ -1 _ -1

[T T;] and S5 e [T T'¢ ] such that $iT 13 ST =T [y and SoT r)«( §' =T T;}-

The transformation S given by

Six ifxeX,
Sx =14 Syx ifxeX,
X otherwise
belongs to the full group 7] and witnesses the flip-conjugacy of 7 and 7. |

The transformation conjugating 7 and U in Theorem 10.5 can be written fairly
explicitly. This is done in terms of the function § defined as follows. Suppose (Q, 1)
is a (possibly infinite) measure space, and let A, B C Q be measurable sets such that
A(A A B) < +co. We set §(A, B) = A(A\ B) — A(B \ A). This function satisfies a few
properties which the reader can easily verify.
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Proposition 10.8. Suppose (Q, ) is a measure space. For all A, B,C,a C Q such
that A(A A B),A(B A C),A(A A C), A(a) < +oo, the following holds:

(1) 6(A,C) = (A, B) +8(B, C);
(2) §(A,A) =0and 5(A, B) = —5(B, A);
(3) 8(A A a,B) =6(A, B) + (A(a) — 2A(a N A)).

Any orbit of a measure-preserving transformation can be endowed with a counting
measure. Given T and U as in the statement of Theorem 10.5, set 7(x) = §(UNx, T"x)
and define Sx = U™ x. One can verify that § € [U] = [T] and STS™! = U (further
details can be found in [10, Theorem A.1]).

Let now ¥ and 7, be measure-preserving flows on a standard probability space
(X, n); we denote the actions of r € R upon x € X by x +; r and x +; r, respectively.
Suppose that their full groups coincide, [F]] = [#2 ], and so the flows share the same
orbits, R7 = Ry;. Forx € X, let s;(x) =x +; [0, 00),i = 1,2, denote the “right half-orbit”
of x. A natural analog of the condition |[T"x A UNx| < oo from Theorem 10.5 would
be to require finiteness of the Lebesgue measure of s;(x) A s2(x) for all x € X. This
condition alone, however, is not sufficient for the conjugacy of #; and %>.

Each flow induces a copy of the Lebesgue measure onto orbits via

Aix(A)=A{r eR:x+;r € A}).

Since we assume [F7] = [#2], and so 7, C [F7 ], 41 x is a translation invariant measure
relative to the action of %, and therefore must differ from A, , by a constant: there is
an orbit invariant measurable function ¢ : X — R>° such that A2.x = c(x)A1 x. Any
element in [F] ] = [F2] preserves A; x, i = 1,2, and therefore cannot conjugate ¥ into
¥, unless c(x) is constantly equal to 1.

When the flows are ergodic, ¢(x) = ¢ is a constant, and one may renormalize
the flows without changing the full groups. Let ;' be the rescaling of %, given by
X+, r = x + cr. Itis straightforward to check that /llz,x(A) =c 1. (A) = 21, (A),
and the flows ¥ and 7—”2’ induce the same measure onto orbits.

After this renormalization, the finiteness of the measure s (x) A sp(x) forall x € X
is indeed sufficient to establish the conjugacy of the flows.

Theorem 10.9. Let 7, i = 1,2, be free measure-preserving flows that share the
same orbits, Ry, = Ry, and induce the same measures (Ax)xex onto orbits. If
Ax(s1(x) A 52(x)) < 400, x € X, then the flows are conjugate by a measure-preserving
transformation S € [F7 ].

Proof. Letn : X X R — R be the ¥, F>-cocycle defined by x +, r = x +; n(x, r). Since
F1 and %, induce the same measure on the orbits, n(x, ) : R — R is a Lebesgue
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measure-preserving automorphism:

An(x,A)) = x({x +1 n(x,r) : r € A})
=l x({x+2r:reA}) =2A).

Forx € X and r € RU {400} let

x+; [0,r) ifr >0,
si,r(x) =
x+; [r,0) ifr <0.

In particular, 5;(x) = 5; +00(x). Note that

s1(x+27) = 51(X) A St n(x,r)(X),

s2(x +27) = 52(x) A 52,7 (%). (10.2)

Also, considering the cases r < 0 and » > 0 separately, one can easily verify that for
alreRandi=1,2

Ai,x(si,r (X)) - Zﬁi,x(SZ(x) N SZ,r(x)) =-r.
and, in particular,

/ll,x(sl,n(x,r) (x)) — 2/ll,x(sl (x) N S1,n(x,r) (x)) = -n(x,r),
/12,x(52,r(x)) - 2/12,x(52(x) N SZ,r(x)) =-r. (10.3)

Put 7(x) = 6(s1(x), s2(x)), then

T(x+27r) =0(s1(x +27), 52(x +2 7))
" Eq. (10.2) = 6(51(x) A St n(x,r)(X), 52(x +27))
" Prop. 10.8 = 6(s1(x), s2(x +2 1))+
A1 x(S1n(xr) (%)) = 241 x (51(X) NS p(x,r) (X))
 Eq. (10.3) = 6(s1(x), s2(x +2 7)) — n(x,r)
" Prop. 10.8 = =6(s2(x +2 1), 51(x)) —n(x,r) = 6(s1(x),s2(x +2r))—
(A2,x (52,7 (%)) = 222, x(s2(x) N 52,7 (x))) — n(x,7)
 Eq. (10.3) = 6(s1(x), s2(x)) —n(x,r) +r. (10.4)

The required transformation S : X — X is given by Sx = x +; 7(x).

Sx+rr)=(x+r)+ 7(x+27r) = (x+n(x, 7))+ T(x +27)
Eq. (104) =x+; (n(x,r) +7(x) —n(x,r)+r) = Sx+ r.
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Thus S conjugates 71 and %> . It therefore remains to check that S is a measure-preserving
bijection. First, note that Sx satisfies §(s1(Sx), s2(x)) = 0. Indeed, s, (Sx) = s1(x) A
S51,7(x) (x) (by the analog of Eq. (10.2)), and therefore

6(s1(Sx),s2(x))=7(x) —1(x) =0 (10.5)

by Proposition 10.8.
To show injectivity, suppose that Sx = S'y. In view of Eq. (10.5) and Proposition 10.8,

6(52(x), 52(y)) = 6(52(x), 51(8x)) +6(51(Sy). 52(y)) = 0.

However, if y = x +2 r, then s2(y) = s2(x) A s2,-(x) and so 6(s2(x), s2(y)) =r. One
concludes that r = 0 and x = y. We have already established that S(x +, r) = Sx +; r,
which shows that the range of S is orbit invariant, yielding surjectivity.

Finally, to show that S is measure-preserving, it suffices to check that S preserves
the Lebesgue measure 4 , = A2  on all the orbits. To this end, let n’ : X X R — R be
the #F1-cocycle (i.e., x +1 r = x +2 n’(x,r)). For all ¥’ € R, one has

A (Ss1,r (X)) = A x({y +17(y) 1y € 51,7 (%)})
= {x+r)+17(x+17):0<r<r'})
=A{r+(t(x)—r+n'(x,r)):0<r<r'})
=A({n'(x,r) : 0<r <r'}) =20 (x,[0,7))) = 1.

Hence, S € Aut(X, p) is the required conjugation between 7 and 7. u

In the Z case, the above result is the key to Belinskaja’s flip-conjugacy result for
L! orbit equivalence. Unfortunately, we do not know if it can be useful for proving an
analogous result for flows. In the next section, we nevertheless obtain a weaker result
that shows there are many L! full groups. We leave the following question open.

Question 10.10. Given two ergodic flows with equal L' full groups, does there exist a
rescaling under which they satisfy the hypothesis of the above theorem?

10.3 L! orbit equivalence implies flip Kakutani equivalence

A measure-preserving action of a compactly generated locally compact Polish group
can always be twisted by a continuous automorphism of the group without affecting
the L! full group.

In the case of Z-actions, this takes a particularly simple form since the only
non-trivial automorphism of Z is given by n +— —n. It follows from the results of
R. M. Belinskaja [8] that this is, up to conjugacy, the only way to get an L! orbit
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equivalence for ergodic Z-actions [40, Theorem 4.2]: if 77, T, are two ergodic measure-
preserving transformations that are L! orbit equivalent, then they are flip-conjugate: T}
is conjugate to either 75 or 7, !

As mentioned before, we do not know whether a variant of such rigidity holds when
we replace Z by R (see Question 10.17 below), but, as shown in Theorem 10.15, L!
orbit equivalent free measure-preserving flows must at least be flip Kakutani equivalent.
In particular, there are uncountably many L' full groups of free ergodic flows up to
abstract group isomorphism.

Let us first define the notion of (flip) Kakutani equivalence of flows. For the main
results about this concept, the reader may consult [28,29], where it is called monotone
equivalence of flows. Given a measure-preserving automorphism 7 € Aut(Z, v) and
a positive integrable function f € L!(Z, v), one can define the so-called suspension
flow or flow under a function on the space

X={(z,t):z€Z, 0<t< f(2)}.

For r > 0, the action (z,?) + r is given by
k-1 .
(z,t)+r = (Tkz,t+ r— Z f(T’z)),
i=0

where k > 0 is defined uniquely by the condition X% ' £(T'z) < t+r < Xk f(T'2);
similarly, for » < 0O the action is

k
(z,t)+r= (T_kz,t+r + Zf(T_iz)),
i=1

k .

where k > 0 satisfies 0 < 7 +7+ Y f(T7'z) < f(T~¥z). Such a flow preserves the
i=1

restriction onto X of the product measure v X A. The space (X, i), where

_ yX A
/Zfdv

is a standard probability space. The automorphism 7 in the suspension flow construction
is called the base automorphism.

u I'x,

Definition 10.11. Two flows are flip Kakutani equivalent if they are isomorphic to
suspension flows over flip-conjugate base automorphisms.

It is important to note that the construction of suspension flows can be reversed
through the use of cross-sections'. Given a free flow on (X, ) and a cocompact U-

In full generality, the definition of a cross-section should actually be relaxed, replacing
lacunarity with discreteness in each orbit, and only requiring the gap function of the cross-section
to be integrable.
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lacunary cross-section C C X for a precompact neighborhood of the identity U C G,
there is a unique finite measure v on C such that the map U x C — C + U C X taking
(t,¢) to ¢ + ¢ is measure-preserving (see [37, Prop. 4.3] for the general construction).
The first-return map o¢ : C — C is measure-preserving, and our initial flow can be
seen as the flow built under the gap function gap, with the base transformation o.

