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Abstract. Given a Baumslag-Solitar group, we study its space of subgroups from
a topological and dynamical perspective. We first determine its perfect kernel (the
largest closed subset without isolated points). We then bring to light a natural partition
of the space of subgroups into one closed subset and countably many open subsets
that are invariant under the action by conjugation. One of our main results is that
the restriction of the action to each piece is topologically transitive. This partition
is described by an arithmetically defined function, that we call the phenotype, with
values in the positive integers or infinity. We eventually study the closure of each open
piece and also the closure of their union. We moreover identify in each phenotype a
(the) maximal compact invariant subspace.

1. Introduction and presentation of the results

The Baumslag-Solitar group of non-zero integer parameters m and n is defined by the
presentation

(1.1) BS(m,n) = (b,t|tb™t"" = b").

These one-relator two-generators groups were defined by Baumslag and Solitar [2] to pro-
vide examples of groups with surprising properties, depending on the arithmetic properties
of the parameters.
It results from the work of Baumslag and Solitar and of Meskin [24] that the group
BS(m,n) is
¢ residually finite if and only if |m| = 1 or |n| = 1 or |m| = |n|;
* Hopfian if and only if it is residually finite or m and n have the same set of prime
divisors.
The group BS(m, n) is amenable if and only if |m| = 1 or |n| = 1, and in this case, it is
metabelian. All Baumslag-Solitar groups however share weak forms of amenability: they
are inner-amenable [27] and a-T-menable [17].

Mathematics Subject Classification 2020: 20E06 (primary); 20E08, 20F65, 37B05 (secondary).
Keywords: Baumslag-Solitar groups, space of subgroups, perfect kernel, topologically transitive actions,
Bass-Serre theory.



2 A. Carderi, D. Gaboriau, F. Le Maitre and Y. Stalder

Over the years and despite the simplicity of their presentation, these groups have served
as a standard source of examples and counter-examples, sometimes to published results
(). They have been considered from countless different perspectives in group theory and
beyond.

Various aspects concerning the subgroups of the BS(m, n) have been considered such
as the growth functions of their number of subgroups of finite index with various properties,
or such as a description of the kind of fundamental group of graphs of groups that can be
embedded as subgroups in some BS(m, n); see for instance [13, 18, 22].

In this article, we consider global aspects of the space Sub(BS(m, n)) of subgroups of
the BS(m, n) and of the topological dynamics generated by the natural action by conjuga-
tion.

1.1. The perfect kernel

Let T" be a countable group. We denote by Sub(I") the space of subgroups of I'. If one
identifies each subgroup with its indicator function, one can view the space Sub(I") as
a closed subset of {0, 1}'". Thus Sub(T") is a compact, metrizable space by giving it the
restriction of the product topology. See Section 2.2 for the generalities about Sub(T").

By the Cantor—Bendixson theorem, Sub(I") admits a unique decomposition as a disjoint
union of a perfect set, called the perfect kernel K (I") of I', and of a countable open subset.
It is a challenging problem to determine the perfect kernel of a given countable group.

When I is finitely generated, the finite index subgroups are isolated in Sub(I"). It is thus
relevant to introduce the subspace Subj.(I") consisting of all infinite index subgroups of
I'. It is a closed subspace of Sub(T") exactly when I' is finitely generated (see Remark 2.3).

Our first main result completely describes the perfect kernel of the various Baumslag-
Solitar groups. When |m| = |n|, the subgroup generated by »" is normal; let us denote by
7 the corresponding quotient homomorphism

BS(m,n) = BS(m,n)/(b™).

We also denote by 7 the map it induces between the spaces of subgroups of BS(m, n) and
BS(m,n)/{b"™).

Theorem A (Perfect kernel of BS(m, n), Theorem 5.3). Let m,n € Z \ {0},
(1) if |m| =1 or |n| =1, then K(BS(m, n)) is empty;
(2) if |m|, |n| > 1, then
(a) if|m| # |n|, then K(BS(m,n)) = Sub[e](BS(m, n));
(b) if m| = |n|, then K(BS(m,n)) = n~" (Subjeo] (BS(m, n)/(b™))).

The fact that Sub(BS(m, n)) is countable when |m| = 1 or |n| = 1 (Item 1), i.e. for the
Baumslag-Solitar groups that are metabelian, was already observed by Becker, Lubotzky,
and Thom [3, Corollary 8.4]. Fortuitously or not, it turns out that the equality K (BS (m,n)) =
Sub|] (BS(m, n)) holds exactly when BS(m, n) is not residually finite.

There is a general correspondence between the transitive pointed I'-actions and the
subgroups of I'. It sends an action « to the stabilizer of its base point. This '-equivariant map
is a bijection when one considers the actions up to pointed isomorphisms (see Section 2.2).
Item 2 of Theorem A has a unified reformulation in this setting:
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2 if |ml, |n| > 1, then K(BS(m, n)) is the space of subgroups A such that the right

BS(m, n)-action on A\BS(m, n) has infinitely many {b)-orbits.

Note that this exactly means that the quotient of the A-action on the standard Bass-Serre
tree (see Section 2.3) of BS(m, n) is infinite.

Let us now give some more context for Theorem A. By Brouwer’s characterization of
Cantor spaces, the space K(I') is either empty or a Cantor space. It is empty exactly when
Sub(T") is countable. This happens for example for groups all whose subgroups are finitely
generated, also known as Noetherian groups. For instance all finitely generated nilpotent
groups and more generally all polycyclic groups have a countable space of subgroups.

On the opposite side, for the free group with a countably infinite number of generators,
no subgroup is isolated, thus K'(Fs) = Sub(F) (see [11, Proposition 2.1]).

There are some classical groups for which we know that K(I') = Subje(I'). This is
the case for the free groups F,, (for 1 < n < o0), see for instance [11, Proposition 2.1]. This
is also the case for the groups with infinitely many ends, for the fundamental groups of the
closed surfaces of genus > 2, and for the finitely generated LERF groups with non-zero
first £2-Betti number (see [1]). Recall that a group I' is LERF when its set of finite index
subgroups is dense in Sub(T") (see for instance [19, Theorem 3.1]).

Bowen, Grigorchuk and Kravchenko established that the perfect kernel of the lamp-
lighter group (Z/pZ)" 1 Z = (&z(Z/ pZ)™) = Z (for a prime number p) is exactly the space
Sub(®z(Z/pZ)") of subgroups of the normal subgroup [7, Theorem 1.1]. Skipper and
Wesolek uncovered the perfect kernel for a class of branch groups containing the Grig-
orchuk group and the Gupta—Sidki 3 group [26].

The perfect kernel can be obtained by successively, and transfinitely, removing the
isolated points, thus obtaining for every ordinal « the a-th Cantor-Bendixson derivative
Sub(I")(®) := Sub(I')#) \ {isolated points of Sub(I")#)} if @ = B + 1, and Sub(I")(®) :=
MNp<a Sub(I) (B) if @ is a limit ordinal. The Cantor—Bendixson rank rkcg (') of I is the
first ordinal ¢ for which the derived space Sub(I") () has no more isolated points, and is thus
equal to the perfect kernel (see for instance [20, Section 6.C] for details). When |m|, |n| > 1
and |m| # |n|, then Theorem A implies that rkcg(BS(m, n)) = 1. The determination of the
Cantor-Bendixson ranks rkcg (BS (m, n)) for the other cases is postponed to the sequel [6].

1.2. Dynamical partition of the perfect kernel

The compact space of subgroups Sub(I") is equipped with the continuous action of I" by
conjugation: A -y := y~!Ay. The perfect kernel is I'-invariant. This action is of course
not minimal in general, even when restricted to the perfect kernel: the latter may contain
normal subgroups and these subgroups are fixed points! However, the first three named
authors observed a particularly nice feature in the case of the free group F,, (for 1 < n < oo0):
the action K (F,) v~ F,, is topologically transitive (which means that the space admits a
dense G subset of points whose individual orbits are dense). These F,,-actions are called
totipotent, see [11].

To our surprise, we uncovered a dramatically different and very rich situation for the
Baumslag-Solitar groups.

Theorem B. Whenever |m|, |n| # 1, the perfect kernel K (BS(m, n)) admits a countably
infinite partition into BS(m, n)-invariant and topologically transitive subspaces. For the
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induced topology on K (BS(m, n))), one of the subspaces is closed; all the other ones are
open.

Theorem B follows from Proposition 5.8 and Theorem 5.14. In a further work [16], we
show that topological transitivity can be upgraded to high topological transitivity.

From now on in this introduction, we stick to the case |m| # 1 and |n| # 1. In order to
describe the partition in Theorem B, we introduce a new invariant: the phenotype.

The relation t6™b~! = b™ imposes some arithmetic conditions between the cardinalities
of the b-orbit of a point x and the b-orbit of x¢. For instance, the b-orbit of x is infinite if
and only if the b-orbit of xt is infinite.

In Definition 4.1, we introduce a function Ph,,, ,,: Z5| U {0} — Z5| U {co} called the
(m, n)-phenotype, with the following property, which directly follows from Proposition
4.6, Theorem 4.13 and Proposition 3.22:

Theorem C. Whenever |m|, |n| # 1, there is a transitive BS (m, n)-action with two b-orbits
of cardinal k and € respectively if and only if Ph,, ,,(k) = Ph,, ,, ().

If for instance m and n are coprime, the phenotype Ph,, , (k) of any natural number
k € Z> is obtained as k expunged of all its prime divisors that appear in either m or n.
The general form is more complicated, see Definition 4.1 and Example 4.3, but it follows
readily from Definition 4.1 that Ph,, ,,(q) = ¢ for every g > 1 that is coprime with m and
n. Hence, the set of possible (m, n)-phenotypes

Qm,n = {th,n(k): ke ZZI} U {Oo}

is always infinite.

Theorem C allows us to define the phenotype of a transitive BS(m, n)-action as the
common (m, n)-phenotype of the cardinalities of its b-orbits. Then, we define, the pheno-
type Ph(A) of a subgroup A € Sub(BS(m, n)) as the phenotype of the (right) BS(m, n)-
action on the homogeneous space A\BS(m, n).

Notice that the BS(im, n)-actions on A\BS(m, n) and (g~'Ag)\BS(m, n) are isomor-
phic (both are transitive with some point stabilizer equal to A), so they have the same
phenotype. Hence, the partition

(1.2) Sub(BS(m, n)) = |_| Ph'(q)

qEQm,n

is invariant under the BS(m, n)-action (recall this is the action by conjugation). Let us
mention from Proposition 5.8 that
+ for each finite ¢ € Q.. the piece Ph™!(g) is open; it is also closed if and only if
Im| = |nl;
+ the piece Ph™!(o0) is closed but not open.
In particular, the function Ph: Sub(BS(m,n)) — Zs; U {+c0} is Borel. It is continuous if
and only if |m| = |n|.
It now follows from Theorem 5.14 that the restriction of the partition (1.2) to the perfect
kernel

(1.3) KBS(m,n) = | | K, (BS(m,n)),

GEQum.n
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where K, (BS(m,n)) := K(BS(m,n)) N Ph~!(g), satisfies all the conclusions of Theorem
B. The pieces K, (BS(m, n)) are indeed non-empty, see Remark 5.12.

1.3. Approximations by subgroups of other phenotypes

We still stick to the case |m| # 1 and |n| # 1. Since the only non-open piece in partition
(1.2) is Ph™!(c0), the subgroups of infinite phenotype are the only ones which can be
approximated in Sub(BS(m, n)) by subgroups of other (that is, finite) phenotypes.

The set of limits of subgroups of finite phenotype depends on whether we fix the phe-
notype or we let it vary. About approximations by subgroups with a constant phenotype,
we have the following result (see Proposition 5.8 and Theorem 6.2).

Theorem D. Assume |m|, |n| # 1 and let us fix a finite (m, n)-phenotype q.
(1) If|m| = |n|, then Ph™'(q) is closed, hence no infinite phenotype subgroup can be
approximated by subgroups of phenotype q.
(2) If |m| # |n|, then an infinite phenotype subgroup A can be approximated by sub-
groups of phenotype q if and only if A < (b)), where (b)) is the normal subgroup
generated by b.

It is remarkable that the set Ph™!(¢) N Ph™! (o) is independent of ¢ in the previous
result.

Allowing the finite phenotype to vary yields new limit points. Our result is the following
(see Proposition 6.7 and Corollary 6.11).

Theorem E. Assume |m|, |n| # 1.
(1) If |m| = |n| then every infinite phenotype subgroup is a limit of finite (and varying)
phenotype subgroups.
(2) On the contrary, if |m| # |n|, then the set of subgroups in Ph™' (co) which are limits
of finite (and varying) phenotypes subgroups has empty interior in Ph™! (c0).

Therefore, in the case |m| = |n|, all subgroups of infinite phenotype are limits of sub-
groups of finite phenotype, but none of them is a limit of subgroups of fixed finite pheno-

type.

The case |m| # |n| is more complex. We do not have a nice description of the limit set
from the above theorem. We can show however that this limit set is strictly larger than its
fixed phenotype counterpart, see Proposition 6.12 and Theorem 6.14.

1.4. Closures of orbits in finite phenotype

We still stick to the case |m| # 1, |n| # 1, and assume moreover |m| # |n|. The previous
subsection shows that for any finite phenotype g, we have

Ph~'(¢) € Ph'(¢) € Ph !(g) UPh! ().