We require the following key result, established by D. Rudolph [54]. In light of the
preceding discussion, it can be restated as follows: every free measure-preserving flow
is conjugate to a suspension flow with a two-valued function.

Theorem 10.12 (Rudolph). Let tg € R>%\ Q be a positive irrational number. Any free
measure-preserving flow on a standard probability space admits a cross-section whose
gap function takes only the values 1 and to almost surely.

Remark 10.13. The second-named author has obtained a generalization of this result
in the purely Borel context; see [57].

Theorem 10.14. Let 7, F' be free measure-preserving flows on (X, u) that share
the same orbits, namely Ry = Ry If F' < [F 11, then F and F' are flip Kakutani
equivalent.

Proof. We denote the flow # using our usual notation, (x,f) — x + ¢. As explained
right after Definition 10.11, it suffices to find cross-sections for ¥ and 7 such that the
corresponding first return automorphisms are flip-conjugate.

Fix some irrational 7y > 1, and let C C X be a Borel cross-section for # such
that, outside a Borel ¥ -invariant null set, we have gap,(c) € {1,10} forall ¢ € C, as
provided by Theorem 10.12. Define the automorphism 7 : X — X by

T {O'C(c)+a/ ifx=c+aforsomeceC,ac[0,1],
X =

X otherwise.

The transformation 7 is obtained by gluing together the identity map, x — x + 1, and
X — x + to. Since all these belong to [¥ |1, which is finitely full, we have T € [F ],
as well. Note that T is dissipatively supported and is therefore flip-conjugate to its
F-reordering T by Proposition 10.7. In other words, there is a T-invariant Borel set
Z C X of full measure, u(Z) = 1, and a T-invariant Borel partition Z = Z* LI Z~ such
that 7' [z+ is conjugate to T tzeand T 4 is conjugate to 711,

Let v be the measure on C given for a Borel A C C by v(A) = u(A + [0, 1)). The
measure 4 ['c+[o,1) is naturally isomorphic to (v X A) T'c4[0,1), Where A is the Lebesgue
measure on [0, 1], and we therefore have

Ve, 1) eCx[0,1) c+acZ.
By Fubini’s theorem, this is equivalent to

Via e [0,1)VceC (c+aeZ).
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Therefore, there exists some ag € [0, 1) such that v({c € C : ¢ + a9 € Z}) = 1. Note
that T [ ¢4 1S the first return map on C + ay in the order of the flow ¥, whereas
T I C+ap 18 the first return map in the order induced on the orbits by #. Since T' [ ¢+q,
and T I c+ay are flip-conjugate, the flows are flip Kakutani equivalent. u

Theorem 10.14 has the following straightforward consequences.

Corollary 10.15. If two free ergodic measure-preserving flows are L' orbit equivalent,
then they are also flip Kakutani equivalent.

Proof. This now follows from the definition of L! orbit equivalence, see Definition 4.19
and the paragraph thereafter. u

Corollary 10.16. If two free ergodic measure-preserving flows have abstractly iso-
morphic L full groups, then they are also flip Kakutani equivalent.

Proof. We have seen in Proposition 4.21 that the isomorphism of L! full groups of
ergodic flows implies L! orbit equivalence, so the result follows from the previous
corollary. ]

Kakutani equivalence is a highly non-trivial equivalence relation (see [49] or [21,
36]). It seems likely, however, that L! full groups of flows contain even more information
about the action. The only continuous automorphisms of R are multiplications by
nonzero scalars, and we ask whether the isomorphism of L! full groups necessarily
recovers the action up to such an automorphism.

Question 10.17. Let F| and 7, be free ergodic measure-preserving flows with isomor-
phic L full groups. Is it true that there exists a € R* such that F; and F> o m, are
isomorphic, where m ,, denotes the multiplication by a?

Note that a positive answer to Question 10.10 would imply a positive answer to the
above question.

10.4 Maximality of the L! norm and geometry

In this last section, we show that the L' norm is maximal on L! full groups of flows.
In particular, it defines their quasi-isometry type. Exploring this quasi-isometry type
further might lead to topological group invariants capable of distinguishing some
ergodic flows.

Theorem 10.18. Let F be a free measure-preserving flow. The L' norm on [F ], is
maximal.
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Proof. We have already shown that the L! norm on the derived L' full group is maximal
(see Theorem 5.5). Denote by (&, p) the space of ¥ -invariant ergodic probability
measures, where p is the probability measure arising from the disintegration of p,
which we write as x > v, (see Section E.1). The derived L! full group is equal to the
kernel of the surjective index map 7 : [F]; — L!(&, p,R) and the quotient norm on
[F11/ker I is equal to the L! norm on L' (&, p,R) by Proposition 6.7. The latter norm
is maximal, as is the case for any Banach space norm.

Given a function f € L1(&, p,R), let Ur € [Flibegivenby Ur(x) =x+ f(vy).
The cocycle py, (x) = f(vx) is constant on each ergodic component and ||U|[1 = || 1|1
Furthermore, 7 (Uy) = f. We show that || - || is both large-scale geodesic and coarsely
proper (see Appendix A.2 and Proposition A.10, in particular).

Any T € [F]1 can be written as T = (TU}%T))U](T), where the transformation
TU}%T) ekerZ =D([F ]1),and Uz (r)ll1 < |71 In particular, we have ||TU};T) lh <
20Tl

Since the L' norm is maximal on D([F];), it is large-scale geodesic. In fact,
Proposition 3.25 establishes that it is large-scale geodesic with constant K = 2. We
may therefore express TU7!. . as a product V; - - - V,, of elements V; € D([F ];), where

I(T)
each V; has norm at most K and

n
DUVilly < KITUZ {1 < 2K(T).
i=1

The transformation Uz (7) can, for any m > 1, also be expressed as a product
Urery =Urrym - Uraym = UTer) jm-

By taking m sufficiently large, we can ensure that ||Uz7)/mlli = |Z(T)/m|; < K.
Therefore, T = (Vi ---V,))(Uzr(rym - - - Ur(r)/m), and

n m
Sills + YUz mll < 2KITI + 10zl < 3KIT ]
i=1 j=1
We conclude that the norm || - || on [F]; is large-scale geodesic with K’ = 3K = 6.
It remains to prove coarse properness. Let € > 0 and R > 0 be positive reals. By
Theorem 5.5, there exists n € N so large that every element in the derived L! full group
of norm at most 2R is a product of n elements of norm at most €. Let N be any integer
greater than R/e. We argue that every element of [ ]; of norm at most R is a product
of 2n + N elements of norm at most €.
Indeed, if T = (TU}%T))UI(T) has norm at most R, then

ITUZ (7l < 21Tl < 2R,
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and TU; %T) can therefore by written as a product of n elements of D([F ;) each of
norm < €. Moreover, Ur(r) = U}V(T)/N and ||Uz(ry/nl1 < € by the choice of N. The
conclusion follows. u

Remark 10.19. While the proposition above states that L! full groups of flows are quite
large, one can use Proposition 6.8 to show that they satisfy the Haagerup property.
In other words, such groups admit a coarsely proper affine action on a Hilbert space
(namely, the affine Hilbert space yg=0 + L?(R, M)).

Corollary 10.16 along with [49, Sec. 12] implies that there are uncountably many
L! full groups of ergodic free flows up to topological group isomorphism. It would be
interesting if their geometry allowed us to distinguish these groups. However, we do
not even know the answer to the following question.

Question 10.20. Are there two free ergodic measure-preserving flows with non-quasi-
isometric L' full groups?






Appendix A

Normed groups

We chose to present our work in the framework of groups equipped with compatible
norms rather than metrics. These two frameworks are equivalent, but the former has
some stylistic advantages, in our opinion. In Appendix A, we remind the reader the
concept of a norm on a group (Section A.1) and state C. Rosendal’s results on maximal
norms (Section A.2).

A.1 Norms on groups

Definition A.1. A normonagroup Gisamap|-|| : G — R=suchthatforallg,h € G
(1) |lgll =0 if and only if g = e;
@) llgl = llg~"I;
3) llghll < llgll + lI7]l.
If G is moreover a topological group, a norm ||-|| on G is called compatible if the balls
{g € G :||gl| <r}, r >0, form a basis of neighborhoods of the identity. When G is a

Polish group equipped with a compatible norm |[|-||, we refer to the pair (G, ||-||) as a
Polish normed group.

There is a correspondence between (compatible) left-invariant metrics on a group
and (compatible) norms on it. Indeed, given a left-invariant metric d on G, the function
llgll = d(e, g) is a norm. Conversely, from a norm ||-|| one can recover the left-invariant
metric d via d(g, h) = ||g~'h||. Analogously, there is a correspondence between norms
and right-invariant metrics given by d(g, h) = ||hg~!|.

The language of group norms thus contains the same information as the formalism of
left-invariant (or right-invariant) metrics, but it has the stylistic advantage of removing
the need of making a choice between the invariant side, when such a choice is immaterial.

Remark A.2. Note, however, that there are metrics that are neither left- nor right-
invariant, which nonetheless induce a group norm via the same formula ||g|| = d(g, e).
Consider for example a Polish group G with a compatible left-invariant metric d’ on it.
If G is not a CLI group, the metric d’ is not complete, but the metric

d(f,9)+d (f'.g™h

d(f.g) = >

is complete. Since d(g, e) = d’(g, e), we see that d induces the same norm ||-|| as does
the left-invariant metric d’.
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There is a canonical way to push a norm onto a factor group.

Proposition A.3 (see [18, Thm. 2.2.10]). Let (G, ||||) be a Polish normed group, and
let H 2 G be a closed normal subgroup of G. The function

llgH|®/H = inf{||gh|| : h € H}

is a norm on G/H which is compatible with the quotient topology. In particular,
(G/H, ||-|°""Y is a Polish normed group.

Definition A.4. A compatible norm ||-|| on a locally compact Polish group G is proper
if all balls {g € G : ||g|| < r} are compact.

R. A. Struble [58] showed that all locally compact Polish groups admit a compatible
proper norm.

A.2 Maximal norms

As we noted in Lemma 2.13, quasi-isometric norms yield the same L' full groups.
C. Rosendal identified the class of Polish groups that admit maximal norms, which are
unique up to quasi-isometry. In this section, we state some results from C. Rosendal’s
treatise [52], which are relevant to our work. For the reader’s convenience, we formulate
the following definitions and propositions in the language of group norms as opposed
to left-invariant metrics or écarts, as in the original reference.

Definition A.5 ([52, Def. 2.68]). A compatible norm ||-|| on a Polish group G is said
to be maximal if for any compatible norm ||-||" there is a constant C > 0 such that
llgll” < Cligll+C forallg € G.

Definition A.6 ([52, Prop. 2.15]). Let G be a Polish group. A subset A C G is coarsely
bounded if for every continuous isometric action of G on a metric space (M, dys), the
set A - m is bounded for each m € M, i.e., there is K > 0 such that

dy(ay -myay-m) < K forallay,ar € A.

A Polish group G is boundedly generated if it is generated by a coarsely bounded set.

Theorem A.7 ([52, Thm. 2.73]). A Polish group admits a maximal compatible norm
if and only if it is boundedly generated.

The following characterization is available to establish maximality of a given norm.

Definition A.8 ([52, Def. 2.62]). A norm |[|-|| on a group G is called large-scale
geodesic if there is K > 0 such that for any g € G, there are gy, ..., g, € G of norm
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”gl” SK,I SiSVl,SUChthatg:glw.gn and

n
D llsill < K llgll-
i=1

Definition A.9 ([52, Lem. 2.39(2) and Prop. 2.7(5)]). A norm ||-|| on a group G is
called coarsely proper if for every € > 0 and every R > 0, there are a finite subset
F C G and n € N such that every element g € G of norm at most R can be written as a
product

g = f181 " fn&n:

where f1, ..., fu € F and each g; has norm at most €.

Proposition A.10 ([52, Prop. 2.72]). A compatible norm ||-|| on a Polish group G is
maximal if and only if it is both large-scale geodesic and coarsely proper.






Appendix B

Spaces and groups of measurable maps

B.1 L spaces and convergence in measure

In this section, we introduce the topology of convergence in measure for spaces of
measurable functions and explore its connections to an L!-type metric as well as its
relationship with the group Aut(X, u).

Definition B.1. Let (X, 1) be a standard probability space, and let ¥ be a Polish space.
The space L(X, 1, Y), often denoted by L°(X, Y) for brevity, consists of equivalence
classes of measurable maps f : X — Y, where functions are identified up to null
sets. This space is equipped with the topology of convergence in measure, which
is generated by the sets U, 4 defined as follows: for every measurable subset A C X,
every open subset U C Y, and every € > 0,

Uea={f €L°%X,Y) : u(f~'(U) N A) > €}.

The topology of convergence in measure is Polish. The justification of this fact is
postponed to Proposition B.8. First, we take a brief detour to justify why this topology
is appropriately named the topology of convergence in measure.

Lemma B.2. Let dy be a compatible metric on'Y. For fy € L°(X,Y), a neighborhood
basis of fy is given by the sets

{Fel’X,Y):u({x e X 1 dy(f(x), fo(x)) 2 €}) <€}, €>0.
Proof. Fix € > 0 and a dense sequence (y,,),, in Y. For each n, define
Ap={xe X 1 dy(fo(x),yn) < 5}

By the density of (y,),, we have X = |J,, A,. Consequently, there exists N > 1 such
that p(U,<n An) > 1 — §. Without loss of generality, by re-enumerating the sequence
(yn)n if necessary, we may assume that u(A,) > 0 for all n < N. Let U" denote the
open ball of radius 5 centered at y,, and set

#(An)
2

en:min{ ,%}

For any f € L°(X,Y), the set B = {x € X : dy(fo(x), f(x)) > €} is contained in

(N An)u U e At dv(£000) 2 53,

n<N n<N
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and therefore

u(B) < u(X\ | An)+ 3 mltx € An s dy (. 30) = £3)

n<N n<N
-+ choice of N < §+ Z p({x € Ayt dy (f(x),yn) = 5})

n<N

=S+ D ulAn\ )
n<N

=S+ 2 (u(An) — (£ UM N 4).
n<N

If fe U,Z(An)—en,A,,’ then

1(Ay) = u(fH UM NA) < & < 55,

i n . . . .
and therefore the open set (), U# (An)—n Ay satisfies the desired inclusion

foe () Ohar-ann, S{FEL2XY)  pl{x € X 2 dy (f(x), fo(x)) = €}) < €},
n<N

Conversely, given any fj € U e.A, we need to show the existence of ¢ > 0 such that
{feLl’X,Y): p({x € X 1 dy(f(x), fo(x)) 2 6}) <6} C Ue a.
Since U is open, we have

fo‘l(U)mA:U{xeA:a’y(fo(x),Y\U) > 11

Thus, there exists n € N sufficiently large such that

p({x € A:dy(fo(x),Y\U) > 1}) > e

- d=min{i, y({xr € A: dy(fo(x),Y\U) > 1}) —€}. (B.1)
Now, consider f € L(X,Y) satisfying

n({x € X dy(fo(x), f(x)) > 6}) <. (B.2)
Then,

AU NA2 {xeAdy(folx), f(x)) < 6 and dy (fo(x).Y \ U) > 1},
and the latter set can be rewritten as

A\ ({x e Atdy(fo(x), f(x)) 26} U {x € At dy(fo(x), Y \U) < 1}).
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Consequently,
p(f7HU) N A) 2 u(A) - p({x € A dy (folx), f(x) = 6})
—u({x e A dy(fo(x),Y\U) < 1))
Since f is assumed to satisfy Eq. (B.2) and ¢ is chosen according to Eq. (B.1), we get
p(fTHU) N A) > p(A) - p({x € A dy (fo(0). Y \U) > 1}) +e
—pu({x € Ardy(fo(x). Y \U) < 3}).

The two negative terms sum to —u(A), and thus we have u(f~'(U) N A) > €. We
conclude that

{F eL%XY) s u({x € X 2 dy (fo(x), f(x)) 2 6}) <6} € Uea- .
Now suppose that dy is a compatible bounded metric on Y; for instance,

dy(y1,y2) =min{l,dy(y1,y2)}, yi.y2 €Y,

for an arbitrary compatible metric d},. We can then equip LO(X,Y) with the metric dy,
defined by

dy(f.g) = /X dy (f (), () dia(x). (B.3)

The following properties of convergence in measure and dy are well-known.

Lemma B.3. Let dy be a compatible bounded metric on Y. The following properties
hold:
(1) The metric dy is compatible with the topology of convergence in measure.
(2) A sequence of functions ( f,)n converges in measure to f if and only if every

subsequence of (fn), has a further subsequence that converges pointwise to f.

Proof. (1) We employ the neighborhood basis established in Lemma B.2. For any
€ > 0, Markov’s inequality yields

e pu({xe X dy(F(). o) = €)) < /X dy (f (), fol) du(x) = dy (£ fo),

demonstrating that the topology induced by dy refines the topology of convergence in
measure.
Conversely, let K > 0 be a bound on dy. If

p{x € X 2 dy(F2), o) = £ < =
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then dy (f, fo) < % + €. This shows that the topology of convergence in measure refines
the topology induced by dy. Consequently, the two topologies coincide.

(2) We begin with the direct implication. Assume that f;, — f in measure and
consider a subsequence (f,,)x. By passing to a further subsequence (still denoted
(fa )k for simplicity), Lemma B.2 lets us assume that for all k € N, the set

A ={x € X : dy(fn, (x), f(x)) = 275}

has measure less than 2~%. By the Borel-Cantelli lemma, almost every x € X belongs
to only finitely many Ay. This implies that f;,, converges pointwise to f almost surely.

For the converse, assume that every subsequence of ( f;,), admits a further sub-
sequence that converges pointwise to f. Note that dy ( f,,, f) — 0 holds if and only
if every subsequence (fu, )k of (fu)n has a further subsequence (fy, ); such that
dy ( Jni,» f) — 0. Thus, it suffices to show that if (f,), converges to f pointwise, then
also dy (f,, f) — 0. This follows directly from the Lebesgue’s dominated convergence
theorem, in view of the boundedness of dy. [

We finish this section with the following lemma.

Lemma B.4. Let G be a Polish group acting continuously on a Polish space X, and
let u be a Borel probability measure on X. Then the map

@:L%X,G) - L2%X, X)
LO(X,G) 5 (x> f(x)-x)

is continuous.

Proof. We use the pointwise characterization of convergence in measure, as stated
in item (2) of Lemma B.3. Suppose f, — f in measure, where f,, f € L°(X, G). To
show that ®( f,,) — ®(f) in measure, consider an arbitrary subsequence (@ (fy, ))«.

Since f,, — f in measure, there exists a further subsequence ( fnki ); that converges
pointwise to f. By the continuity of the action, we have fy, (x) - x = f(x) - x for all
x € X. This means (®(fy,,)): converges pointwise to @( f), as required. ]

B.2 L! spaces of pointed metric spaces

We now restrict our attention to integrable maps. To this end, we require the target
space to be a Polish pointed metric space, which we define as a separable complete
metric space (Y, dy) equipped with a distinguished basepoint e € Y.

Definition B.5. Let (X, u) be a standard probability space, and let (Y, dy, e) be a Polish
pointed metric space. We define the e-pointed L! space L. (X, u,Y), often denoted by
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Lé (X, Y) for brevity, as the pointed metric space consisting of all measurable functions
f : X — Y satisfying

/X dy (e, £(x)) du(x) < +oo,

equipped with the metric

By o) = [ (A0, () o)
and with the constant function é : x +— e as its basepoint. The finiteness of the integral
in the definition of dy follows from the triangle inequality, using é as an intermediate
point.

Remark B.6. To simplify notation, we omit explicit reference to the metric dy in the
notation for the L} space L}e (X,Y). However, it is important to note that the definition
of this space fundamentally depends on the choice of dy.