Theorem B further yields that Ph™'(g) contains dense orbits. For such an orbit O, one

has O = Ph™! (q), thus O intersects Ph~! (00). In fact, Theorem D completely described
O. We now turn our attention to the orbits whose closure is contained in Ph™'(¢). Quite
remarkably, they form a compact set.
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Theorem F (see Theorem 5.20). Suppose |m|, |n| # 1 and |m| # |n|. For every finite phe-
notype q, there is a positive integer s = s(q,m, n) such that the subset

MC, =Ph™'(q) N {A € Sub(BS(m,n)): A > (b*)}

is compact and contains all the invariant compact subsets of Ph™'(g).

In particular every normal subgroup of phenotype ¢, and hence every finite index
subgroup, contains (b*)). Moreover, MC, N K, (BS(m, n)) has empty interior in the cor-
responding piece of the perfect kernel K, (BS(m, n)) (Theorem 5.20-(4)).

When gcd(m, n) = 1, the above theorem takes an easier form: s = ¢ and MC, N
K(BS(m,n)) ={{b?))}. In particular, (b)) is the unique normal subgroup of phenotype
¢ and infinite index, see Theorem 5.20-(5). On the other hand, if gcd(m, n) # 1, then the
perfect kernel contains continuum many normal subgroups of phenotype ¢, see Theorem
5.26.

1.5. An example: the case of BS(2,3)

Let us specialize our theorems to the case of BS(2, 3). An illustrative picture is given in
Figure 1.

------- Finite index subgroups

Infinite index subgroups
with finite phenotype
. Perfect
Infinite index subgroups k 1
with infinite phenotype erne
2 Unique normal subgroup
of a given phenotype

Figure 1. The space of subgroups of BS(2, 3)
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Since 2 # 3, Theorem A tells us that K(BS(2,3)) = Sub||(BS(2,3)). In this case the
phenotype is given by the following simple formula

Ph(A) = 21131157
where / is the index 1 := [(b) : AN (b)], and where |I|,, denotes the p-adic valuation of
1 subject to the convention that [eo|,, = 0.

Therefore, the possible phenotypes for subgroups of BS(2, 3) are given by all the posi-
tive integers not divisible by 2 and 3, and infinity. Denoting K, = {A < BS(2,3): Ph(A) =
q}, the partition (1.3) becomes

K(BS(2,3)) = Koo Ul || %,.
q: ged(q,2)=ged(g,3)=1

By Theorem B, the action on each K, is topologically transitive. Note that all finite index
subgroups have finite phenotype. The set K is closed and colored in black in Figure 1;
the subsets K, are open and colored in gray in the figure. Finally the finite index subgroups
are denoted by the dotted lines. Note that there are infinitely many finite index subgroups
and they accumulate on the sets K.

Note that for every finite g, the set VTq N K is non-empty and independent of ¢; indeed
by Theorem D this is the set of subgroups of infinite phenotype contained in ((b)). This
set is illustrated as the black central disk in the figure. As one can guess in the figure,
Uy finite K N Ko 1s strictly bigger than this set, and yet not the entirety of K., as prescribed
by Theorem E.

We finally apply Theorem F. Since gcd(2, 3) = 1, for every finite phenotype g the
largest compact invariant subset of K, consists only of one point: the unique normal sub-
group contained in K, namely (b9)), pictured with a small star in the figure. Moreover,
MC, consists of the finite index subgroups of phenotype g represented by the dotted lines
emanating from the star together with the single accumulation point (b)) of MC,.

Remark. Figure | is actually quite general: as soon as |m| # |n|, we have the exact same
picture except that the possible phenotypes are different, and the stars turn into bigger com-
pact maximal invariant subsets. Moreover, the phenotype is given by a more complicated
formula.

1.6. Some ideas on the techniques of proofs

The definition of the topology on the space of subgroups leads us to look at the restriction
of transitive actions to some part of their Schreier graph and then on assembling such parts
from different actions (to form new actions): this leads us to the notion of pre-action, as
considered in [14], where to facilitate the verification of the group relation, we impose
that b is defined everywhere, i.e. on the whole domain of the pre-action (see Section 3.1).
These pre-actions are more malleable but the algebraic conditions underlying them still
make them difficult to manipulate.

This is why we further downgrade the data and move on to purely combinatorial objects
associated with actions and pre-actions: the (m, n)-graphs (Section 3.3). These are ori-
ented graphs which carry labels on the vertices and on the edges and which satisfy simple
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arithmetic conditions linking degrees and labels (Definition 3.12, equalities (3.13) and
inequalities (3.14)). They generalize the Bass-Serre graphs of pre-actions used in [14] by
adding their labels which record the size of the orbits of b, b™ or b™ according to the graph
element considered. Notice that in [14] the b-orbits were assumed to be infinite.

All the vertex labels of a connected (m, n)-graph have the same (m, n)-phenotype
(Proposition 4.6) which is thus defined to be the phenotype of the graph (Definition 4.8).

At this level, we can consider assembling together different parts (originating from
different actions). Consider two connected (m, n)-graphs that are non-saturated (at least
one of the inequalities (3.14) is strict), then they can appear as subgraphs of the same
(m, n)-graph as soon as they have the same phenotype (Theorem 4.13). This relies on two
basic constructions, the Welding Lemma 4.16 and the Connecting Theorem 4.17.

We then proceed by upgrading from (m, n)-graphs to pre-actions and actions (Propo-
sition 3.23). These upgrades are not uniquely determined, however if an (m, n)-graph G,
contains the (m, n)-graph G; of a pre-action a1, then the upgraded pre-action a, can be
chosen to extend a; (Proposition 3.23).

To summarize, we will use several times the same construction scheme: Considering
two actions, we restrict them to a large but proper part of their domain (pre-actions). We
downgrade the resulting pre-actions to (m, n)-graphs and glue them together. We saturate
the resulting (m, n)-graph and upgrade it into one action that "contains" the chosen parts
of both original actions as sub-pre-actions (Theorem 4.12).

1.7. Subsequent work

Since the first version of the present paper appeared, two preprints have enriched the picture
as follows.

On the one hand, the three last-named authors proved in [16] that the dynamics on
the pieces K, is in fact highly topologically transitive. They also studied the property of
high transitivity for transitive actions of BS(m, n): they characterized the pieces containing
subgroups A such that the action A\BS(m, n) v~ BS(m, n) is highly transitive and they
established that this property is generic in these pieces.

On the other hand, Sasha Bontemps has extended Theorems A, B and C to generalized
Baumslag-Solitar groups, where the right notion of phenotype is more subtle [5]. She also
obtained high topological transitivity results generalizing Theorem C from the aforemen-
tioned preprint [16].

2. Preliminaries and notations

In this text, we denote by Z>o = {0, 1,2, ...} the set of non-negative integers and by
Zs1 = {1,2,3,...} the set of positive integers. Given two integers k, ! € Z \ {0}, we
denote by gcd(k, 1) € Zs the greatest common divisor of k and [. We use the convention
that ged(k, o) = k and 3 = koo = co.

Let P be the set of prime numbers. Given an integer k € Z \ {0} and a prime p € P,
we denote by |k|,, the p-adic valuation of k, that is |k|,, is the largest positive integer such

that p'l» divides k.
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2.1. Graphs and Schreier graphs

All our graphs are defined as in [25]. That is, a graph G is a couple (V(G), E(G)) where
V(G) is the vertex set and E(G) is the edge set, endowed with:
e twomapss,t: E(G) — V(G) called source and target respectively;
* afixed-point-free involution E(G) — E(G),e — ¢;
such that s(¢) = t(e) and t(e) = s(e).

An orientation of the graph G is a partition E(G) = E*(G) U E~(G) whose pieces are
exchanged by the involution e +— ¢. Edges in E*(G) are called positive edges and edges
in E~(G) are negative.

Remark 2.1. In order to define an oriented graph G, it is enough to define the set of vertices
V(G), the set of positive edges E*(G), and the restrictions of the source and target maps
s, t to E*(G). Indeed, we can define E~(G) to be a copy of E*(G) and the involution
e > ¢ to be the natural identification of E*(G) with E~(G). We extend the source and
target map by setting s(&) := t(e) and t(e) = s(e).

The degree of a vertex v in a graph G, is the cardinal

deg(v) = [{e € E(G) : s(e) = v}| = [{e € E(G) : t(e) = v}|.

If G is oriented, we say that an edge e is:

e av-outgoing edge if it is positive and s(e) = v;

e av-incoming edge if it is positive and t(e) = v.

The outgoing degree deg, (v) of v is the number of v-outgoing edges while its incoming
degree deg;, (v) is the number of v-incoming edges. We clearly have deg,, (v) + deg;,(v) =
deg(v).

A subgraph G’ of a graph G is a graph such that V(G’) C V(G), E(G’) € E(G) and
the structural maps of G’ are restrictions of those of G.

Still following [25], we call circuit a subgraph isomorphic to a circular graph (of length
[ > 1) and loop a circuit of length 1. The edge of a loop is also called a loop.

A path in a graph G is a finite sequence of edges (e, ..., e,), such thatforall 1 < k <
n—1,t(ex) = s(er+1). Similarly, an infinite path is a sequence of edges (ey)r>1 such that
t(ex) = s(ex41) for all k > 1. Finally a (possibly infinite) path is called simple when the
induced sequence of vertices is injective.

The ball B(v, R) of radius R centered at a vertex v in a graph G is the subgraph induced
by the set of vertices of G at distance < R from v in the path metric.

Schreier graphs. Let I" be a group and let S be a generating set of I". Consider a (right)
action @: X v I'. The Schreier graph of « relatively to S is the oriented graph Sch(a@) =
Sch(a, §) defined by

V(Sch(e)) := X and E*(Sch(a)) = {(x,s): x € X,s € S}

where s(x, s) = x and t(x, s) = xs, together with the following labeling: the edge (x, s) is
labeled s and its opposite (x, s) is labeled by s~

Given a subgroup A < I', we denote by Sch(A, S) the Schreier graph of the natural
action A\I' T
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The Cayley graph of I' relatively to S is the Schreier graph Sch(«, S) of the action
a: T T by (right) translations. This graph is denoted by Cay(I', S) and we clearly
have Cay(I', S) = Sch({id}, S). The I'-action by left translations extends to the standard
left action of I" on Cay(I', S) by graph automorphisms '. In particular A\Cay(T’, S) =
Sch(A, S).

Let ¢: X — Y be a I'-equivariant map from a: X v I'to 8: Y v~ T and let S be a
generating set of I'. The map ¢ extends to a graph morphism from Sch(a, S) to Sch(8, S)
which respects the labelings. In particular, given subgroups A; < A, < T, the equivariant
map Aj\I' = A, \I" defines a surjective morphism Sch(A, S) — Sch(A,, §).

2.2. Space of subgroups

Let I be a countable group. We identify its set of subsets with {0, 1} and we endow it with
the product topology, thus turning it into a Polish compact space. The space of subgroups
of I is the closed, hence compact Polish, subspace

Sub(T") := {A € {0, 1}': A is a subgroup},
which is also totally disconnected. The clopen subsets
V(,0) ={AeSub(l): ICAand ANO =0}

of Sub(I") where 7, O run over finite subsets of I', form a basis of the topology. Note that
a sequence (A,),>0 of subgroups converges to A if and only if forall y € T,

(y e A) & (y € A, forilarge enough) .

By the Cantor-Bendixson Theorem [4, 10] (see e.g. [20, Thm. 6.4]), there is a unique
decomposition
Sub(I") = C(I') L K(I')

where C(I") is a countable open subset and K(I") is a closed perfect? subspace called the
perfect kernel of I'. The set (") is the largest subset K C Sub(I") without isolated points
for the induced topology. In fact, K'(I") is exactly the set of condensation points, that is,
the points whose neighborhoods in Sub(T") are all uncountable.

Remark 2.2. By atheorem of Brouwer, the space K(I') is either empty or a Cantor space,
see [20, Thm. 7.4].

Remark 2.3. The subset Sub|.(I") of infinite index subgroups of I' is closed in I if
and only if I" is finitely generated. Indeed if I is finitely generated, then its finite index
subgroups are isolated. If I is not finitely generated, its finite index subgroups are not
finitely generated, but they are limit points of finitely generated (thus of infinite index)
subgroups; so Sub[(I") is dense in Sub(I").

'This is why Schreier graphs were defined with respect to right actions.
2A topological space is called perfect if it has no isolated points.
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The group I acts (on the right) by conjugation via A - y := y~'Ay on the space of
its subgroups Sub(I"). This action is continuous and the Cantor-Bendixson decomposition
Sub(I") = C(I") UK(T") is '-invariant.

By the Baire category theorem, any countable closed subset of Sub(I") contains an iso-
lated point, so Sub(I") has trivial perfect kernel if and only if it is countable. The following
well-known proposition is useful for showing the latter property.

Proposition 2.4. Let I" be a countable group, let N be a normal subgroup of T such that
I'/N is Noetherian (all its subgroups are finitely generated), and assume that Sub(N) is
countable. Then Sub(T") is countable.

Proof. Let A <T and denote by 7: I" — I'/N the quotient map. Since I'/N is Noetherian,
we have 7(A) = (S) for some finite set S. Fix a finite set §” C A such that 7(S’) = S. Then
we can recover A from S’ and its intersection with N as

A=(S"U(ANN)).

In other words, the map (S, N”) — (S U N’) surjects P (I") X Sub(N) onto Sub(I"), where
P () is the set of finite subsets of I', which is countable. Since Sub(XN) is countable as
well we conclude that Sub(T") is countable. ]

Corollary 2.5. If |m| = 1 or |n| = 1 then Sub(BS(m, n)) is countable.