Proposition B.7. Let (X, u) be a standard probability space and (Y, dy, e) be a Polish
pointed metric space. Then (LL(X,Y), dy) is a Polish metric space.

Proof. The proof follows the classical argument establishing that (L!(X,R), dr) is
a Polish metric space. To prove completeness, consider a Cauchy sequence ( f;,),, in
Lé(X ,Y). Without loss of generality, we may assume that dy (f,, fus1) < 27", n € N.
Define the sets

Ap={x € X 1 dy(fu(x), fur1(x)) = 1/n?}, n> 1.

By Markov’s inequality, u(A,) < n*27", and thus Y, #(A,) < co. The Borel-Cantelli
lemma implies that ( f;,(x)), is pointwise Cauchy for almost every x € X. Since (Y, dy)
is complete, the pointwise limit f(x) = lim,, f;,(x) exists almost surely.

Define functions A, h : X — R=" by

ha(x) = D dy (i), fir1(0), (&) = D dy(fi(®), fisr () = Tim hy (),

i<n ieN

and note that 4 € L' (X, R) by Fatou’s lemma. Finally, we conclude that
dy (fas f) = /Xdy(fn(X), J () du(x) < /X; dy (fic(x), fier1 (x)) du(x)

- / (h(x) = ha(x)) dia(x) — 0,
X

where the last convergence follows from Lebesgue’s dominated convergence theorem.
To establish separability, let D C Y be a countable dense set. The subspace of maps
taking values in D is dy-dense (in fact, dense even in the much stronger sup metric).
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The set of functions taking only finitely many values in D remains dense. By further
restricting to functions measurable with respect to a dense countable subalgebra of the
measure algebra on X, we obtain a countable dense subset of L. (X, Y). |

Note that L} (X, Y) is a subset of L°(X, Y). If dy is bounded, the integrability
condition becomes trivial, and we have L} (X,Y) = L°(X,Y). Combining item (1) from
Lemma B.3 with the preceding proposition, we obtain the following well-known result.

Proposition B.8. If Y is a Polish space, then the topology of convergence in measure
onLO(X,Y) is Polish, and it is induced by the L' metric dy for any bounded compatible
metric dy onY. [

More generally, we can establish a relationship between the L! topology and the
topology of convergence in measure as follows.

Proposition B.9. Let (Y, dy, e) be a possibly unbounded Polish pointed metric space.
The inclusion map LL(X,Y) — LO(X,Y) is continuous.

Proof. Define df, (y1,y2) =min{dy (y1,y2), 1}, y1,y2 € Y, to be the bounded complete
metric on Y obtained by capping dy. By Lemma B.3, d}’; induces the topology of
convergence in measure on LO(X ,Y). Since db < dy, one also has J)’Z < dy. Thus, the
inclusion map

(Ly(X,Y),dy) = (L(X,Y),d})

is 1-Lipschitz and, in particular, continuous. ]

Remark B.10. The inclusion Li(X ,Y) — LO(X ,Y) is not, in general, an embedding.
To see this, suppose dy is unbounded. Then there exist elements y, € Y such that
dy(yn,e) = 2" for all n. Partition the space X into disjoint sets | |, A,, where
u(A,) = 27" Define functions f;, for n > 1 as follows:

vo, ifx €A,
Jn (x) = { " _n

e  otherwise.
In the notation of Proposition B.9, we have J)’;(fn, é) = u(A;) — 0asn — oo, which
implies f,, — ¢ in L°. However, since dy (f,,,é) > 1 for all n > 1, this convergence
does not hold in L.

The group of measure-preserving automorphisms Aut(X, u) acts naturally on
LL(X,Y) by composition, i.e., (T - £)(x) = f(T~'x). This action fixes the basepoint &.
Moreover, each automorphism acts by an isometry, as it preserves the measure p.

Proposition B.11. Let (X, u) be a standard probability space, and let (Y, dy, e) be a
Polish pointed metric space. The action of Aut(X, u) on LL(X,Y) is continuous.
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Proof. The argument follows a similar approach to that in [11, Prop. 2.9(1)]. Consider
sequences T,, — T and f,, — f. We need to show that 7}, - f,, — T - f. Since the action
is by isometries, we have

dy(Ty - fu. T+ f) = dy (fu. T, 'T - f) < dy(fu. f) +dy (f.T,;'T - f).

Thus, it suffices to prove that for any f € L!(X,Y) and any convergent sequence of
automorphisms 7,, — T, the term dy (f,T,7'T - f) tends to 0 as n — co.

To establish this, it is enough to verify the claim for functions that take only
finitely many values, as such functions are dense in Lé(X ,Y). Suppose f is a step
function defined over a partition X = [ |2, A;. The convergence 7,, — T implies
w(T,;'T(A;)aA;) — Oforall 1 <i < m,whichreadily gives dy (f,T,'T- f) —0. =m

In what follows, we identify Aut(X, 1) with a subset of L°(X, X).

Proposition B.12. Let T be a Polish topology on a standard probability space (X, u)
compatible with its Borel structure. The inclusion map

Aut(X, p) — L°(X, X)

is a topological embedding when Aut(X, u) is equipped with the weak topology and
LO(X, X) is equipped with the topology of convergence in measure associated with T.

Proof. Fix a bounded complete metric d compatible with 7. By Lemma B.3, d induces
the topology of convergence in measure on L°(X, X). The topological group Aut(X, x1)
actson L(X,X) by T - f = f o T~! and this action is continuous by Proposition B.11.
Furthermore, for every T € Aut(X, ), we have T~! - idy = T € L(X, X), which shows
that the inclusion map is continuous.

The metric d induces a right-invariant metric on Aut(X, u). To prove that the
inclusion map is a topological embedding, it suffices to show that if d(T},,idx) — O,
then T), — idx weakly in Aut(X, u). By Lemma B.3, d(T},,idx) — 0 implies 7, — idx
in measure. In particular, for every 7-open set U C X, the definition of convergence in
measure yields

liminf 4(7,;"(U) NU) > p(idy' (U) N U) = p(U).
n—o00
‘We conclude that

p(U) > limsup u(7,; ' (U) N U) > liminf u(7,; " (U) N U) > p(U),
n—oo n—oo
and therefore lim,, u(T,7'(U) N U) = u(U). Since each T}, is measure-preserving, it
follows that lim,, u(T,;'(U) a U) = 0 for every U € 7. By the regularity of y, this
implies 7,, — idx weakly, as required. |
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Let us now return to L! spaces associated with possibly unbounded pointed metric
spaces (Y, dy, e). When Y is a Polish group, there is a natural choice for e, namely the
identity element of the group, which we also denote by e. In this case, we simplify the
notation further and write L' (X, Y).

Recall that a Polish normed group is a Polish group equipped with a compatible
norm (see Appendix A.1). In particular, if (G, ||-||) is a Polish normed group, there is a
canonical choice of a compatible complete metric on G, namely

_ llu” ol + flow” ")

dg(u,v) >

The corresponding space L' (X, G) is Polish by Proposition B.7. Furthermore, it forms
a Polish group under pointwise operations, as we now demonstrate.

Proposition B.13. Let (G, ||-||) be a Polish normed group. The space L' (X, G) is a
Polish normed group under the pointwise operations,

(f )X =f®)gk), ) =fx7"

1
and the norm || fII}" %9 = [ I1f ()|l dpu(x).

Proof. The space L' (X, G) consists of all measurable functions f : X — G with finite
L'(X.G)

| < oo. Using the properties of the norm ||-|| on G, we have

norm, [1£]
If - gllH' 9 = / 1/ (08 (Il dia(x)
X
< [l + g duto)

LY(X,G)

L'(x.G
= 1A D el ,

Hf_lHIl“(X,G) — [(||f(x)_1||dﬂ(x)
= [(||f(x)|| du(x) = ||f||]1‘1(X’G)-

1
Thus, L' (X, G) is closed under the group operations, and || - ||Il‘ X:6) defines a group
norm on it.

To verify the continuity of the group operations, it suffices to show that for any

g € L'(X, G) and any sequence f, € L'(X,G), n € N, converging to the identity

1
function é (i.e., || fn||T X.6) _, 0), there exists a subsequence ( fy, )« such that
1
g fu - 87"y X > 0as k - oo,

(see, for example, [9, Thm 3.4 and Lem. 3.5]).
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By Proposition B.9 and the fact that convergence in measure implies pointwise
convergence of a subsequence (see item (2) of Lemma B.3), there exists a subsequence
(fn, )k such that f;,, (x) — e for almost all x € X. By passing to a further subsequence,
we may assume without loss of generality that > ;|| £, ||11J (X:6) < 4c0. The function

M(x) = 2|l fue ()] belongs to L'(X,G),and forall k e Nand x € X,
118(x) fine ()8 ()M < 21Ol + [ fo (O] < 201 (O] + M (x).

The continuity of the group operations on G ensures that g - f,, - g~ ! — ¢ pointwise.
It remains to apply Lebesgue’s dominated convergence theorem and conclude that
g+ fus &7 7 X9 = 0, as required

g fu -8 ||1 — 0, as required. ]
Remark B.14. If the chosen compatible norm on G is bounded, then L!(X, G) =
L%(X, G), and the topology under consideration coincides with the topology of con-
vergence in measure by Lemma B.3. Consequently, we recover the well-known fact
that L°(X, G) is a Polish group when equipped with the topology of convergence in
measure.






Appendix C

Hopf decomposition

An important tool in the theory of invertible non-singular transformations on o -finite
measure spaces is the Hopf decomposition, which partitions the phase space into the so-
called dissipative and recurrent parts, reflecting different dynamics of the transformation.
In this appendix, we recall the relevant definitions and indicate what happens for
measure-preserving transformations of a o-finite space. The reader may consult [35,
Sec. 1.3] for further details on the following definitions.

Definition C.1. Let S be an invertible non-singular transformation of a o-finite measure
space (£, 1). A measurable set A C Q is said to be:

« wandering if AN S¥(A) = @ forall k > 1;

 recurrent if A C (J;5, SK(A);

+ infinitely recurrent if A C (),,51 Us, S¥(A).

The inclusions above are understood to hold up to a null set. The transformation S is:
» dissipative if the phase space Q is a countable union of wandering sets;

» conservative if there are no wandering sets of positive measure;

* recurrent if every set of positive measure is recurrent;

* infinitely recurrent if every set of positive measure is infinitely recurrent.

It turns out that the properties of being conservative, recurrent, and infinitely
recurrent are all mutually equivalent.

Proposition C.2. Let S be an invertible non-singular transformation of a o -finite
measure space (Q, 1). The following are equivalent:

(1) S is conservative;

(2) S is recurrent;

(3) S is infinitely recurrent.

Among the properties introduced in Definition C.1, only recurrence and dissipativity

are therefore different. In fact, any non-singular transformation admits a canonical
decomposition, known as the Hopf decomposition, into these two types of action.

Proposition C.3 (Hopf decomposition). Let S be an invertible non-singular trans-
formation of a o -finite measure space (Q, A). There exists an S-invariant partition
Q=D UC suchthat S p is dissipative and S | ¢ is recurrent (equivalently, conserva-
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tive). Moreover, if Q= D’ LI C’ is another partition with this property then A(DAD’) =0
and A(CAC’) = 0.

We also note the following consequence of dissipativity in case the measure is
preserved.

Proposition C.4. Let S be an invertible measure-preserving transformation of a o -
finite measure space (Q, A1) and let Q = D U C be its Hopf decomposition. For every
set A € Q of finite measure, almost every point in D eventually escapes A:

Vi e DINVn> NT"x ¢ A.

Proof. We may as well assume D = Q. Let A C Q have finite measure. Let Q be a
wandering set whose translates cover € as provided by [1, Prop. 1.1.2]. Consider the
map @ : Q X Z — Q which maps (x, n) to 7" (x), and observe that ® is measure-
preserving if we endow Q X Z with the product of the measure induced by 4 on Q and
the counting measure on Z.

If the set of x € Q for which S” (x) € A for infinitely many n € N has positive measure,
then, by Fubini’s theorem, the set A must have infinite measure, which contradicts the
assumption. The same reasoning applies to any S-translate of Q. Since these translates
cover Q, the proof is complete. ]



Appendix D

Disintegration of measure

Let R be a smooth measurable equivalence relation on a standard Lebesgue space
(X, ), and let 7 : X — Y be a measurable reduction to the identity relation on some
standard Lebesgue space (Y, v), n(x) = n(y) if and only if xRy. Suppose that v is a
o -finite measure on Y that is equivalent to the push-forward 7.u. A disintegration
of u relative to (m, v) is a collection of measures (uy)yey on X such that for all Borel
sets A C X:

(1) py(X\ 771 (y)) = 0 for v-almost all y € Y;
(2) themap Y 3 y = u,(A) € R is measurable;

3) u(A) = [, uy(A)dv(y).

A theorem of D. Maharam [43] asserts that y can be disintegrated over any (7, v)
as above. In fact, the existence of a disintegration can be proved in a considerably more
general setup (see, for example, D. H. Fremlin [19, Thm. 4521]), but in the framework
of standard Lebesgue spaces, disintegration is essentially unique. While the context of
our work is purely ergodic-theoretical, we note that the disintegration result holds in
the descriptive set-theoretical setting as well, as discussed in [44] and [26]. Without
striving for generality, we formulate here a specific version that suits our needs.

Theorem D.1 (Disintegration of Measure). Let (X, u) be a standard Lebesgue space,
(Y, v) be a o-finite standard Lebesgue space, and let m : X — Y be a measurable
function. If m.p is equivalent to v, then there exists a disintegration (iy)yey of u
over (m,v). Moreover, such a disintegration is essentially unique in the sense that
if (1)yey is another disintegration, then iy, = i for v-almost all y € Y.

Remark D.2. It is more common to formulate the disintegration theorem with the
assumption that 7. = v, when one can additionally ensure that u, (X) = u(X) for
v-almost all y. Weakening the equality 7. u = v to mere equivalence is a simple conse-
quence, for if (1y)yey is a disintegration of i over (rr, 7.ut), then (d;r;” () - /‘y)yey

is a disintegration of u over (7, v).

Let X, € X be the set of atoms of the disintegration, i.e.,
Xo={x€X:puy(x)>O0forsomeyeY},

and let F' be the equivalence relation on X,, where two atoms within the same fiber are
equivalent whenever they have the same measure: x| Fx; if and only if pi () (x1) =
Hr(x,)(x2) and 7r(x1) = m(x2). The equivalence relation F is measurable and has finite
classes p-almost surely. Let X,,, n > 1, be the union of F-equivalence classes of size
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exactly n, thus X, = | |,>1 Xp. Set also Xp = X \ X, to be the atomless part of the
disintegration and let R,, denote the restriction of R onto Xj,.

Consider the group [R] < Aut(X, u) of measure-preserving bijections 7" such that
xRTx holds u-almost surely. Every T € [R] preserves v-almost all measures pu,, since
(Tipy)yey is a disintegration of T.u = p, which has to coincide with (uy)ycy by the
uniqueness of the disintegration. In particular, the partition X = | |,,cpy X5, is invariant
under the full group [R], and for any T' € [R], the restriction T 'x, € [R, ] for every
n € N. Conversely, for a sequence 7, € [R,],n € N,onehas T = | |,,T,, € [R]. We
therefore have an isomorphism of (abstract) groups [R] = [1,,en[Rn ]

The groups [R; ] can be described quite explicitly. First, consider the case n > 1;
thus X,, C X,. All equivalence classes of the restriction of F' onto X,, have size n. Let
Y, C X, be a measurable transversal, i.e., a measurable set intersecting every F-class in
a single point, and let v, = ¢ 1y, . Every T € [R,,] produces a permutation of y-almost
every F-class, so we can view it as an element of LO(Yn, Vi, ©p), where G, is the group
of permutations of an n-element set. This identification works in both directions and
produces an isomorphism [R,,] = L%(Y,,, v, S,,). Note also that all v,, are atomless if
so is u. We allow for u(X,,) = 0, in which case L°(Y,,, v,,, ©,,) is the trivial group.

Let us now return to the equivalence relation Rg = R N Xo X Xo, and recall that the
measures iy [x, are atomless. Let Yo = {y : u,,(Xo) > 0} be the encoding of fibers with
non-trivial atomless components, and put vo = v [y,. In particular, for every y € Yy, the
space (X, i) is isomorphic to the interval [0, i, (Xo)] endowed with the Lebesgue
measure. In fact, one can select such isomorphisms in a measurable way across all
y € Y. More precisely, there is a measurable isomorphism

y:Xo—={(y,r) €eYoxR:0<r < puy(Xo)}

such that for all y € Yy,

© Y@ N Xo) = {y} x [0,y (Xo)]3
Y. (py Tx,) coincides with the Lebesgue measure on {y} x [0, uy (Xo)].

The reader may find further details in [26, Thm. 2.3], where the same construction is
discussed in a more refined setting of Borel disintegrations.

Using the isomorphism ¢, each 771 (y) N Xo, y € Yy, is identified with [0, 1, (Xo)].
Since every T € [Ro] preserves v-almost every u,, we may rescale these intervals
and view any T € [Ro] as an element of LO(Y, vo, Aut([0, 1], 1)). Conversely, every
f € LYYy, vo, Aut([0, 1], 1)) gives rise to Tr € [Ro] via the notationally convoluted
but natural

Tr(x) = ¢~ (m(x), (f (7(x)) - projy (¥ (0))/ prx) (X0)) () (X0))

which, in plain words, simply applies f(7(x)) upon the corresponding fiber identi-
fied with [0, 1] using ¢. This map is an isomorphism between the groups [Ry ] and
LO(Yo, vo, Aut([0, 1], 2)).



Disintegration of measure 127

Let us say that R has atomless classes if 1, is atomless v-almost surely or, equiva-
lently, if u(X,) = 0 in the notation above. We may summarize the discussion so far
into the following proposition.

Proposition D.3. Let R be a smooth measurable equivalence relation on a standard
Lebesgue space (X, u). There are (possibly empty) standard Lebesgue spaces (Y, vy),
n € N, such that the full group [R] < Aut(X, u) is (abstractly) isomorphic to

L (Yo, vo, Aut([0, 1], ) X | [ L (¥, v, &),

n>1

where S, is the group of permutations of an n-element set. If u is atomless, then so
are the spaces (Y, vy,), n = 1. If R has atomless classes, then all (Y, v,), n > 1, are
negligible and [R] is isomorphic to L°(Yy, vo, Aut([0, 1], 2)).

We can further refine the product in Proposition D.3 by decomposing the spaces
(Y, vip) into individual atoms and the atomless remainders. This relies on the following
general result.

Proposition D.4. Let (Z,v;) be a standard Lebesgue space, and let G be a Polish group.
For any finite or countably infinite measurable partition Z = | |,,c; Zn, there exists an
isomorphism of topological groups between LY(Z, vz, G) and [1,,e; L°(Zn, vz, G),
where vz, is the restriction of vz onto Z,.

Proof. Consider the map ® that assigns to each f € L°(Z, v, G) the sequence of its
restrictions f [z, € L%Z,, vz.n, G), where n € I. It is straightforward to verify that
@ is a group isomorphism, and its continuity follows directly from the definition of
convergence in measure. Automatic continuity implies that @ is a homeomorphism, as
it is a Borel group isomorphism between Polish groups (see [6, Sec. 1.6]). Alternatively,
the continuity of ®~! can easily be checked directly. u

Applying Proposition D.4 to the partition of (Z, vz) into the atomless part Z
and individual atoms Z; = {zx} (if any), and noting that for a singleton Z; the group
LO(Zy, vz .k, G) is naturally isomorphic to G, we get the following corollary.

Corollary D.5. Let (Z,vz) be a standard Lebesgue space, and let G be a Polish group.
Let Z, C Z be the set of atoms of Z, and let Zo = Z \ Z, be the atomless part. The
group LY(Z,vz, G) is isomorphic to 1L°(Zy, vz 17, G) x Gl%al,

Combining the above discussion with Proposition D.3, we obtain a very concrete
representation for [R]. In the formulation below, G is understood to be the trivial

group.