Sketch of proof. We sketch the proof contained in [3, Cor. 8.4]. By symmetry we may as
well assume m = 1. Then BS(m, n) is isomorphic to the semi-direct product Z[1/n] < Z
where Z acts by multiplication by n. As explained in the proof of [3, Cor. 8.4], Sub(Z[1/n])
is countable, so the result follows from the previous proposition. ]

Space of pointed actions. Let us now interpret the topological space Sub(I") in terms
of pointed transitive group actions and their pointed Schreier graphs. Given any pointed
transitive group action (@, v), where @ : V v~ T" and v € V, we associate to it the stabilizer
Stab, (v) € Sub(I'), and we notice that Stab,, (v;) = Stabg, (v2) if and only if (@, v;) and
(a2, v7) are isomorphic as pointed transitive actions.

Notation 2.6. We denote by [, v] the isomorphism class of any pointed transitive action

(a,v).

We therefore have a canonical bijection [a, v] + Stab, (v) between the collection of
isomorphism classes of pointed transitive actions and Sub(T"). Its inverse is given by A —
[A\I" T, A]. Through this bijection, the action by conjugation of I" on Sub(I") becomes
[a,v] -y = [a,va(y)], i.e., it moves the basepoint.

Via the above identification, we obtain a topology on the set of isomorphism classes of
pointed actions [a, v].

It is clear that two pointed actions are isomorphic if and only if their Schreier graphs are
isomorphic as pointed labeled graphs. Given two pointed labeled oriented graphs (G, v),
(H,w) and a positive integer R, we write (G, v) ~g (H,w) to mean that the R-balls around
vin G and around w in H are isomorphic as pointed oriented labeled graphs. It is an exercise
to check that if I" is generated by a finite set S, then the sets of the form

2.7 N(|a,v],R) = {[a/’,v’]: (Sch(a, S),v) =g (Sch(a/,S),v’)},
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constitute a basis of clopen neighborhoods of [a, v].

2.3. Bass-Serre theory

Associated with the standard HNN-presentation of
BS(m,n) = (b,t[tb™t™" = b"),

we have the BS(m, n)-action on its Bass-Serre tree 7. Recall that 7~ is the oriented tree
with V(7)) = BS(m, n)/{b), E*(T) = BS(m,n)/{b"),

s(y (b)) =y (b), and t(y (b")) =y (b)

and given a subgroup A < BS(m, n), the quotient A\7 has the structure of a graph of
groups whose fundamental group is A, see [25].

Remark 2.8. Let A < BS(m, n) be a subgroup. If A N (b) = {id}, then A acts freely on
7, thus it is the fundamental group of the quotient graph A\7", hence A is a free group.

Let us now concentrate on a subgroup A < BS(m, n) such that A N (b) # {id}. Then
for the induced action A ~ 7, each edge and vertex stabilizer is infinite cyclic: the tree 7~
is a GBS-tree (for Generalized Baumslag-Solitar), in the sense of [15, 21]. One can use this
point of view to understand the graph of groups description of A. However, taking advantage
of the transitivity of the BS(m, n)-action on the edges and the vertices, we provide a slightly
more precise description.

Proposition 2.9. Let m and n be non-zero integers. Let A < BS(m, n) be a subgroup such
that A N {b) # {id}. The quotient graph of groups arising from the action A ~ T is iso-
morphic to the graph of groups obtained by attaching a copy of Z to every vertex and every
edge of the quotient graph A\T, with structural maps of positive edges

n

Ze — 7. , k> —m 88 — -k
s degoy (s(e))
m
Ze — 7 , k> —m— -k
te deg;, (t(e))

Proof. In this proof we set I' := BS(m, n). Let us consider the action of A on the tree 7.
Since 7™ is locally finite, any edge adjacent to a vertex with infinite stabilizer has itself infi-
nite stabilizer. It follows that all vertex and edge A-stabilizers are infinite. Being subgroups
of the I'-stabilizers, they are all isomorphic to Z.

Observe that since I acts transitively and the I"-stabilizers are abelian, the I'-stabilizers
are canonically pairwise isomorphic: given any vertex u € V(7)) and a € Stabr(u), one
has

(2.10) gag™' = hah™' forany g, h € I such that gu = hu.
Indeed since h~'g € Stabr(u), we get that h~'gag™'h = a.

We now focus on the quotient graph of groups arising from the action A ~ 7. Let
us recall from [25] that its vertex groups are G, := Staby () and edge groups are G, :=
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Staby (€), where 7, ¢ are some lifts of v, ¢ in 7. Given any e € E*(A\7), the structural
map G, — Gy 18

G, = Stabp (&) > Staba(t(¢)) — StabA({(E))zct(e)

a — a [ gag_l

@2.11)

where g € A is any element such that g - t(¢€) = t—(?) and the map G, < G, is similar.
This is unambiguous by (2.10).

Let us call orientation of an infinite cyclic group the choice of one generator (over
two). This provides an identification to Z. Once every stabilizer is oriented, the inclusions
Ge = Gs(e) and G, > Gy(e) become multiplications by non-zero integers A (e) and
A7 (e), respectively. It now suffices to prove that, for well-chosen orientations, one has

m

2.12) Ax(e) = deg;, (t(e))

n
————and A% (e) =
deg,y (s(e)) A
for every positive edge e € E*(A\T).

Let us first observe that the absolute value of 2; (¢) does not depend on the orientations:
it is equal to [G, : G.]. In other words, if € is a lift of e, ¥ := s(é) = and @ = t(¢é), we
have

(2.13) |13 (e)| = [Staba (D) : Staba(€)] = |Staba (D) - €]
(2.14) |43 (e)| = [Staba () : Staba(€)] = |Staba () - €] .

Let Eqy (D) be the set of 5-outgoing edges. Its cardinal is | Eqy (7)| = |n|. Any generator
of Stabr(7) acts as a single |n|-cycle on Eqy (7). Hence Eqy (9) splits into Staby (#)-orbits
of equal size, that is |/l/‘\(e)| according to (2.13). The number of these Staby (9)-orbits is
deg,,(v), thus |n| = |/l/‘\(e)| - deg,,(v). We obtain similarly |m| = |/l:'\(e)| -deg;, (w), using
incoming edges and (2.14). We have established that (2.12) holds in absolute value.

Let us now turn to the signs in (2.12), for which we need explicit orientations of the
A-stabilizers. We actually start by orienting the I'-stabilizers.

Pick the vertex i := (b) € V(7"), then Stabr(iip) = (b) and the edge d := (b") € E*(T")
has source 7ig and target tiiy. Since the I'-stabilizers are canonically pairwise identified by
conjugation (2.10), these choices induce a canonical conjugation-invariant orientation x.
of all the vertex and edge I'-stabilizers: xg, = gbg~! for Stabr(giip) and Xody = gb"g™!
for Stabr(gdp).

The inclusions Stabr(€) < Stabr(s(€)) and Stabp(é) < Stabr(t(é)) become mul-
tiplications by non-zero integers that we denote by up(é) and uj-(é). We have up(é) = n
since xg = x:(é) and pj.(€) = m since

xe=gb"g ™ = g(tbt™ )"~ =X,

The A-stabilizers have finite index in the corresponding I'-stabilizers. We orient them
coherently with the ambient I"-stabilizers by using positive powers. The A-conjugations
between A-stabilizers remain orientation-preserving, therefore by (2.11) the inclusion map
Staby (é) < Stab (t(é)) becomes the multiplication by A7 (e). Similarly, the inclusion
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Staby (é) < Staba(s(€)) becomes multiplication by A (e). Since the orientations are
coherent, we conclude that A} () has the same sign as u-(e) = n and A7 (e) has the same
sign as uf-(e) = m. L]

Corollary 2.15. Let m and n be non-zero integers. Let A < BS(m, n) be a subgroup such
that A N {b) # {id}. The isomorphism type of A is completely determined by the oriented
graph A\T. ]

Proposition 2.16. Let m and n be non-zero integers and let A < BS(m, n) be a subgroup.
(1) If AN (b) # {id}, then either A ~ Z is virtually a subgroup of (b) or A is not a
free group.
(2) If Im| = 1 or |n| = 1, then the fundamental group of the underlying graph A\T is
a free group of rank < 1.

If AN (b) = {id}, then A is the fundamental group of the underlying graph A\7 (see
Remark 2.8).

The first item of the proposition follows from standard techniques in £2-cohomology:
if AN (b) # {id}, then A is the fundamental group of a graph of groups whose vertex and
edge groups are isomorphic to Z; all the £2-Betti numbers of such a group vanish. For the
comfort of the reader we propose a proof by hand.

Proof. We start with the first item. Recall that in a free group F, whenever non-trivial
elements g, h € F satisfy ghkg~! = h! with k # 0 # [, then there is a € F such that g, h are
both powers of a. In particular, such elements g, & always commute.

Now, assume that A is free and A N (b) # {id}, say A N (b) = (b*) where s > 0. Pick
any A € A and set H, := (b*) N A1(b*) 17!, which is the intersection of A with the stabilizer
of the geodesic [(b), A (b)] in 7. Observe that H, is a finite index subgroup of both (b*)
and A (b*) A", Therefore, there are k # 0 # [ such that 1b°*1~! = bs!. As A is free, A and
b® commute.

Consequently, the center of A contains (b*). Thus, the rank of A is 1; in other words A
is infinite cyclic. It is now clear that (b*) has finite index in both A and (b), so A is virtually
a subgroup of (b).

Let us turn to the second item. The fundamental group of a graph of groups surjects
onto the fundamental group of the underlying graph. The condition in Item 2 implies the
amenability of BS(m, n). Its subgroups thus cannot surject onto a non-amenable free group.

L]

3. Bass-Serre graphs

3.1. Pre-actions

Let m,n € Z\ {0} and BS(m,n) = (b,t | tb™ = b"t).

Recall that a partial bijection of a set X is a bijection between two subsets of X. Our
actions are on the right; thus in a product of (partial) bijections o7, the transformation o
is applied first.

Definition 3.1. Given a bijection 8 of a set X and a partial bijection 7 of X, we say that 7
is (8", B™)-equivariant if 73™ = "t as partial bijections, that is:
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e dom(r) is B"-invariant;

e rng(7) is f™-invariant;

e xtfB™ =xpB"7 for all x € dom(7).

A pre-action of BS(m, n) on a set X is a couple (3, 7) where S is a bijection of X and
T is a (8", f™)-equivariant partial bijection of X. The set X is called the domain of the
pre-action. Such a pre-action is saturated if dom(7) = X = rng(7).

Remark 3.2. Saturated pre-actions (3, 7) correspond to actions @ of BS(m, n) on the same
set X under the association 8 < a(b) and T < (7).

Definition 3.3. Given a pre-action (3, 7) of BS(m, n), its Schreier graph is the oriented
labeled graph Sch(B, 7) = G defined by

_ E*(G) = X x {b} udom(7) X {1},
vig) =X, { E~(G) = X x{b~"}urng(r) x {r"'},

where the label of any edge is its second component and:
e forall x € X, we set

s(x,b) = x, t(x,b) := xB, and (x,b) = (xB,b7");

e forall x € dom(t), we set

s(x,1) = x, t(x,1) = x7, and (x,1) = (x7,17}).

Notice that the orientation of any edge (x, /) is determined by its label [ and that the
source of (x,/) is x, regardless of its orientation.

Noting that a BS(m, n)-action is transitive if and only if the associated Schreier graph
is connected, we make the following definition.

Definition 3.4. A pre-action of BS(m, n) is transitive if its Schreier graph is connected.

3.2. Bass-Serre graphs

We now introduce an important tool for our study. It is the labeled graph obtained from
the Schreier graph defined in Section 3.1 by “shrinking each S-orbit to one point”. We
identify together the ¢-edges whose initial vertices belong to the same " -orbit. Note that
their terminal vertices automatically belong to the same ™ -orbit.

We label the vertices by the cardinality of the corresponding B-orbit and the edges by
the cardinality of the corresponding S"-orbit. This is illustrated by Figure 2. The formal
definition is as follows.

Definition 3.5. The Bass-Serre graph associated to a pre-action a = (8, 7) of BS(m, n)
on a set X is the oriented labeled graph BS(«) defined by

_ E*(BS(a)) = dom(r)/{B") .
V(BS(@)) = X/(B). { E~(BS(a)) := mg(7)/ (8™ .

For every x € dom 7, we set

s(x(B") =x(B), t(x(B")) = x7(B), and x (B") := x7 (B") =x (B") 7.
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We define the label map L: V(BS(«a)) U E(BS(@)) — Z5; U {co} by

L(x(B)) = Ix(BI. L&x(B")) =B, Ly{B™) =IyB"I.

Remark 3.6. For any x € dom(7), the (8", 8™)-equivariant partial bijection 7 induces a
bijection from x{B") to x7{(B™). Thus both the target and the opposite maps of BS(«) are
well-defined and the label of each edge is equal to the label of its opposite.

Remark 3.7. We view the sets E*(BS(«)) and E~(BS(«)) as disjoint sets, even though
we might have that dom(7)/(B8") N rng(7)/(B™) # 0. Note that the source of an edge
x (Bk) € E*(BS(a)) is x (B) regardless of its orientation.

Remark 3.8. The groups BS(m, n) and BS(n, m) are isomorphic via b +> b and t > ¢~ 1.
For every pre-action (8, 7) of BS(m, n), the couple (3, 7!) is a pre-action of BS (1, m). At
the level of Bass-Serre graphs, BS(,7) and BS(8, ') coincide, except that the orientation
is reversed.

Remark 3.9. In the case of a transitive BS(m, n)-action, the graph underlying our Bass-
Serre graph is the quotient of the Bass-Serre tree 7 by the stabilizer of any point of X, as
will be explained in Section 3.6.

We now clarify what we meant by “shrinking each S-orbit to a point”, by noting that
we have the following simplicial map from the Schreier graph to the Bass-Serre graph of
any pre-action.

Definition 3.10. The projection associated to a pre-action & = (3, 7) is the application 7,
given by
V(Sch(a)) — V(BS(«)), x = x(B)
E/(Sch(e)) — E*(BS(a)), (x,1) = x (B")
E; (Sch(@)) — E~(BS(e)), (x,17") > x(B"™)
Ep(Sch(a)) - V(BS(a)),  (x,b*') = x(B)

where EZ(Sch(a)) is the subset of edges in Sch(a) whose label is ¢ or t~! respectively
and E}, is the subset of edges whose label is b or b~!.

This projection is illustrated in Figure 2. Given any subgraph G C Sch(«) or path p in
Sch(a) we obtain a subgraph 7, (&) € BS(@) or a path 7, (p) in BS(«).
Note that for every vertex v = x (),

Wi B
k= a0

thus the following facts hold:
» all the v-outgoing edges e have the same label, which is:
L(v)

Le) = gcd(L(v),n)’
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o ——

T

2
4 <> 3
3

Figure 2. The projection from the Schreier graph onto the Bass-Serre graph of some non-saturated
transitive BS(2, 3)-pre-action. The dotted circles represent the S-orbits in the Schreier graph.

 all the v-incoming edges e’ have the same label, which is:

L
L) = @ m)

We also have the following relations between labels and degrees:

* The outgoing degree deg,,, (v) is equal to the number of 5"-orbits contained in x (8) N
dom(7). Recall that dom(7) is 8" -invariant. Since x (8) contains exactly gcd(L(v), n)
orbits under 5", we get

deg,,(v) < ged(L(v),n),

with equality if and only if x (8) C dom(t).
» Similarly, the incoming degree deg;, (v) is equal to the number of 8™ -orbits contained
inx (8) N rng(7), so
degin(v) < ng(L(U)s m),

with equality if and only if x (8) C rng(T).

Remark 3.11. As a consequence of the last two items, the pre-action is an action if and
only if, for every vertex v,

degoy (v) = ged(L(v),n) and  deg;,(v) = ged(L(v), m).

3.3. (m,n)-graphs

‘We now introduce an axiomatization of the Bass-Serre graphs we obtain from pre-actions.
Recall that by convention ged (oo, k) = |k| for all £ # 0.
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Definition 3.12. An (m, n)-graph is an oriented labeled graph G = (V, E) with label map
L:VUE — Zs U {0} such that:
o for every positive edge e € E*,

L) oo L)
2ed(L(s(e)), n) ged(L(t(e)),m)’

e for every negative edge e € E~, L(e) = L(&);
» for every vertex v € V, we have

(3.13)

(3.14) deg,,(v) < gcd(L(v),n) and deg;,(v) < gcd(L(v),m).

Example 3.15. The Bass-Serre graph of any pre-action of BS(m, n) is an (m, n)-graph.
The converse will be shown in Proposition 3.22.

Remark 3.16. Observe that an edge label is uniquely determined by the label of any of
its vertices. The edge labels are thus redundant and are just calculation tools (see also
Remark 4.7).

Example 3.17. Let us see how labels interact for m =2 and n = 3. If e is an edge in a
(2, 3)-graph, then once we fix the label of one of the extremities, the other one can be
chosen according to the Table 1, using Formula (3.13) for L(e). The reader is invited to
consult the webpage [12] to see the kinds of local constraints which occur in general.

If ged(L(s(e)),2) =1 If gcd(L(s(e)),2) =2
L(t(e)) € {L(e), 2L(e)} L(t(e)) =2L(e)

If ged(L(t(e)),3) =1 If ged(L(t(e)),3) =3
L(s(e)) € {L(e), 3L(e)} L(s(e)) =3L(e)

Table 1. How the label of the extremities impact each other

In Figure 3, we give an illustrative example.

Remark 3.18. As in Remark 3.8, every (m, n)-graph can be turned into an (n, m)-graph
by flipping the orientations of its edges. Note that this operation does not affect the labels.

Remark 3.19. In a connected (m, n)-graph, the labels are, either all finite, or all co by
Equation (3.13). This will be made more precise in Proposition 4.6. Observe that any ori-
ented graph G satisfying deg;,(v) < m and deg,, (v) < n for every v € V(G) becomes an
(m, n)-graph if we set all the labels to be infinite. However one cannot always put finite
labels, see Lemma 3.33.

Definition 3.20. Let G be an (m, n)-graph. A vertex v in G is saturated if the inequalities
(3.14) are indeed equalities, i.e.

degoy (v) = ged(L(v),n) and  deg,(v) = ged(L(v), m).

The (m, n)-graph G is saturated if all its vertices are saturated.
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O, O,
1 2 @

1
(a) Various choices (b) No choice for
for the label L(z(e)). the label L(z(e)).

Figure 3. Two examples of (2, 3)-graphs.

Example 3.21. The Bass-Serre graph of a pre-action of BS(m, n) is saturated if and only
if the pre-action is an action.

3.4. Realizing (m, n)-graphs as Bass-Serre graphs

Proposition 3.22. Every (m,n)-graph G is the Bass-Serre graph of at least one pre-action
of BS(m, n). Any such pre-action is an action if and only if G is saturated.

The above proposition is a consequence of the following stronger statement where by
definition, a sub-(m, n)-graph of an (m, n)-graph G is a subgraph G’ labeled by the restric-
tion of the label map of G.

Proposition 3.23 (Extension of pre-actions from (m, n)-graphs). Let G be the Bass-Serre
graph of a pre-action a| and let G, be an (m, n)-graph that contains G| as a sub-(m, n)-
graph. Then G, is the Bass-Serre graph of a pre-action a» that extends .

Proof. We start with a pre-action (1, 71) on X; which yields the Bass-Serre graph G;.
Let W :== V(G,) \ V(G1) and X, = X| U | |,ew X, where each X, is a set of cardinality
| X,| = L(v). We extend B to a permutation 3, of X, by making it act as a cycle of length
L(v) on X,.
By Zorn’s lemma, it suffices to extend 7; when G only lacks one positive G,-edge. So
suppose E*(G1) U {e} = E*(G»). Then by Inequality (3.14) in Definition 3.12,
degZ(s()) < degi(s(e)) < ged(L(s(e)).n)

out out

and similarly
deg! (t(e)) < degd’ (t(e)) < ged(L(t(e)), m).

We can thus find a 85 -orbit y <ﬁg> contained in the 3;-orbit s(e) but disjoint from dom(7;)
and a f37'-orbit z <,82m> contained in the B,-orbit t(e) but disjoint from rng(7y).
Since these two orbits y (ﬁ;‘) and z <,8£”> share the same cardinal L(e), we can define
7, as an extension of 7; which is also (85, B;')-equivariant when restricted to y <,8;1> by
letting
YBY" 1y = 785 for all k € Z.
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By construction 7, is the desired extension. |

The pre-action a; arising in Proposition 3.23 is definitively not unique in general. In
a forthcoming work, we will characterize which (m, n)-graphs arise as Bass-Serre graphs
of continuum many non-isomorphic actions. In particular we will show that the (m, n)-
graphs whose underlying graph has non-finitely generated fundamental group are of this
kind. Such (m, n)-graphs always exist as soon as |m| > 2 and |n| > 2. Here we give a simple
example of a graph associated to continuum many non-isomorphic actions for n = m = 2.

Example 3.24. Let G be the (2, 2)-graph whose underlying graph is such that V(G) = Z
and for every z € V(G) there are exactly two z-outgoing edges, one to z and the other to
z+ 1. Thatis, G is a line where every vertex has an extra loop. We set the labels of G to be
all infinite.

o (o] (o] [ee]
N N
Figure 4. The (2,2)-graph G

Set X := V(G) X Z = Z x Z. For every function f: Z — Z such that Yw < 0, f(w) =0
and f(0) # 0, we define an action a s as follows: for all (k,/) € X

(k, Dy (b) =k, 1+ 1);

(k+1,0) if [ is odd;

(k,Dag(t) = { (k,1+ f(k)) ifliseven.

It is easy to check that all @y are actions of BS(2, 2) whose Bass-Serre graph is G, that a s
and a, are non-conjugate for f # g, and that there are continuum many such actions.

3.5. Additional properties of (m, n)-graphs

In this section, we collect some basic consequences of the definition of (m, n)-graphs.
Observe that Equation (3.13) is equivalent to the fact that

(3.25) max(|L(s(e))l, —Inl,,0) = [L(e)|, = max(|L(t(e))|, —|m|,,0)

from which we obtain the following.

Remark 3.26. Consider an oriented labeled graph G = (V, E) withlabelmap L: VU E —
Zs1 satisfying L(&) = L(e) for every edge e. The labeled graph G is an (m, n)-graph if and
only if the following two conditions hold:

* for every positive edge e and every prime p such that [L(e)|, > 1,

(327 |L(s(e)l, =|L(e)], +nl, and |L(t(e))], = |L(e)|, +|m],,
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* for every positive edge e and every prime p such that [L(e)|, =0,
(3.28) 0<|L(s(e)], <Inl, and 0 <I[L(t(e))l, <|ml,.

In particular, in an (m, n)-graph, |L(s(e))|, > |n|, if and only if |L(t(e))[, > |m],,
and if one of these two equivalent conditions is met then

(3.29) IL(t(e)], = |L(s(e)), +|ml|, = Inl, .

Lemma 3.30. Fixa prime p suchthat |n|, < |m|, andlet G be an (m,n)-graph. If (ex)i=>1
is any infinite path consisting of positive edges with L(s(e1)) # o and |L(s(e1))|,, > |nl,,
then

Jim L (s(e)l, = +e.
If (er) k1 is any infinite path consisting of negative edges with L(s(e)) # oo, then

limsup |L(s(ex)), < Im], .
k—+0co

Proof. If (ex)k>1 is an infinite path consisting of positive edges such that |L(s(e1))l,, >
n|,,, then by a straightforward induction using Equation (3.29) we have that

(3.3 [L(s(ex))l, = |L(s(e))], + k(Im|, —Inl,)

for all k£ > 1. The first result follows.

For the second one, let (ex)x>1 be an infinite path consisting of negative edges. By
exchanging the roles in Equation (3.29), we have the claim: if e is a negative edge then
|L(s(e))|, > |m|, if and only if |L(t(e))|, > |nl|,; and when this occurs |L(t(e))|, =
IL(s(e))l, = |ml, +nl, .

Thus, [L(s(ex+1))], =L(t(ex))l, <|L(s(ex))l, aslongas|L(s(ex))l, > |m],. So there
must be ko € N such that |L(s(ek0))’p < |m|,, (this could have already happened for ko = 1).
From this point, we have |L(s(ek0+1))|p = |L(t(ek0))|p < |nl|, < |m|, and an inductive
use of the claim gives |L(s(ex))|, < |n|, < |m|, forall k > k. This finishes the proof. m

Remark 3.32. It follows from Equation (3.31) that any infinite path (e )] consisting of
positive edges with L(s(e1)) # oo and |L(s(e1))|, > |n|, has to be a simple path.

Lemma 3.33. If |m| > |n| and G is an (m, n)-graph with a vertex of finite label, then there
is a vertex v € V(G) such that deg;, (v) < |m]|.

Proof. Assume by contradiction that deg;,(v) = |m| for all v € V(G). Then we can build
inductively an infinite path (e;)ren consisting of negative edges with L(s(eq)) finite. By
the previous lemma this path goes through some vertex vy that |L(vo)|,, < |m],. Then
deg;, (vo) = ged(L(vg), m) < |m|, a contradiction. =
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3.6. Bass-Serre theory for BS(m, n)

Take m,n € Z~\ {0}. SetI" := BS(m,n) = (b, 1|tb™t™" = b") and put S := {b, 1}. Denote
by 7 the associated Bass-Serre tree and remark that it is the underlying oriented graph of
the Bass-Serre graph of the transitive and free action: 7 = BS(I"'  ~ T).

Besides the Schreier graph, we can associate to each subgroup A < I' two decorated
graphs:
e the Bass-Serre graph of the action A\I' ~T;
¢ the quotient graph of groups A\7 of the action A ~ 7.
Let us observe that the underlying oriented graphs of the two above decorated graphs are
the same. Indeed they are obtained as quotients of commuting actions as one can see in
the following diagram where by v~\"' (b) we mean that (b) acts only on the set of vertices,
where the /' arrows are graph morphisms obtained by quotienting by left A-actions, and
where the dashed \, arrows are projections as in Definition 3.10:

A ~ Cay(T,S) Y (b)

~ o
~o
-

~<

A\Cay(T, S) ~Y (b) Km BS(I' A~ 1)

Sch(A, S) A~V (b) AT

BS(A\I' \~T) =~ A\T

Next, observe that, BS(A\I" v~ I') being saturated, one has deg;, (v) = ged(L(v), m)
and deg,, (v) = ged(L(v), n) for every vertex v in this graph. Hence, for every edge e, one
has

L(s(e)) _ _ L(t(e))
L) ged(L(s(e)),n) = deg,,(s(e)) and (o)

Thus Remark 2.8 and Proposition 2.9 can be immediately reformulated in terms of the
labels of the Bass-Serre graph BS(A\I" v~ T') as follows:

= deg;, (t(¢)).