Proposition D.6. Let R be a smooth measurable equivalence relation on a standard
Lebesgue space (X, ). There exist cardinals k,, < Xy and €, € {0, 1} such that
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[R] = LO([0, 1], A, Aut([0, 1], 1)) x Aut([0, 1], 1)*°
x (]_[ LO([0, 1], 2, &) x en)

n>1

If w is atomless, then k,, = 0 for all n > 1; if R has atomless classes, then €, = 0
foralln > 1.

So far, we have considered [R] as an abstract group. This is because neither of the
two natural topologies on Aut(X, u) interacts well with the full group construction—
[R] is generally not closed in the weak topology, and is not separable in the uniform
topology whenever u(Xg) > 0. Nonetheless, the isomorphism given in Proposition D.3
shows that there is a natural Polish topology on [R], which arises when we view
the groups L°(Yp, vo, Aut([0, 1], 1)) and LO(Y,,, v,,, S,,) as Polish groups in the topol-
ogy of convergence in measure. It is with respect to this topology that we formulate
Proposition D.7.

Proposition D.7. Let R be a smooth measurable equivalence relation on a standard
Lebesgue space (X, ). The set of periodic elements is dense in [R].

Proof. Rokhlin’s Lemma implies that any T € [R] can be approximated in the uniform
topology by periodic elements from [7'] € [R]. Since the uniform topology is stronger
than the Polish topology on [R], the proposition follows. ]



Appendix E

Actions of locally compact Polish groups

In this chapter of the appendix, we collect some well-known facts related to the actions of
locally compact Polish groups. This exposition is provided for the reader’s convenience
and completeness. We recall that, by a result of G. W. Mackey [42], any Boolean
measure-preserving action of a locally compact Polish group can be realized as a spatial
Borel action. Thus, we may switch to pointwise formulations whenever convenient for
the exposition.

E.1 Ergodic decomposition

Let G ~ X be a measure-preserving action of a locally compact Polish group on a
standard probability space (X, u). The space & = EINV(G ~ X) of invariant ergodic
probability measures of this action possesses the structure of a standard Borel space.
The Ergodic Decomposition theorem of V. S. Varadarajan [59, Thm. 4.2] asserts that
there exist an essentially unique Borel G-invariant surjection X 3 x — v, € & and a
probability measure p on & such that u = / sV dp(v). This equality holds in the sense
that u(A) = [, v(A) dp(v) for all Borel A € X.

There is a one-to-one correspondence between measurable G-invariant functions
h : X — R and measurable functions / : & — R, given by h(v,) = h(x). For measures y
and p as above, this correspondence gives an isometric isomorphism between L! (&, R)
and the subspace of L!(X,R) consisting of G-invariant functions.

E.2 Tessellations

An important feature of locally compact group actions is the fact that they all admit
Lebesgue measurable cross-sections. This was proved by J. Feldman, P. Hahn, and
C. Moore in [16], whereas a Borel version of the result was obtained by A. S. Kechris
in [30].

Definition E.1. Let G ~ X be a Borel action of a locally compact Polish group. A
cross-section is a Borel set C € X which is both
* acomplete section for Rs: it intersects every orbit of the action; and

* lacunary: there is a neighborhood of the identity 1 € U € G such that C is
U-lacunary, namely one has U - c N U - ¢’ = @ for all distinct ¢, ¢’ € C.
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A cross-section C is K-cocompact, where K C G is a compact set, if K - C = X; a
cross-section is cocompact if it is K-cocompact for some compact K C G.

Any action G ~ X admits a K-cocompact cross-section, whenever K C G is a
compact neighborhood of the identity (see [56, Thm. 2.4]). We also recall the following
well-known lemma on the possibility of partitioning a cross-section into pieces with a
prescribed lacunarity parameter.

LemmaE.2. Let G ~ X be a Borel action of a locally compact Polish group, and let C
be a cross-section for the action. For any compact neighborhood of the identity V C G,
there exists a finite Borel partition C = | |; C; such that each C; is V-lacunary.

Proof. Set K = (VUV~1)2 andlet U C G be a compact neighborhood of the identity
small enough for C to be U-lacunary. Define a binary relation G on C by declaring
(c,c’) € G whenever ¢ € K - ¢’ and ¢ # ¢’. Note that G is symmetric since K is. We
view G as a Borel graph on C and claim that it is locally finite. More specifically, if A
is a right Haar measure, then the degree of each ¢ € C is at most I_’lfll(]Uf)J - 1.

Indeed, let ¢, ..., cn € C be distinct elements such that ¢; € K - ¢g forall i < N;
in particular (c;, cg) € G fori > 1. Let k; € K be such that k; - cg = ¢;. The lacunarity
of C asserts that the sets U - ¢; = Uk; - c¢ are supposed to be pairwise disjoint, which
necessitates Uk; to be pairwise disjoint for 0 <i < N. Clearly, Uk; € UK since k; € K.
Using the right-invariance of 4, we have A(UK) > A(|_J;<y Uk;) = (N + 1)A(U), and
thus N+1 < ’l/%f)), as claimed.

We may now use [34, Prop. 4.6] to deduce the existence of a finite partition C = |_|; C;
such that no two points in C; are adjacent. In other words, if ¢, ¢’ € C; are distinct, then

c ¢ K -c’, and therefore V- c NV - ¢’ = @, which shows that each C; is V-lacunary. m

Every cross-section C gives rise to a smooth subrelation of R by associating to
x € X “the closest point” of C in the same orbit. Such a subrelation is known as the
Voronoi tessellation. For the purposes of Chapter 5, we need a slightly more abstract
concept of a tessellation, which may not correspond to Voronoi domains. While far
from being the most general, the following treatment is sufficient for our needs.

Definition E.3. Let G ~ X be a Borel action of a locally compact Polish group on a
standard Borel space and let C C X be a cross-section. A tessellation over C is a Borel
set ‘W C C X X such that

(1) all fibers W, = {x € X : (c,x) € W} are pairwise disjoint for ¢ € C;
(2) for all ¢ € C, elements of W, are Rg-equivalent to ¢, i.e., {c} X W, C Rg;
(3) fibers cover the phase space, X = | |.cc We.

A tessellation ‘W over C is called N-lacunary for an open subset N C G if, for
every ¢ € C, the inclusion N - ¢ € ‘W, holds. It is said to be K-cocompact, where
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K C G is a compact subset, if W, C K - ¢ for all ¢ € C. We say that ‘W is cocompact
if it is K-cocompact for some compact subset K C G.

Any tessellation ‘W can be viewed as a (flipped) graph of a function, since for
any x € X, there is a unique ¢ € C such that (¢, x) € W. We denote such ¢ by 7y (x),
which produces a Borel map 7wy : X — C. There is a natural equivalence relation Ry
associated with the tessellation. Namely, x; and x, are Rqy-equivalent whenever they
belong to the same fiber, i.e., 7y (x1) = mqy(x2). In view of item (2), R4y € R, and
moreover, every Rg-class consists of countably many Rqy/-classes.

E.3 Voronoi tessellations

Voronoi tessellations provide a specific method for constructing tessellations over a
given cross-section. Suppose that the group G is endowed with a compatible proper
norm ||-||. Let D : Rg — R=" be the associated metric on the orbits of the action (as
in Section 2.1), and let < be a Borel linear order on C. The Voroneoi tessellation over
the cross-section C relative to a proper norm ||-|| is the set Vo C C x X defined by

Ve = {(c,x) € CxX :cRgx and for all ¢’ € C such that ¢’Rgx, either
D(c,x) < D(c’,x) or
(D(c,x) =D(c’,x) and ¢ Z¢ c’)}.

The properness of the norm ensures that for each x € X, there are only finitely many
candidates ¢ that minimize D(c, x), and hence each x € X is associated with a unique
¢ € C. Here is a basic application of Voronoi tessellations.

Proposition E.4. Let G be a locally compact Polish group acting in a Borel manner on
a standard Borel space X. There exists a sequence of cocompact tessellations (V;)nen
such that Rg = U,, R,

Remark E.5. Tt is essential that in the statement above, the equivalence relations Ry,
are not required to be nested. For a related statement where these relations are indeed
nested and the acting group is amenable, the reader is referred to Lemma 5.1.

Proof of Proposition E.4. Let C be a cocompact cross-section, and let ||-|| be a proper
norm on G inducing the metric D on the orbits. For each n € N, define U, to be the
open ball of radius n centered at 1. We denote the Voronoi tessellation over C by V.

Lemma E.2 lets us pick a finite sequence of cocompact cross-sections C{', . . ., C,Z’n
such that each C/* is Uy,-lacunary and C = |_|l].‘;’1 C/". Notably, the Uy -lacunarity condition
ensures that for distinct ¢, ¢’ € C/", we have D(c,c”) > n. Let V" denote the Voronoi
tessellation over C'.
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We claim that the tessellations C* constitute the desired sequence. Let x, y € X be
such that (x,y) € Rg. Set ¢ = mqy, (x). If nis so large that D(x,c) <nand D(y,c) <n,
then 7420 (y) = ¢ = mq2n (x) for the index i satisfying ¢ € Cl?". We conclude that
(x,y) € IR,Vl_zn, and the claim follows. u

For the sake of Chapter 5, we also need a definition of the Voronoi tessellation
for norms that may not be proper. The set V¢ specified as above may, in this case,
fail to satisfy item (3) of the definition of a tessellation. For some x € X, there may
be infinitely many ¢ € C that minimize D (c, x), none of which are <c-minimal. We
therefore need a different way to resolve the points on the “boundary” between the
regions, which can be achieved, for example, by delegating this task to a proper norm.

Definition E.6. Let ||-|| be a compatible norm on G and let C be a cross-section. Pick
a compatible proper norm ||-]|" on G and a Borel linear order <¢ on C. Let D and
D’ be the metrics on the orbits of the action associated with the norms ||-|| and ||-||’,
respectively. The Voronoi tessellation over the cross-section C relative to the norm
|||l is the set Ve € C x X defined by

Ve = {(c,x) €CxX : ¢Rgx and for all ¢’ € C such that ¢’Rgx either
D(c,x) < D(c,x) or
(D(c,x) =D(c’,x) and D' (c,x) < D’(c’,x)) or
(D(c,x) =D(c’,x) and D' (c,x) = D'(c’,x) and ¢ ¢ c’)}.