Proposition 3.34. Let m and n be non-zero integers. Let G be a saturated connected (m,n)-
graph and let A be a subgroup of I' = BS(m, n) such that BS(A\I' ~T) = G.
(1) If all labels of G are infinite, then A is a free group, namely isomorphic to the
fundamental group of the graph G.
(2) Ifalllabels of G are finite, then the quotient graph of groups arising from the action
N ~ T is isomorphic to the graph of groups obtained by attaching a copy of Z to
every vertex and every edge of G, with structural maps of positive edges

L L(e) .
L(s(e))

o meLe)
L(t(e))

Ze > Zs(e), k

Ze — Zt(@)s k
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Then, combining Proposition 3.34 and Lemma 3.33, we get the following rephrasing
of Corollary 2.15:

Corollary 3.35. Let m and n be non-zero integers such that |m| # |n|. Then the isomorphism
type of A < BS(m, n) depends only on the graph structure of BS(A).

Proof. Recall that if an (m, n)-graph is saturated and has only infinite labels, then all ver-
tices have incoming degree |m| and outgoing degree |n|. Lemma 3.33 thus allows us to
detect whether the Bass Serre graph of A contains infinite labels by purely looking at its
graph structure: it has infinite labels if and only if all vertices have degree |n| + |m|. The
result now follows from Proposition 3.34. ]

Remark 3.36. When |m| = |n|, the statement analogue to that of Corollary 3.35 fails since
the central subgroup A = <b2”> has the same Bass-Serre graph as the trivial subgroup {id}.

4. Phenotype

In this section, we introduce a central invariant to understand transitive BS(m, n)-(pre)-
actions: the phenotype (see Definition 4.9). We first define the (m, n)-phenotype of a natural
number. We then prove that given a transitive pre-action (7, ), all cardinalities of B-orbits
have the same phenotype.

4.1. Phenotypes of natural numbers

Recall that # denotes the set of prime numbers and that given p € # and k € Z, we denote
by |k|, the p-adic valuation of k.

Definition 4.1 (Phenotype of a natural number). Let k € Z>;. We set

Pm,n = {P eEP: |m|p = |n|p} 5
Pmn(k) = {p € P: |m|, =|n|, and |k|, > |n|p}.

The (m, n)-phenotype of k, denoted by Ph,, ,(k), is the following positive integer:

Phoa(k) =[] pHr.

PEPm.n (k)
If k = oo, we set Ph,, ,, (k) = oo.

Example 4.2. If m and n are coprime, then for every k € Z

Pmn  ={p € P: p does not divide mn}
Pmn(k) ={p € P: pdivides k and p does not divide mn} .

In this case, Ph,,_,, (k) is the greatest divisor of & that is coprime to mn.
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Example 4.3. If m =22 -32-5and n =22 - 3, then P,,,,, = P \ {3,5} and

€ P: p divides k} \ {2,3,5} if 23 does not divide k
{r p

Prun(k) =
) {{PGP:pdividesk}\{&S} if 23 divides k.

For example Ph,,, ,(2-3-7) =7 and Ph,,, ,(2°-3-7) =2 - 7.
Remark 4.4. If k, [ both have phenotype ¢, then so do their lcm and ged.
The following lemma will be useful in Section 5.

Lemma 4.5. Let g = Ph,, ,, (k) be a finite (m, n)-phenotype. Then Ph,_n{n({q}) is finite if
and only if |m| = |n|.

Proof. Assume first |m| # |n|. In this case, there is a prime number p such that |m|, # [n|,.
We get Ph,,, ,,(p'k) = g for all i, hence Ph;:n({q}) is infinite.

If |m| = |n|, then Py, = P. If k and k’ are two integers with the same phenotype,
the only primes p for which the valuations of k and k” may differ are those for which
|k|,, < |m|, and in this case |k’|,, must also be bounded by |m|,. There are only finitely
many such k’. |

4.2. Phenotypes of (m, rn)-graphs

If vis a vertex of an (m, n)-graph, we use the shorter expression “phenotype of the vertex v”
to mean “phenotype of the label of the vertex v”. The key feature of the notion of phenotype
is the following statement.

Proposition 4.6. Given a connected (m, n)-graph, all its vertices have the same (m, n)-
phenotype.

Proof. 1t is enough to check that for any positive edge e from v_ to v, the phenotypes of
v_ and v, are the same. If the phenotype of one of them is infinite, then this is a direct
consequence of Equation (3.13) from Definition 3.12. Otherwise, remark that for every
positive integer k and every p € P, p,

k
Wp >0 o pEPm’n(k).
Equation (3.13) implies
L(v-) L(vy)
77 | =|L(e ==\
2L, ~ N = [Ty, m,

and hence Py n(L(v-)) = Pmn(L(v4)). If p € Pryn(L(v-)), then L(v-) has higher p-
valuation than m and n, so

L(v-) L(vy)
ged(L(v-),n) ged(L(v4), m)

Since |n|,, = |m|,, we conclude that for all p € Py n(L(v-)) = Pm.n(L(v+)), we have
|L(v-)l, = [L(v4)], - Therefore L(v-) and L(v,) share the same phenotype. |

p

|L(v—)|p_|n|p = = |L(U+)|p_|m|p-

14




On the space of subgroups of Baumslag-Solitar groups I: perfect kernel and phenotype 25

Remark 4.7. One can prove that the edges of a connected (m, n)-graph also all have the
same (m, n)-phenotype. However, it is a coarser invariant: there are connected graphs with
different vertex phenotypes, but with the same edge phenotype. For example, fix

m=2%.32.5n=22.3

and consider the graph consisting of a single oriented edge e and its two endpoints. If the
label of its origin is L(s(e)) = 23 - 7, then

L(e) — ﬂ =2-7and th,n(L(é’)) =7

- ged(L(s(e)), n)

while Ph,,, ., (L(s(e)) =2 - 7. If instead we set the label of its origin to be L(s(e)) =2*-7,
then we get
L(e) =2%-7 and Ph(L(e)) =7

while Ph,, ,(L(s(e)) =2*-7 # 23 - 7. We will thus not use the phenotype of edges.

Proposition 4.6 allows us to define the phenotypes of connected (m, n)-graphs and
transitive BS(m, n)-pre-actions.

Definition 4.8. The phenotype of a connected (m, n)-graph G is the common phenotype
of the labels of its vertices. We denote it Ph(G).

4.3. Phenotypes of BS(m, n)-actions

Recall that a pre-action is transitive if its Schreier graph is connected, which is equivalent
to its Bass-Serre graph being connected.

Definition 4.9. The phenotype of a transitive (pre)-action « of BS(m, n) is the common
phenotype of the cardinalities Phy, , (|x (b)|) of its (b)-orbits. We denote it Ph(a).

By definition, the phenotype of any transitive (pre)-action coincides with the phenotype
of its Bass-Serre graph.

Remark 4.10. Any BS(im, n)-action with finite Bass-Serre graph and finite phenotype is
necessarily an action on a finite set whose cardinality is the sum of the labels of the vertices.

For infinite phenotype, we have the following.

Lemma 4.11. There exists an infinite phenotype transitive BS(m, n)-action with finite
Bass-Serre graph if and only if |m| = |n|.

Proof. Consider an infinite phenotype BS(m, n)-action with finite Bass-Serre graph G.
Since G is saturated, all its vertices have outgoing degree |n| and incoming degree |m|. But
there must be globally as many outgoing edges as incoming edges, so since G is finite we
must have |n| = |m]|.

Conversely if |n| = |m|, consider the bouquet of |n| circles with edges and vertices
labeled by oo, and observe that this is a connected saturated (m, n)-graph. Proposition 3.22
provides a transitive action having this labeled bouquet of circles as its finite Bass-Serre
graph of infinite phenotype. |
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4.4. Merging pre-actions

In order to establish some of the main results of this article, we will need “cut and paste”

operations on pre-actions, for instance:

e putting two prescribed pre-actions inside a single transitive action (useful for topolog-
ical transitivity properties);

¢ modifying an action so as to add or remove a circuit in its Schreier graph (useful to get
a new action that is close but distinct from the original one).

We now present these “cut and paste” operations. The main one is the following and the

rest of this section will be devoted to its proof. Other useful results will appear in the course

of the proof.

Theorem 4.12 (The merging machine). Assume |m| > 2 and |n| > 2. Let a) and a3 two
transitive non-saturated pre-actions of BS(m, n) with the same phenotype. There exists a
transitive action @ which contains copies of a1 and a; with disjoint domains.

Given a pre-action @ = (8, 7) and two sub-pre-actions ay, @, let us recall that the
domain of « is the set dom(B) = rng(B). Notice that @; and a, have disjoint domains
if and only if their Bass-Serre graphs BS(a@;) and BS(a») are disjoint (that is, have no
common vertex) in BS(«).

First, taking advantage of Proposition 3.23, we reduce to the case of (m, n)-graphs, for
which the analogous result is the following.

Theorem 4.13 (The merging machine for (m, n)-graphs). Assume |m| > 2 and |n| > 2. Let
G1 and G> be two connected and non-saturated (m, n)-graphs with the same phenotype.
There exists a connected and saturated (m, n)-graph G which contains disjoint copies of

G and G».

Remark 4.14. The hypothesis that both |m|, |n| > 2 is necessary. If m = 1 but |n| # 1,
we can consider the (1, n)-graph consisting of a single vertex with infinite label and only
one loop. This graph is not saturated but it cannot be connected to another copy of itself.
Indeed, the reader can check that the only saturated graph containing it admits a unique
circuit, namely the loop itself.

Proof of Theorem 4.12 based on Theorem 4.13. The two Bass-Serre graphs BS(a;) and
BS(a;) are connected non-saturated (m, n)-graphs with the same phenotype. Therefore
we can apply Theorem 4.13 to obtain a connected and saturated (m, n)-graph G which
contains disjoint copies of BS(a)) and BS(a3).

Then, we apply Proposition 3.23 to the pre-action @ U a,, whose Bass-Serre graph
BS(a;) UBS(a,) is contained in G, to ensure the existence of a BS(m, n)-pre-action a
which extends @ U a,. Thus a extends both @ and a, with disjoint domains. Since G
is connected and saturated, « is a transitive and saturated pre-action, i.e., it is a genuine
transitive action of BS(m, n) that satisfies the requirements of Theorem 4.12. [ ]

We now present some general results we will use in order to prove Theorem 4.13. We
begin with two easy properties of phenotypes which will be useful in the proof.
Lemma 4.15. For any k € Zs,, if q = Phy, ,(k), then Phy, ,(q) = q and gcd(q, n) =
ged(g, m).
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Proof. We get directly from Definition 4.1 that |g|,, = |k|,, if p € P n(k), and |g|, =0
for the other primes p. Consequently, we get Py, ,(g) = Pm.n(k) and then Ph,, ,(g) =
Phy, (k) = q. Finally, since every prime p dividing g satisfies |m|, = |n|, and |n|,, <|q|,,
we obtain

gedig,m = [ pMle= ] " =gedig, m). =

peP:plg peEP:plg

In the following lemma, by welding two vertices we mean taking the quotient graph
obtained by identifying these vertices. Its proof is a direct consequence of the definition of
an (m, n)-graph, so we omit it.

Lemma 4.16 (Welding lemma). Let m,n € Z \ {0} and let G be an (m, n)-graph and v, w
be two distinct vertices such that:

e L:=L()=L(w);

® degout(u) + degout(w) S ng(l’l, L)’

o degj,(v) +deg;,(w) < ged(m, L).

Welding together v and w delivers an (m, n)-graph. ]

Note that in this lemma G can be finite or infinite, connected or not. Together with the
welding lemma, the following result will allow us to connect non saturated (m, n)-graphs
via the well-known technique of arc welding.

Theorem 4.17 (Connecting lemma). Assume |m| > 2 and |n| > 2. Let k,{ € Z> such that
Phy,, (k) = Phyn n(€), and let €, e € {+, —}. There exists an (m, n)-graph G which is a
simple edge path (e, ..., ep) of length h > 1 such that:

e L(s(ey)) =kand L(t(ep)) =¢;

* the orientations of e| and e, are given by e; € E(G)** and e, € E(G)*".

Proof. Observe that every (m, n)-graph can be turned into an (n, m)-graph by flipping the
orientations of its edges. Note that this operation does not affect the labels nor its phenotype.
We thus can restrict ourselves to the case where the orientation & of the first edge in the
path is asked to be positive and no assumption is made on &;¢. Let us set g := Phy, , (k) =
Phyu(0).

We first treat the case k = g = £. Recall from Lemma 4.15 that Ph,, ,(¢g) = ¢ and that
we have gcd(m, q) = ged(n, ¢). Hence, there exists an (m, n)-graph with two vertices and a
unique positive edge fi suchthat L(s(f;)) =g =L(t(f1)),and L(f}) = #ﬂ}iq) = m.

If &¢ is positive, we are done. If not, create a vertex v with label L(v) = wdng) M- We get
ged(m, L(v)) = |m|, hence gcd(m, L(v)) > 2. Therefore, we can equip v with two distinct
incoming positive edges f1, f>. Such edges have to Pe labeled by s d(Lm(’”L) o = gcd(qn’ 77 S©
that we can label s(f1) and s(f>) by ¢, and (fi, f2) is the path we are looking for. The
theorem is thus proved for k = € = q.

Let us now treat the case k # ¢ and £ = q. Recall that P,,, ,(k) = {p € P: |m|, = |n]|,,
and |n|, < |k|p} and that Phy, » (k) = [Tpep,.,. k) p'kl> Thus any number L € Zs with

phenotype g admits a unique decomposition as follows:
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(4.18) L=gq- 1_[ p|L|1’ n plLlp_
PEPNPn(k) peP
lml, <In|, [ml,>|n|,

In a first step, we construct (algorithmically) a simple path consisting of positive edges

with vertices vy, vy, . . ., U, such that vy has label k, and such that the decomposition of
L(v,) reduces to
(4.19) L(vy)=gq- l_[ pIL@)ly,

peP: |m|p>In]|,

that is, such that |L(v,)|,, = 0 whenever |m|,, < |n|, and p ¢ Py, (k).

To do so, starting with i = 0 and L(vg) = k, while L(v;) has prime divisors p such that
|m|, < |n|, and p & P n(k), we connect v; to a new vertex v;+1 by a positive edge f;.
According to Remark 3.26, we label f; by [L(f)|, = max(|L(v;)|, — nl|,,0) and set

Lo, o= {TEED* bl IO, 2 1
i+1)1p = 0 » |L(ﬁ)|p:0

for every prime p. Then, we replace i by i + 1, which terminates the “while” loop. Notice
that we exit from the loop after finitely many steps. Indeed, given a prime p such that
|m|, < |n|, and p & Py n(k), we have:

e ceither |L(f1)|, =O0in the case |m|, = |n|, and |k|,, < |n|,, which implies |L(v;)|,, =0

foralli > 1;

s or|L(vis)|, = [L(vi)|, = |nl, + |m|, < |L(v:)|, whenever |L(v;)|,, > 1 in the case

Im|, < Inl|,.

When we exit the “while” loop, Remark 3.26 guarantees that we have constructed an
(m, n)-graph, and the loop condition guarantees that the last vertex v, satisfies |L(v,)[, =0
whenever |m|, < |n|, and p & Py n (k).

If we are lucky, we have L(v,) = ¢. If not, in a second step, we notice that the same
algorithm, exchanging the roles of m and n, produces a simple path consisting of negative
edges from a vertex wy such that L(wg) = L(v,) to a vertex wy labeled by ¢g. The decompo-
sition (4.19) of L(v,) # q also shows that gcd(m, L(v,)) > 2, so vertices labeled L(v,) can
have two distinct positive incoming edges. Using Lemma 4.16, we weld v, and wy together
and get a simple path from vy to wy.

In any subcase, we now have a path (e, . .., ey ) such that e is positive, L(s(e})) = k,
and L(t(ep)) = q. If e;+ has the orientation prescribed by &£,, we are done; if not, using
the case k = ¢ = ¢, with the first edge having the same orientation as ey, and the last one
having the orientation prescribed by &¢, we extend our path to a simple path (e, ..., ep)
with L(s(e;)) = k and L(t(ep)) = g such that ey, e;, have the correct orientations. This
concludes the case £ = g and k # q.

The case k = g and ¢ # g is obtained by exchanging the roles of k and / in the above
argument. Therefore, let us finally treat the case k # g and £ # q. The former cases furnish
paths (f1,..., fr) and (f],..., f{), that we may assume disjoint, such that

L(s(f) =k, L(t(fy)) =q=L(s(f]), L(t(f)=¢
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the orientations of f; and f; are given by &, and &, and the orientations f;, ff coincide.
Then, we just weld the vertices t(f,-) and s(f) together, and the path (f1,. .., fr, f],. ... f{)
is as desired. [

Remark 4.20. In Theorem 4.17, the assumption |m| > 2 and |n| > 2 is necessary. Indeed
Theorem 4.17 would be false for n = 1. If v is a vertex in a (m, 1)-graph with L(v) = 1 and
e is an edge such that t(e) = v, then
L(t(e)) L(s(e))
1=L(t(e)) = = = L(s(e)).
ged(L(t(e)),m)  ged(L(s(e)), 1)

Clearly any vertex with label 1 has at most one outgoing and one incoming edge. This
implies that the labels of the vertices in any directed path which ends in v must be all 1.
In other words, if we have any simple edge path as in Theorem 4.17 such that £ = 1 and
g¢ = —, then we must have that k = 1 (and g = +).

Definition 4.21. Let G be a connected (m, n)-graph. A saturated extension G’ of G is
called a forest-saturation of G if it satisfies

¢ the subgraph induced in G’ by V(G) is exactly G;

e the subgraph induced in G’ by V(G’) \ V(G) is a forest F;

e each connected component of ¥ is connected to G by a single edge of G’.

Lemma 4.22 (Forest-saturation lemma). Let G be a connected (m, n)-graph. There is a
forest-saturation G’ of G such that all vertices of the forest F induced in G’ by V(G’) \
V(G) have degree > 1 + min(|m|, |n|) in G’.

The reader can observe in the following construction proving Lemma 4.22 that, while
the labels of the new edges are prescribed, the axioms of (m, n)-graphs allows some choices
concerning the labels of the new vertices. The systematic choice of the maximal label
will be made for the new vertices among all those satisfying the transfer equation (3.13)
gcd(ﬁ% =L(e) = m. Hence the forest-saturation constructed in this proof
1s called the maximal forest-saturation of G. Notice that other choices would have led to
forest-saturations with different underlying graphs, by virtue of the relationship between
labels and degrees (see Definition 3.20). These forest-saturations are further studied in the
recent preprint [16].

Proof of Lemma 4.22. We can assume that the connected graph G is not yet saturated:

it admits non-saturated vertices i.e., vertices v for which one of the inequalities (3.14)

deg,,(v) < ged(L(v),n) or deg;, (v) < gcd(L(v), m) is strict. For every non-saturated ver-

tex v of G we add

*  (ged(L(v),n) —deg,, (v))-many new v-outgoing edges labeled Loy := % with
extra target vertices labeled m Ly ; and

*  (ged(L(v),m) — deg;, (v))-many new v-incoming edges labeled L, =
extra source vertices labeled nL;,.

We then iterate this construction. All the non-saturated vertices of the j-th step become
saturated at the (j + 1)-th one. The increasing union G’ of these (m, n)-graphs is a saturated
(m, n)-graph. The complement of G in it is a forest since at each step, each new edge has
a new vertex as one of its vertices. The label of each new vertex v is an integer multiple of

L(v)

gcd(m. Loy With
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either m or n. Thus the degree deg, (v) + deg;, (v) = gcd(L(v), n) + gcd(L(v), m) of v is
larger than 1 + min(|m/, |n|) as expected. |

Proof of Theorem 4.13. By hypothesis, fori = 1, 2, there is a non-saturated vertex v; in G;;
i.e. a vertex for which one of the inequalities (3.14) is strict. If deg;, (v;) < ged(L(v;), m),
then let €; = +; otherwise let €; := —. The labels of v, v» having identical phenotypes, the
connecting lemma (Theorem 4.17) furnishes an (m, n)-graph Gy which is a simple edge
path (eq,...,ep) such that L(s(e;)) = L(v;) and L(t(ep)) = L(v2), and the orientations
of e and ej, are given by —¢€; and e, respectively.

We then consider the disjoint union G| U Gy U G>. We claim that we can merge the
vertices vy and s(e) thanks to the welding Lemma 4.16. Indeed, the choice of orientation
for ¢, and the form of G (a path of edges) are made for the assumptions of Lemma 4.16 to
hold. Then, we can merge v, and t(ey), applying Lemma 4.16 again (this time, using the
fact that the orientation of e, is well chosen). This produces a connected (m, n)-graph Gs
which contains disjoint copies of G| and G,.

It now suffices to apply the saturation Lemma 4.22 to G5 so as to obtain a connected
saturated (m, n)-graph G that satisfies the requirements of Theorem 4.13. ]

5. Perfect kernel and dense orbits

5.1. Perfect kernels of Baumslag-Solitar groups

In case |m| =1 or |n| = 1, it follows from the proof of [3, Cor. 8.4] that Sub(BS(m, n)) is
countable, hence the perfect kernel K'(BS(m, n)) is empty. Our main theorem describes
the perfect kernels in the remaining cases.

Theorem 5.1. Let m,n € Z such that |m| > 2 and |n| > 2. We have
K(BS(m,n)) = {A € Sub(BS(m,n)) : A\BS(m,n)/{(b) is inﬁnite}.
Let us temporarily give a name to the set appearing in Theorem 5.1:
J =J (m,n) = {A € Sub(BS(m,n)) : A\BS(m,n)/(b) is infinite},

and recall that Subj(I") denotes the space of infinite index subgroups of I'.
Given an action @ of I" on a space X and a point v € X, we have already introduced the
notation [a, v] for the action a pointed at v.

Remark 5.2. In terms of pointed transitive actions, J (m, n) is the set of pointed transitive

actions with infinitely many b-orbits, whence J = {[a, v]: BS(a) is inﬁnite}. Moreover:

» if |m| # |n|, we have J (m, n) = Sub[.](BS(m, n)), since every infinite action has an
infinite Bass-Serre graph by Lemma 4.11.

* if|m| = |n|, we have J (m,n) = 77! (Sub[eo) (BS(m, n)/(b™))), where  is the homo-
morphism from BS(m, n) to its quotient by the normal subgroup (b™) = (b™). Indeed,
since (b™) has finite index in (b), we get that A\BS(m, n)/(b) is finite if and only if
A\BS(m,n)/{b™) is finite.

Therefore, Theorem 5.1 can be rephrased in two ways, as follows.
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Theorem 5.3. Let m,n € Z such that |m| > 2 and |n| > 2.
(1) In terms of pointed transitive actions, the perfect kernel corresponds exactly to
actions whose Bass-Serre graph is infinite:

K(BS(m,n)) = {[a/, v]: BS(a) is inﬁnite}.

(2) In terms of subgroups:
e if|m| # |n|, the perfect kernel is equal to the space of infinite index subgroups:

K(BS(m,n)) = Sub[e] (BS(m, n));
e if |m| = |n|, we have:
K(BS(m,n)) = n~ " (Subjeo) (BS(m, 1) /(b™))),

where 1t is the homomorphism from BS(m, n) to its quotient by the normal
subgroup (b™) = (b™). [ ]

Proof of Theorem 5.1. Our aim is to prove that K'(BS(m, n)) = J (m, n). It will be conve-
nient to write one inclusion in terms of pointed transitive actions and the other in terms of
subgroups.

Let us first prove the inclusion K (BS(m, n)) 2 . It suffices to show that no element
of J isisolated in J. Recall the definition of the topology in terms of pointed actions, see
Section 2.2 and in particular Equation (2.7). Let us fix a pointed transitive action (ayg, v)
representing an element of J and aradius R > 0. We will show that the basic neighborhood
N ([ap,v], R) contains at least two distinct elements of 7.

Let (B, 7) be the pre-action obtained by restricting a( to the union of the b-orbits of the
vertices of the ball of radius R + 1 centered at v in the Schreier graph of @g. The Bass-Serre
graph of (3, 7) is the projection in BS(«y) (see Definition 3.10) of this ball, hence is finite.
Since BS(ay) is infinite, the pre-action (8, T) is not saturated.

We now build two (m, n)-graphs G|, G» that extend the finite non-saturated Bass-Serre
graph G of (B, 7) in two different ways. First, let G| be a forest-saturation of G given by
Lemma 4.22. In particular, the subgraph induced in G by V(G1) \ V(G) is a forest whose
vertices have degree at least 3 < 1 + min(|m]|, |r|) in G;.

We then construct G, by modifying G;. Let us pick a vertex v € V(G1) \ V(G). The
subgraph induced in G by V(G1) \ {v} has at least 3 connected components. Choose two
connected components disjoint from G and remove them. In the resulting (m, n)-graph G,
the vertex v is the only one that is not saturated: two edges are missing.

Theorem 4.17 gives us an (m, n)-graph which is a simple edge path ? whose extremities
have the same label as v and for which the orientations of the end edges are compatible with
that of the missing edges of v. We then apply twice the welding lemma, Lemma 4.16, so as
to weld the two extremities of # to v. We eventually define G, to be a forest-saturation of
the graph that we obtained. Observe that G is not isomorphic to G, since the fundamental
groups of their underlying graphs are free groups of distinct ranks.

Finally, we extend (8, T) to pre-actions @ and @, whose Bass-Serre graphs are G| and
G» respectively, thanks to Proposition 3.23. Since Gy, G» are saturated, a1, @, are actually
actions by Example 3.21. We already remarked that G, is not isomorphic to G, so the
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pointed transitive actions (a1, v) and (a3, v) are notisomorphic: [y, v] # [@,,v]. Moreover,
the balls of radius R centered at the basepoints in the Schreier graphs of ay, a1, a; all
coincide by construction with that of (3, 1), so [a1,v] and [, v] are both in N ([, v], R).

Let us now turn to the inclusion K(BS(m, n)) € J. Let us pick a subgroup A €
Sub(BS(m,n)) \ J (m,n) and let us prove that it is not in the perfect kernel.

If |m| # |n|, then A has finite index in BS(m, n) by Remark 5.2, hence it is isolated in
Sub(BS(m, n)).

If |m| = |n|, then 7 (A) has finite index in BS(m, n)/(b™) by Remark 5.2, hence it is
finitely generated. Therefore, the set

V = {A" € Sub(BS(m,n)) : n(A') > n(A)}
is a neighborhood of A, since it contains the basic neighborhood
V(S,0) = {A € Sub(BS(m,n)): SC A’}

where S C A is a finite set such that 7(S) generates w(A).

Now, for any A’ € V, the subgroup 7(A’) has finite index in BS(m, m)/(b™). Hence
m(A) is finitely generated, so A’ itself is finitely generated since it is written as an extension
with cyclic kernel:

1> ®"NAN >N > raAN) > 1.

Therefore all subgroups of V are finitely generated, which implies that V is countable and
hence A is not in K(BS(m, n)). |

Corollary 5.4. If |m| = 2, |n| = 2 and |m| # |n|, then
Ph~!(c0) € K(BS(m,n));
in other words, every infinite phenotype subgroup is in the perfect kernel.