The definition of the Voronoi tessellation does depend on the choice of the norm
I]I" and the linear order <¢ on the cross-section, but its key properties remain the
same regardless of these choices. We therefore often do not explicitly specify which
I-ll" and <¢ are picked. Note also that if the cross-section is cocompact, then every
region of the Voronoi tessellation is bounded, i.e., sup,..x D (x, T, (x)) < +00.

Our goal is to show that the equivalence relations Ry are atomless in the sense of
Section D, provided that each orbit of the action is uncountable. To this end, we first
need the following lemma.

Lemma E.7. Let G be a locally compact Polish group acting on a standard Lebesgue
space (X, i) by measure-preserving automorphisms. Suppose that almost every orbit
of the action is uncountable. If A C X is a measurable set such that the intersection
of A with almost every orbit is countable, then u(A) = 0.

Proof. Pick a proper norm ||-|| on G. Let C be a cross-section for the action, and let
B>, C G be an open ball around the identity of sufficiently small radius 2r > 0 such
that By, - ¢ N By, - ¢’ = @ whenever ¢, ¢’ € C are distinct. Let Ve be the Voronoi
tessellation over C relative to ||-||. Note that By, - c is fully contained in the R, -class

of c.
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We claim that it is enough to consider the case when A intersects each R, -class
in at most one point. Indeed, the restriction of Rq;, onto A is a smooth countable
equivalence relation, so one can write A = | |,y A;,, where each A, intersects each
Rey,-class in at most one point. To simplify notation, we assume that A already
possesses this property.

LetY = B, - C, and let (g,),en be a countable dense subset of G. We define the
functiony : X — N by

y(x) = min{n € N : x Ry, g,x and g,x € Y'}.

Let A, = ANy~ (n), and note that the sets A, partition A. It is therefore enough to
show that y(A,) = 0 for any n € N. Pick ny € N. The action is measure-preserving,
and therefore u(Ay,) = u(gnyAn,)- Set By = g,y Ap, and note that for any x € By and
g € B, C G, one has gxRq,x. If the action were free, we could easily conclude that
u(By) = 0, since the sets gBy, g € B, would be pairwise disjoint. In general, we need
to exhibit a little more care and construct a countable family of pairwise disjoint sets
B,, as follows. For x € B, let

T,(x) = min{m € N : xR, gmx and gpx ¢ U Bn}.

k<n

The value 7, (x) is well-defined because the stabilizer of x is closed and must be nowhere
dense in B, due to the orbit G - x being uncountable. Put B,,,1 = {g+, (x)x : x € By}
and note that u(B,,) = u(By). We get a pairwise disjoint infinite family of sets B,,, all
having the same measure. Since y is finite, we conclude that u(8p) = 0, and the lemma
follows. |

Corollary E.8. Let G be a locally compact Polish group acting on a standard Lebesgue
space (X, i) by measure-preserving automorphisms. Let C be a cross-section for the
action, and let W C C X X be a tessellation. If y-almost every orbit of G is uncountable,
then Rqy is atomless.

Proof. Consider the disintegration (u.)c.ec of Rqy relative to (my, v), where mqy :
X — Cand v = (mqy).u. Let X, C X be the set of atoms of the disintegration. Since
y-almost every u. is finite, the fibers 717‘41,(0) have countably many atoms. Since every
tessellation has only countably many tiles within each orbit, we conclude that X, has a
countable intersection with almost every orbit of the action. Lemma E.7 applies and
shows that p(X,) = 0. Hence, R4y is atomless as required. [

Consider the full group [Rqy |, which, by Proposition D.3 and Corollary E.8, is
isomorphic to LO(Y, v, Aut([0, 1], 2)) for some standard Lebesgue space (Y, v). This
full group can naturally be viewed as a subgroup of [R |, and the topology induced
on [Rqy ] from the full group [R¢ | coincides with the topology of convergence in
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measure on LO(Y, v, Aut([0, 1], 1)) (see Section 3 of [11]). We therefore have the

following corollary.

Corollary E.9. Let G be a locally compact Polish group acting on a standard Lebesgue
space (X, i) by measure-preserving automorphisms. Let C be a cross-section for
the action, let W C C X X be a tessellation, and let nqy : X — C be the corre-
sponding reduction. If p-almost every orbit of G is uncountable, then the subgroup
[Ray] < [Rg ] is isomorphic as a topological group to L°(C, (may )., Aut([0, 1], 2)).
If moreover all orbits of the action have measure zero, then (wqy).u is non-atomic,
and [Ray ] is isomorphic to LO([0, 1], A, Aut([0, 1], 2)).



Appendix F

Conditional measures

The ergodic decomposition theorem, as formulated in Section E.1, is not available for
general probability measure-preserving actions of Polish groups. Conditional measures
provide a useful framework to remedy this. As before, Aut(X, ) stands for the group of
measure-preserving automorphisms of a standard probability space. It is more useful,
however, to view Aut(X, i) as the group of measure-preserving automorphisms of
the measure algebra MAlg(X, i) of (X, u), i.e., the Boolean algebra of equivalence
classes of Borel subsets of X, identified up to measure zero. The measure algebra is
endowed with a natural metric d,, given by d,(A, B) = u(A A B). The completeness
of (MAIg(X, u), d,) follows directly from its natural isometric identification with
(LY(X, u, 2/27), dy), where Z/2Z is endowed with the discrete metric dy, and the
metric dy is given in Definition B.5.

Proposition F.1. The metric space (MAIg(X, u), d,,) is complete. ]

Note that closed subalgebras of MAlg(X, ) are in a one-to-one correspondence
with complete (in the measure-theoretical sense) o-subalgebras of the o-algebra of
Lebesgue measurable sets.

F.1 Conditional expectations

We give a concise overview of how conditional expectations can be defined without
the need for disintegration.

Let M be a closed subalgebra of MAlg(X, u) and let L?(M, u) denote the L? space
of real-valued M-measurable functions. Note that L?(M, y) is a closed subspace of
L%(X, u) = L2 (MAIg(X, p), u). The M-conditional expectation is the orthogonal
projection By : L?(X, u) — L?>(M, p). It is uniquely defined by the condition

/fg du = /EM(f)g du forall f e L>(X,u)andallg € L>(M,u). (E1)
X X

Due to the density of step functions in L?(M, u), the conditional expectation can
equivalently be defined as the linear contraction L?(X, u) — L*(M, p) satisfying

/fd,u = /EM(f) du forall A e Mandall f € L2(X, u). (F.2)
A A

Positive functions are precisely those that yield a non-negative dot product with any
characteristic function. By allowing g in Eq. (F.1) to vary over the set of all characteristic
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functions of subsets in M, we can see that the conditional expectation Ej; preserves
positivity.

Proposition F.2. If f € L2(X, u) is non-negative, f > 0, then Eps(f) > 0.

While we defined conditional expectations as operators on L?(X, u), their domain
can be extended to all of L' (X, i), making Ej; a contraction from L' (X, u) to L' (M, ).
This is justified by the following proposition.

Proposition F.3. The conditional expectation Bpy : L>(X, u) — L2(M, p) is a con-
traction when the domain and the range are endowed with the L' norms.

Proof. If f € L?>(X, ) is non-negative, f > 0, then Eq. (F.1) yields

||f||1=/de/«t=/xf-1d#=/XEM(f)-1d#=/XEM(f)dﬂ.

Since Eps(f) = 0 by Proposition F.2, we conclude that ||[Eas(f)Il; = || f]]; for all
non-negative f € L>(X, ).

An arbitrary f € L2(X, u) can be written as the difference f* — f~ of non-negative
functions f* = max{f, 0} and f~ = max{—f,0}. Note that f*, f~ € L>(X, u) and
LF I + 171 = £ We therefore have

1Ea (Ol =1Ea (f" = FOM S IBae (PO + s SO =1 e+ 1 =111
showing that E,; is a contraction in the L! norm. ]

Remark F.4. By the previous proposition, E,, admits a (necessarily unique) extension
to a contraction
Enm i L'(X, 1) = LY(M, p).

Moreover, since every non-negative integrable function can be written as an increasing
limit of bounded non-negative functions, the analog of Proposition F.2 continues to
hold for f € L'(X, u).

F.2 Conditional measures

Throughout this section, we let y4 : X — {0, 1} denote the characteristic function of
ACX.

Definition F.5. Let M be a closed subalgebra of MAlg(X, u). The M-conditional
measure of A € MAlg(X, u), denoted by ups(A), is the conditional expectation of the
characteristic function of A, i.e., up(A) = Epr(va).

In particular, the conditional measure pys(A) is an M-measurable function. It
enjoys the following natural properties.
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Proposition F.6. Let M € MAlg(X, u) be a closed subalgebra. The following proper-
ties hold for all A € MAIlg(X, u):

(1) up (@) =0and up (X) = 1, where 0 and 1 denote the constant maps;
(2) up(A) takes values in [0, 1] and fx Uy (A) = u(A);
(3) pnp is o-additive: if A = ||, An, Ay € MAIg(X, p), is a partition, then

un(A) = D par(An),

neN

where the convergence holds in L' (M, u1);
@) if T € Aut(X, u) fixes every element of M, then up(A) = ups (T(A)).

Proof. The first item is clear from the fact that both @ and X belong to M, so their
characteristic functions are fixed by E,,. The second item follows from the first and
positivity of the conditional expectation; the equality is a direct consequence of Eq. (F.2).
The third one is a consequence of the L' continuity of E; and its linearity, noting that
XA = X XA, LY (M, p).

Finally, the last item follows from the uniqueness of conditional expectation given
by Eq. (F.2). Indeed, if an automorphism 7 fixes every element of M, then

/foT_lduZ fdyz/fdy for all B € MAIg(X, u),
B T(B) B

s0 Eps(f o T™1) = Epr(f). Taking f = ya for A € MAIg(X, i), we conclude that
um(T(A)) = um(A). .

F.3 Conditional measures and full groups

Conditional measures, as defined in Section F.2, are associated with closed subalgebras
of MAIg(X, ). Each subgroup G < Aut(X, i) gives rise to the subalgebra of G-
invariant sets, and we may therefore associate a conditional measure with the group G
itself.

Definition F.7. Let G be a subgroup of Aut(X, u). The closed subalgebra of G-
invariant sets is denoted by M and consists of all A € MAIg(X, i) suchthat gA = A
forall g € G.

By definition, G < Aut(X, u) is ergodic if Mg = {@, X}. Since {@, X }-measurable
functions are constants, the Mg-conditional measure corresponds to the measure u
when G is ergodic. The following lemma is an easy consequence of the definitions
of the full group generated by a subgroup (Section 3.1) and the weak topology on
Aut(X, u).
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Lemma F.8. Let G < Aut(X, u) be a group.
(1) If [G] is the full group generated by G, then Mg = M|g.
(2) If T" < G is dense in the weak topology, then Mr = Mg.

Given a subgroup G < Aut(X, u), we denote the Mg-conditional measure simply
by ug.

Recall that a partial measure-preserving automorphism of (X, u) is a measure-
preserving bijection ¢ : dom ¢ — rng ¢ between measurable subsets of X, called
the domain and the range of ¢, respectively. The pseudo full group generated by a
group I' < Aut(X, p) is denoted by [T']] and consists of all partial automorphisms
¢ : dom ¢ — rng ¢ for which there exists a partition dom ¢ = | |,, A, and elements
vn € I such that ¢ [4,= vy, [a, for all n. Elements of [I'] automatically preserve
the conditional measure ur in the sense that if A C dom ¢, then ur(¢(A)) = ur(A).
Indeed,

ur(e(a) = r(¢(|_JAnan)) =pur([ ] eanan)

n

 Prop. F6G3) = ) ur(9(AN Ay) = 3 ur(va(A N Ay))
" Prop. F.6(4) = Z ur(ANAy,) =ur(A).

Lemma F.9. Let G < Aut(X, u) be a group. For all A, B € MAlg(X, u) satisfying
uc(A) = ug(B), there exists an element ¢ € [G]| such that dom ¢ = A and rng ¢ = B.

Proof. LetI" ={y, : n € N} be a countable weakly dense subgroup of G. It follows from
Lemma F.8 that ur(A) = ug(A) = ug(B) = ur(B), and it is evident that [T'] < [G].

We inductively define sequences (A;), and (B,), of subsets of A and B, respec-
tively, starting with Ag = A Ny, 'B and By = v0Ao, and for n > 1, we set

A, = (A\ g Am) my;‘(B\ g Bm) and B, = y,A,.
m<n m<n

By construction, the sets A,, are pairwise disjoint subsets of A, each set satisfies y, A, =
B, and the sets B, are pairwise disjoint subsets of B. We assert that ¢ = | |,,(yn Ta,)
is the desired element of [G].

Suppose, towards a contradiction, that either dom ¢ # A or rng ¢ # B. Since I
preserves ur and ur(A) = ur(B), the sets A \ dom ¢ and B \ rng ¢ have the same
Mr-conditional measure, which is not constantly equal to zero. The set

A=) r(A\domy)
yel’

is I'-invariant and non-zero. Its conditional measure is therefore the characteristic
function y z, which must be greater than or equal to ur(A \ dom ¢) = ur(B \ rng ¢).
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We conclude that B\ rng ¢ C [, ¥(A \ dom ¢). In particular, there is the first n € N
such that (A \ dom ¢) Ny, (B \ g ¢) is non-zero. By construction, this set should
be a subset of A,,, yielding the desired contradiction. |

Proposition F.10. Let G be a full subgroup of Aut(X, ). The following conditions
are equivalent for all A, B € MAIlg(X, u):

(1) uc(A) = uc(B);
(2) thereis T € G such that T(A) = B;
(3) there is an involution T € G such that T(A) = B and suppT = A A B.

Proof. The implication (2)=(1) is a direct consequence of the definition of Mg along
with item (4) of Proposition F.6. Also, (3)=(2) is evident.

We now prove the implication (1)=(3). The assumption ug(A) = pug(A) guarantees
that ug(A \ B) = ug(B \ A). Lemma F.9 applies and produces an element ¢ € [G]
such that ¢(A \ B) = B\ A. The involution ¢ U ¢~ LI idx\ (aa ) meets the required
conditions. ]

F.4 Aperiodicity

A countable subgroup I' < Aut(X, u) is called aperiodic if almost all the orbits of
some (equivalently, any) realization of its action on (X, u) are infinite. The so-called
Maharam’s lemma provides a characterization of aperiodicity in a purely measure-
algebraic way. We begin by formulating a variant of the standard marker lemma for
countable Borel equivalence relations (see, for instance, [33, Lemma 6.7]).

Lemma F.11. Let I" ~ X be a Borel action of a countable group on a standard Borel
space X. For every Borel set C C X, there is a decreasing sequence (Cy,), of Borel
subsets of C such that C C T - Cy, for each n, and the set (,, C,, intersects the I"-orbit
of every x € X in at most one point. Furthermore, if all orbits of T are infinite, the
sets Cy, can be chosen to have an empty intersection, (), C, = @.

The following result is essentially due to H. Dye [15], where it is called Maharam’s
lemma.

Theorem F.12 (Maharam’s lemma). Let I' < Aut(X, u) be a countable subgroup. The
following are equivalent:
(1) T is aperiodic;
(2) for any A € MAIg(X, u) and any Mr-measurable function f : X — [0, 1]
satisfying f < ur(A), there is B C A, B € MAlg(X, u), such that ur(B) = f.

Proof. Let us start with the simpler implication (2)=(1), which is proved using a
contrapositive argument. Assume that (1) fails, meaning that I" is not aperiodic. Let
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n € N be an integer such that the I'-invariant set X,, = {x € X : |I" - x| = n} has non-zero
measure. We may assume that X bears a Borel total order (for instance, by identifying
X with [0, 1]). Let A = {x € X,, : x = max{I" - x}} be the set of maximal points of the
n-element I'-orbits and set ¢, dom ¢ = X, \ A, to be the element of the pseudo full
group [I'] that takes every x € X,, \ A to its <-successor in the orbit I" - x. Given any
B C A, theset ||}, (,D_k(B) is I'-invariant, hence ur(l_ll';;& ¢~ *(B)) takes values in
{0, 1}. Also

n—-1
(| |7 B) Z,ur “X(B)) = nur (B,
k=0

where the last equality is a consequence of Proposition F.6. We conclude that ur(B)
necessarily takes values in {0, %}, which contradicts (2).

We now assume that I" is aperiodic and prove the direct implication (1)=(2). The
argument is based on the following claim.

Claim. For every C € MAIlg(X, u), for every Mpr-measurable not almost surely zero
f X — [0,1] such that f < ur(C), there is a non-empty B C C satistying ur(B) < f.

Proof of the claim. Let (C,), be a sequence of subsets of C given by Lemma F.11.
Note that ur(C,) — 0in L', since N, C,, = @ and the C,,’s are decreasing. Passing
to a subsequence, we may assume that the convergence ur(C,) — 0 holds pointwise.
Set B, ={x € Cy, : ur(Cy,)(x) < f(x)} and note that ur(B;,) < ur(C,) and therefore
#F(Bn) < f

Pointwise convergence ur(C,) — 0 guarantees the existence of an index n such
that u(B,) > 0, and so the set B = B,, is as required. Oclaim

The conclusion of the theorem now follows from a standard application of Zorn’s
lemma'. The latter provides a maximal family (B;);c; of pairwise disjoint positive
measure elements of MAlg(X, i) contained in A and satisfying >;c; ur(B;) < f. The
index set I has to be countable, and if B = | |;c; B; then ur(B) = Y;cy ur(B;) < f.
Assume towards a contradiction that ur (B) is not equal to f almost everywhere, and use
the previous claim to get anon null B’ C A \ B with ur(B’) < f — ur(B), contradicting
the maximality of (B;);c;. Therefore, ur(B) = f as claimed. [

We conclude this appendix with a useful consequence of aperiodicity. Recall that
in Definition 3.6, we define a potentially uncountable subgroup G < Aut(X, u) to be
aperiodic if it contains an aperiodic countable subgroup. Furthermore, this implies that
G contains a countable weakly dense aperiodic subgroup.

Lemma F.13. Let G < Aut(X, u) be an aperiodic full group. For each set B €
MAIg(X, u), there is an involution U € G whose support is equal to B.

' A more constructive version of the whole argument can be found in [38, Prop. D.1].
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Proof. LetI' < G be a countable weakly dense aperiodic subgroup of G. Then, by
weak density, M = Mg and ur = ug. Theorem F.12 thus provides A C B such that
uc(A) = uc(B)/2. We then have

uc(B\ A) = uc(B) — uc(B)/2 = uc(A),

and item (3) of Proposition F.10 provides an involution T € G satisfying T(B\ A) = A
and supp7 = (B\ A) A A =B. ]

Remark F.14. Lemma F.13 in fact characterizes the aperiodicity of full groups. If G
is not aperiodic, then there is some B € MAIg(X, ) that is not the support of any
involution. This is because its Mg-conditional measure cannot be split in half, as shown
in the proof of the direct implication in Theorem F.12.
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Derived L! full group, 47
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Disintegration of measure, 125
Dissipative transformation, 42, 123

Ergodic decomposition, 129
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Flip Kakutani equivalence, 103
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Hopf decomposition, 41
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Induced transformation, 17
Induction friendly group, 23
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— orbit equivalence, 43

— space, 116

Maharam’s lemma, 139
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Mass-transport principle, 38
Measure-preserving action, 6
— suitable, 33
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— additive, 29

— coarsely proper, 30, 111

— compatible, 109
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— large-scale geodesic, 30, 110
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Partial transformation, 6
Period of a transformation, 6
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Polish group

—amenable, 47
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— coarsely bounded, 16

— extremely amenable, 50
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— topological rank, 3
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— departure, 83
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— dissipative, 42, 123
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—induced, 17

— intermitted, 73
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