Proof. Any subgroup with infinite phenotype has infinite index and hence it belongs to
K (BS(m,n)) according to Theorem 5.3. [

5.2. Phenotypical decomposition of the perfect kernel
Let us now turn to a description of the internal structure of K(BS(m, n)).

Notation 5.5. Letm,n € Z\ {-1,0, 1}. We denote by @, , the set of all possible (m, n)-
phenotypes, that is, Q. = Phy, 4 (Z51 U {o0}).

Definition 5.6. The phenotype of a subgroup A < BS(m, n) is the (m, n)-phenotype of the
index of A N (b) in (b)

Ph(A) = Ph(A N (b)) := Ph,,, ([(b) : AN (b)]).

This yields a function Ph : Sub(BS(m,n)) = Qu.n € Z>1 U {oo}.

In particular Ph((b*)) = Ph,, , (k) for k € Z> and the phenotype of the trivial subgroup
is infinite.
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Remark 5.7. The index [(b) : A N (b)] is the cardinal of the (b)-orbit of the point A
in the action A\BS(m, n) v~ BS(m, n). Hence Ph(A) is the phenotype of this action (as
given in Definition 4.9). Since the latter doesn’t depend on the basepoint, the function Ph
is invariant under conjugation.

It easily follows form the definitions that if Ph(A) = Ph(A”) then Ph(A) = Ph(A N A’),
see Remark 4.4.

Proposition 5.8. In the partition of the space of subgroups of BS(m, n) according to their
phenotype
Sub(BS(m, n)) = |_| Ph'(q),

9€Qm.n
the pieces are non-empty and satisfy:
(1) For every finite g € Qu.n, the piece Ph='(q) is open; it is also closed if and only
if lm] = |n|.
(2) For q = oo, the piece Ph™!(c0) is closed and not open.

In particular, the function Ph: Sub(BS(m,n)) — Z> U {+o0} is Borel. It is continuous
if and only if |m| = |n|.
Proof. Given k € Zs1, we set
Ag = {A € Sub(BS(m,n)): An(by = (b*)}.
Writing Ay as
A = {A € Sub(BS(m,n): b* e A, b' ¢ A forevery 1 <i < k}

makes it clear that Ay is clopen for every k € Zs . Moreover (b*) € Ay, so in particular
Ay is not empty. Now, by definition, for every g € Z>; we have

(5.9) Ph~'(¢) = |_| Apg.

kePhy,!, (q)

Hence Ph™!(g) is open for every finite ¢ and, by taking the complement, Ph™!(c0) is
closed.

Take a sequence of positive integers (k;);cn tending to co. Observe that the subgroups
{(b%i)}; have finite phenotype and converge to the trivial subgroup which has infinite phe-
notype. Therefore Ph™! (o) is not open. Moreover, if Ph;ﬁn (g) is not finite, we can choose

all the k;’s with phenotype ¢; the same argument shows that Ph™! () is not closed. Finally,
the clopen decomposition (5.9) shows that Ph~! () is closed as soon as Ph,_n{n (q) is finite.

By Lemma 4.5, Ph,;l’n(q) is finite exactly when |m| = |n|. [ ]
We now restrict the above partition to the perfect kernel

(5.10) K(BS(m,n)) = |_| %, (BS(m, n)),
GE€EQm,n

where

(5.11) K, (BS(m,n)) = K(BS(m,n)) NPh,,(q).
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Remark 5.12. Observe that each K, (BS(m, n)) is not empty: indeed it contains (b?)
which belongs to the perfect kernel by Theorem 5.1. Moreover, in the proof of Theorem 5.1
the (m, n)-graphs we construct have the same phenotype, so every element of K, (BS(m, n))
is actually a non-trivial limit of elements of K, (BS(m,n)). We conclude that K, (BS (m, n))
is equal to the perfect kernel of Ph,‘n{n (9)-

Let us show that the action of BS(m, n) by conjugation on each term is topologically
transitive in the following sense.

Definition 5.13. An action by homeomorphisms of a group I" on a topological space X is
called topologically transitive if for every nonempty open sets U and V, there is a point
whose I'-orbit intersects both U and V.

Theorem 5.14. Let m, n be integers such that |m|, |n| > 2. Then for every phenotype q €
Qun.n, the action by conjugation of BS(m, n) on the invariant subspace K, (BS(m, n)) is
topologically transitive.

Proof. We again use the definition of the topology in terms of pointed actions, see Sec-
tion 2.2 and in particular Equation (2.7). So let us fix two pointed actions («y, v1) and
(a2,v2) in K, (BS(m, n)), take R > 0, and consider the basic open sets N'([a1,v1], R) and
N ([az,v2], R). We need to construct a pointed action whose orbit meets both open sets.

As in the proof of Theorem 5.1, we let (83;,1;), fori = 1,2, be the pre-action obtained by
restricting «; to the union of the b-orbits of the vertices of the balls B(v;, R + 1) of radius
R + 1 centered at v; in the Schreier graph of ;. The Bass-Serre graph of (3;, 7;) is finite.
Since BS(«;) is infinite, the pre-action (3;, 7;) is not saturated.

Moreover (81, 1) and (S, T2) have the same phenotype, so we can apply the merging
machine (Theorem 4.12) to obtain an action @ whose Schreier graph contains (copies of)
the balls B(v;, R+ 1).

Pointing « at the copy of v; that we denote by v, we have (Sch(a),v) ~g (Sch(a;),v).
By transitivity of «, there is y € BS(m, n) such that va(7y) is the copy of vy, and thus
(Sch(a@), va(y)) =g (Sch(ay), v;). In particular, the orbit of [, v] meets both open sets
N([ay,v1], R) and N ([az, v2], R). m

Corollary 5.15. Let m, n be integers such that |m|, |n| > 2. Then for every q € Qu, n, there
is a dense G 5 subset of K, (BS(m, n)) consisting of subgroups with dense conjugacy class
in Ky (BS(m, n)).

Proof of Corollary 5.15. By Proposition 5.8, each K, (BS(im, n)) is Polish as an open or
a closed subset of the Polish space K'(BS(m, n)).

The corollary now follows from a well-known characterization of topological transi-
tivity in Polish spaces: if (U;) is a countable base of non-empty open subsets, then the set
NienU; T of points with dense orbit is a dense G s by the Baire theorem. [

5.3. Closed invariant subsets with a fixed finite phenotype

Given a finite phenotype g, we will show that there is a largest closed invariant subset inside
the (open but non closed when |m| # |n|) set of subgroups of phenotype g. The following
lemma is key.
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Lemma 5.16. Let |m| # |n|, and let L € Z3 satisfying:
3p € P,ml, # |n|, and |L|, > min(|m|, , [n,).

Then for any saturated (m, n)-graph which contains L as a label, the range of the label
map is unbounded.

Proof. By symmetry, we may as well assume that |n|,, < |m|, for a fixed prime p, and
so |L|, > |n|,. Let vp € V(G) have label L. Since our Bass-Serre graph G is saturated,
every vertex has at least one outgoing edge. We can thus build inductively an infinite path
(ex)ken consisting of positive edges with s(eg) = vg. The conclusion then follows directly
from Lemma 3.30. (]

Remark 5.17. When |n| = |m|, the lemma fails because labels are bounded: if L is a label
then all labels in the same connected component must satisfy |L|,, <max(|Lol,,|m|,,[nl,)
for all primes p by Equation (3.29) and the discussion that precedes it.

Let g be a finite (m, n)-phenotype. In order to describe which saturated (m, n)-graphs
have unbounded labels, we now define

(5.18) sigmmy=q- [ pme [ pmntilemi),
pPEP pPEP
lal ,=0; il p £l

lm|p=In|,>0

Remark 5.19. The definition is motivated by the fact that s(g, m, n) is the largest label of
phenotype g which does not satisfy the hypothesis of Lemma 5.16. As we will see in the
proof of Theorem 5.20, a saturated (m, n)-graph with phenotype g has unbounded labels
if and only if one of its labels does not divide s(q, m, n).

Proposition 5.8 implies that every subgroup (or pointed action) that lies in the closure
of the set of subgroups of phenotype ¢ has phenotype either g or co, and phenotype co can
occur only when |m| # |n|. We can now characterize the subgroups A with phenotype ¢
whose orbit approaches subgroups with infinite phenotype.

Theorem 5.20. Let m, n be integers such that |m|, |n| > 2 and denote by q € Q. \ {0}
a finite (m, n)-phenotype. Let s = s(q, m, n) as in Equation (5.18). Then the space

MC, =Ph™'(q) N {A € Sub(BS(m,n)) : A > (b*)}

of subgroups of phenotype q containing the normal subgroup {b*)) satisfies the following
properties:

(1) MCy is the largest closed BS(m, n)-invariant subset of Sub(BS(m, n)) contained
inPh~'(q); in particular, all normal subgroups of phenotype q and all finite index
subgroups of phenotype q contain {b*));

(2) If |m| = |n|, then MC, = Ph~!(g);

(3) Forevery A € Ph™!(g) \ MCy, the orbit of A accumulates to Ph™!(0);

(4) If Im| # |n|, then MC 4 N Ky (BS(m, n)) has empty interior in K, (BS(m, n));

(5) If ged(m,n) = 1, then s = g and MC4 N K(BS(m, n)) = {{b9)}; in particular
(b)Y is the unique normal subgroup of phenotype q of infinite index.
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Proof of Theorem 5.20. The proofs of (2) and (3) rely on the following claim.

Claim. For any A € Ph™'(¢) ~ MQCy, there is a prime p such that |m|, # |n|, and a
vertex label L in the Bass-Serre graph of A such that |L|,, > |s|,.

Proof of the claim. Observe that a subgroup A contains ((b*)) if and only if all the b-orbits
of the corresponding action A\BS(m, n) v~ BS(m, n) have cardinality which divides s. So
if Ae Ph'(g) \ MCy,, we can fix a prime p such that [L|,, > |s|,, and we will prove that
Iml|,, # Inl,.

Assume by contradiction that |m|, = [n|,. Then |s|, > |m|, = |n|,: if [m|, = 0 then
the inequality clearly holds, otherwise by Equation (5.18),
* if p divides g = Phy, »(s), then [s|,, = |ql, > |m|, = |n|,;
e if p does not divide g = Phyy, ,(s), then [s|, = |m|, = |n|,,.
Thus, we have |L|,, > |m|,, = |n|,, in other words p € Py, (L) (see Definition 4.1). Hence,
we have |th,n(L)|p =|L[, > |s], = \th’n(s)|p. This is a contradiction since both phe-
notypes are equal to g. Oclaim

We can now easily prove (2) by the contrapositive: by the above claim if MC, #
Ph~!(g) then there is a prime p such that lm|, # |n|,, in particular [m| # |n|.

Let us prove (3). Let A € Ph™'(¢) \ MC,. The claim above provides a prime p such
that |m|,, # |n|, and the Bass-Serre graph of A admits a vertex label L such that[L|,, > [s],,.
It follows from Equation (5.18) that [s|,, = min(|m|, , |n|,), so L], > min(|m|, , |n,).
Lemma 5.16 thus applies, and so there is a sequence of vertices in the Bass-Serre graph
of A whose labels tend to +oo. In other words, there is a sequence (7y;);>o such that the
index of y; Ay 1'n (b) in (b) tends to +co. By compactness, we may assume that this
sequence converges, and its limit A cannot contain a non-zero power of b since [(b) :
yl-Ayi‘l N (b)] — +co. Hence A has infinite phenotype, which proves (3).

We now prove (1). We first claim that MC,, is closed in Sub(BS(m, n)). Indeed the set

B = {A € Sub(BS(m,n)) : A= {(b*)}

is a countable intersection of basic clopen sets and hence it is closed. Then, notice that B,
intersects only finitely many sets Ph™! (¢"), since ¢’ must be finite and divide s. Proposition
5.8 claims that the Ph™!(g’) are open, hence

MC, = Bs N U Ph'(¢)
q'#q
g’ divides s

is closed. Also note that MC,, is obviously BS(m, n)-invariant. Finally Item (3) implies
that every closed BS (m, n)-invariant subset of Ph™! (¢) is contained in MC,. This proves
that MC, is the largest closed BS(m, n)-invariant subset of Sub(BS(m, n)) contained in
Ph~!(g). Since all normal subgroups and all finite index subgroups have finite (hence
closed) orbits, the remaining statement in Item (1) is clear.

Let us prove Item (4). Suppose [n| # |m|; let p be a prime number such that |m|,, # |n|,.
By definition Ph,, ,(sp) = Phy, ,(s) = g, so (b*P) € K,(BS(m, n)) \ MC,. Consider
a subgroup A € K, (BS(m, n)) whose orbit is dense in K, (BS(m, n)), as provided by
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Corollary 5.15. Since the orbit of A accumulates to (b*P) ¢ MC, and MC, is invari-
ant and closed, the latter does not contain any point of that orbit. Hence the comple-
ment K, (BS(m, n)) \ MC, contains the dense orbit of A. We conclude that MC, N
K, (BS(m, n)) has empty interior in K, (BS(m, n)).

We finally prove Item (5). The equality s = g follows immediately from Formula (5.18)
for s(q, m, n). We have the presentation

BS(m,n)/(b%) = (b,7: 0™ ' =b", b9 =1).
Since ged(gq, m) = ged(g,n) = 1, the elements 5™ and 5" both generate (b) in the quotient
group BS(m, n)/{b?)). We thus have a natural semi-direct product decomposition
BS(m,m)/(b") = Z/qZ=Z = (b) = (7)
Consider A € MC, in the perfect kernel; it contains (b?)). It suffices to prove that the
image Ag := A/{(b?)) of Ain (b) > (7) is trivial. Since Ph(A) = g, the index [(b) : A N (b)]
is amultiple of g, so we have A, N <l_7> = {id}. Thus A, is mapped injectively in the quotient

(b) > (7) /(b) ~ Z.1f this image were not {0}, then A would have finite index in BS(m, n),
contradicting that A is in the perfect kernel. The group A, is thus trivial as wanted. ]

Remark 5.21. Interms of actions, MC,, is the set of classes [, v] all of whose cardinalities
of b-orbits divide s and have phenotype g.

Proposition 5.22. Let m,n € Z\ {0} and k € Zs,. Let
Gk = BS(m,n) /(b)) = (7,5 | ™' =b",b* =1)
and let
r(k) := max{r’ € N: r’ divides k and gcd(r',m) = ged(r',n)}.

Then:
(1) b has order r(k) in the quotient G, , x; in particular {b*)) = (bR,
(2) the group G nk = Gun.r(k) is the HNN extension of Z/r(k)Z = (b) with respect
to the relation tb"i~! = b™.
(3) Phyyn(K) = Phy, o (r(K)) = Ph((6*)).

Remark 5.23. It follows from Item 1 in the above proposition that r(k) = [(b) : (b*) N

(b)].
It is a routine computation, working prime number by prime number, to check that
(5.24) rty= [ pMee [ prinUedmlednls)
PEP PEP
|m|,=Inl, Im|p#|nl,

In particular, r(k) is a multiple of all the r’s which divide k and satisfy ged(#’, m) =
ged(r’, n). Moreover r(r(k)) = r(k).

Remark 5.25. It also follows from Item 1 and 3 of the above proposition that the set of
integers k of phenotype ¢ such that r(k) = k parametrizes the normal subgroups of the
form (b*") of phenotype ¢g. Comparing Equations (5.24) and (5.18), one can check that
this is exactly the set of integers k that are multiple of ¢ and that divide s(gq, m, n), i.e.
k = q - j where
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(1) |jl, = 0for p € P such that |m|, = |n|,, = 0
) 1jl, < |m|, for p € P such that |m|, = |n|, > 0and |¢]|, = 0;
(3) 1jl, < min{|n|, ,|m|,} for p € P such that |m|, # |n],,.

Proof of Proposition 5.22. Set r := r(k). Since b™ and b" are conjugate in G, , x, they
have the same order:

ord(b) ord(b)
ged(ord(b), m) ged(ord(b),n)

Thus ged(ord(b), m) = ged(ord(b), n). Moreover ord(b) divides k. So by the definition
of r, the order ord(b) divides r and hence b” € {(b*)). On the other hand b* € (b"), so
() = «bk» and Gk =Gmn,r- 5 .

Since ged(r,m) = ged(r, n), the subgroups generated by 5™ and ™ in the group Z/rZ =
(b : b" = 1) are isomorphic. We can thus consider the HNN-extension of Z/rZ = (b : b" = 1)
with the relation 75™7~! = b". It admits the presentation (7,5 | ™7~ = b",b" = 1) and
it is hence isomorphic to G, ;.-

By the Normal Form Theorem for HNN-extensions, the vertex group injects, i.e., b has
order exactly r. Finally Formula (5.24) imply that Ph,, , (k) = Phy, ,(r) = Ph({(b"))). =

= ord(b™) = ord(b") =

Theorem 5.26. Let m,n € Z \ {0} and g be a finite phenotype.
(1) If gcd(m, n) = 1, then the perfect kernel contains a unique normal subgroup of
phenotype q, namely {b?)).
(2) If gcd(m, n) # 1, then the perfect kernel contains continuum many normal sub-

groups of phenotype q.

Proof. The case gcd(m, n) = 1 follows from Item (5) of Theorem 5.20. Therefore let us
assume that ged(m, n) # 1.

Consider a prime p which divides both m and n. Then either |g|,, # 0 and we set k := g
otherwise set k := gp. In both cases, remark that Ph,, , (k) = g, that gcd(k,m) = gcd(k,n)
and hence (k) = k. Then Proposition 5.22 yields that b has order k in G, k- Furthermore
since ko := gcd(k, m) = ged(k,n) > 1, the elements b and b™ are not generators of the
subgroup <B>: the group G, .k is not a semi-direct product. We claim that G, 5, ¢ is not
amenable. Indeed, we can write the group G, » i as the amalgamated free product

m n k. -
G = (L& | H@) 0T = (&)%), (&)% = 1) xa_pr (b | BY)

and one can easily check that G, , x admits as a quotient the non-amenable free product
(@) * (b | b*).

Since G, p k is the fundamental group of a finite graph of finite groups, it admits a
finite index normal subgroup F which is a finitely generated free group [25, Prop. 11 p.
120]. Since Gy, is non-amenable, this normal free subgroup is not amenable.

Every characteristic subgroup N of F is itself normal in G, , k. Thus the pull-back
under the quotient map BS (m, 1) = G, .« is a normal subgroup N < BS(m, n). Since the
intersection of F with the finite group (b) is trivial, the same holds for its characteristic sub-
groups: N N (b) = {id}. Therefore the order of the image of b in G, .k /N = BS(m,n)/N
is the same as in G, , , namely k. In other words, N N (b) = (b*). By definition,

Ph(N) = Phyn ([(b) : N N (b)] = Phyu(k) = g.
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There are continuum many characteristic subgroups N in the finitely generated free
subgroup F [9] (see also [8]). At most countably many of them lie outside the perfect
kernel, so the theorem follows. [

6. Limits of finite phenotype subgroups

In this section, we characterize the subgroups of infinite phenotype of BS (1, n) which arise
as limits of finite phenotype subgroups. We will use a version of the straightforward fact
that finitely generated subgroups always form a dense set in the space of subgroups.

Lemma 6.1. Let m,n € Z \ {0}. For every phenotype q € Qp, p, the finitely generated
subgroups of phenotype q are dense in Ph™!(g).

Proof. Let A be a non finitely generated subgroup of phenotype g. Let k € Z5¢ such that
ANn(b) = (bk>. The group A can be written as the increasing union of finitely generated
subgroups all containing »¥. They have the same phenotype as A. ]

6.1. Limits of subgroups with fixed finite phenotype

Recall from Proposition 5.8 that, for ¢ finite, Ph™! (¢) is open while Ph~! (o) is closed, and
from Theorem 5.20 (3) that the orbit of any A € Ph~!(¢) \ MC ¢ accumulates to Ph~! ().
We now determine the set of such accumulation points in Ph™!(c0): this is exactly the set
of subgroups contained in the normal closure (b)) of (b) but having trivial intersection
with (b) itself (since they belong to Ph™!(c0)).

Theorem 6.2. Suppose |m| # |n| and let q be a finite phenotype. Then
Ph™'(¢) NPh™!(c0) = {A € Ph™!(c0): A < (b))}.

We need two preparatory lemmas. We start with an easy consequence of the defining
relation tb™ = b"t of BS(m, n).

Notation 6.3. Given y € BS(m, n), let us denote:

* by k, the t-length of y, namely the number of occurrences of
of y;

* by X, the number of occurrences of # minus the number of occurrences of t~!in the
normal form of y, which is often called the z-height of y.

Remark that X, is the image of y in BS(m, n)/ (b)) = Z. In particular X, = 0 if and only

ity € (b

Lemma 6.4. Fixy € BS(m,n). Let A € Z be such that for all primes p € P
« iflml, = Inl, then Al = m]

s otherwise |A|, > ky |m|, and |A|, > k, |n|,.

Then there is B € Z, such that yb® = bBvy, where |B| is determined by:

%! in the normal form

IBl,, = |1Al, + £, (Inl, = |ml,) forall p € P.
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Proof. This follows from a straightforward induction on «,, using the relation tb™ = b"t.
We leave the details to the reader. ]

The proof of the inclusion in Theorem 6.2 from left to right relies on the following
lemma.

Lemma 6.5. Fixy ¢ (b)) and let q be a finite phenotype. There is an integer R = R(q,y)
such that every subgroup A of phenotype q containing y must also contain bX.

Proof. Up to replacing vy by its inverse, let us assume %, > 0. We first define the integer
M = max{|m|, ,|n|, : p € P}, and then we let

KyM

R:=¢q l_[ P

peP
Im|,+In|,>0

Fix A of phenotype ¢. Since ¢ is finite, we have (b) N A = <bN> with N > 0. We have to
show that N divides R. Notice that Ph,, ,,(N) = ¢, thus N decomposes as
1 I lis .
N=gq-p] "'Pfl’kkd"'l’lr»
where r > 0 and [y, ...,[, > 1, while the p; are distinct prime numbers coprime with g,
see Definition 4.1. Moreover, we order them so that py, ..., px € Pun \ Pm,n(N) and
Pkl Pr €PN P
Observe that [m|,,, =|n|,, > N|,, =1; > 1 when p; € Pp.n \ Pm.n(N) and |m|,, #|n|,,
when p; € P \ Py, Hence, |m|,,, + |n|,, > 0 forevery i € {1,...,r}. Consequently, to
establish that N divides R, it suffices to prove

(6.6) Vie{l,....r}, L <k,M.

Observe that k), > 1 since y ¢ (b)). For i € {1,..., k}, Equation (6.6) holds since
Di € Pm,n AN Pm,n(N), thus

li <|ml,, =In|, <M < kM.

Letushencefixi € {k+1,...,r} and suppose by contradiction that /; > k, M. Consider

N =Nx(pi- p)™ (prsr -+ i+ pr) ™

where by p; we mean that the factor p; is removed from the product. Clearly ™" € A and

IN'|,,, = L;. Put

e = sign(|m|,, — Inl,,).
Note that p; ¢ P n, hence [m|,,, # |n|,,, so & # 0. Since we assumed |N|,,, =1; > k, M,
we also have [N’|,,, > «,, M. Itis then clear that N’ satisfies the assumption of Lemma 6.4,
so yebN'y=¢ = pN” where
v

|Pi =1 +278(|n|p,~ - |m|pi) =1 +827(|n|p,« - |m|p,~)

=1 —27||m|pi - |n|pi\ < ;.
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Clearly bV € A, hence bN” € (bN>. But [N”’],,, < [N/, a contradiction. We thus have
established Equation (6.6), which finishes the proof. ]

Proof of Theorem 6.2. Set
L :={AePh!(c0): A < (b))}

We first show the inclusion Ph™!' (¢) " Ph~!(c0) € £. Take A € Ph™!(c0) \ Landy e A\
{(b). By Lemma 6.5, there is an R such that every subgroup A of phenotype g containing
v also contains bR . Thus the clopen neighborhood of A given by

O = {A € Sub(BS(m,n)): y € A, b® ¢ A}

does not intersect Ph™'(g). Thus A is not in the closure of Ph™!(g).

We now show the reverse inclusion £ C Ph~!(g) N Ph~!(c0). Remark that as in Lemma
6.1, the finitely generated elements of £ are dense in L: every element of £ is an increasing
union of finitely generated subgroups which have to be in L as well. So take A = (S) € L
where S is finite; we will show that A is a limit of subgroups with phenotype ¢q. Set « :=
max,es Ky, Where y, is the 7-length of y (see Notation 6.3). Set M := max{|m|,,, |n[, : p €
#}. Note that P \ P, is finite, since it is composed of primes p such that |m|, +n|, >0,
and that |m|,, = 0 for all but finitely many primes p. Hence, for j > 1, we can define the

integer
. ) kM
Nj=q- 1_[ pimle . l—[ plM.
PEPmn\Pm.n(q) PEPNPm.n

Observe that Ph,,, ,,(N;) = q.

Since A < (b)), the height X, is zero (see Notation 6.3) for every y € S, whence,
for every y € S and every j, Lemma 6.4 gives yb™Ni = b*Niy. Thus, A = (S) normalizes
(bN7). Moreover, A has trivial intersection with (b™7) because it has infinite phenotype.
In particular for j = 1, we have a natural isomorphism

@: Ax (DM — (A, bM).
Since N divides N;, we get
D(Ax (bNi)) = (A, b"7).
Observe that @ induces a homeomorphism
Sub(A = (b)) — Sub({A, b™')) C Sub(BS(m, n)),

and that the sequence of subgroups (A (be >) j>1 converges to A < {id}. Therefore we
have that (A, b™7) converges to A. Since Ph((A, 5™7)) = Ph,, ,(N;) = g, the group A is
the limit of a sequence of elements of phenotype g as wanted. ]
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6.2. Limits of subgroups with varying finite phenotype

In Theorem 6.2, we showed that Ph~!(g) N Ph~!(c0) does not depend on the finite phe-
notype g. We will now consider the closure of all subgroups with finite phenotype and we
will first analyse what happens if |m| = |n|.

Proposition 6.7. Let m,n be integers such that |m| = |n| > 2. Then

Ph'(0) ¢ | ] Phl(g).

q finite

In other words, every subgroup with infinite phenotype is a limit of subgroups with finite
(variable) phenotypes.

Proof. Let us fix A € Ph™!(c0). Note that (b™) is normalized by A thanks to the relation
tb"t~! = b*". We now proceed as in the second part of the proof of Theorem 6.2: the group
(A, bl "> has finite phenotype, it is isomorphic to A (bf ”) and the sequence of subgroups
({A, b)) ;1 converges to A. n

The situation is completely different in the case |m| # |n|.

Proposition 6.8. Ler m, n be integers such that |m| # |n| and |m|, |n| = 2. Then

Ph'(0) ¢ | ] Phl(g).

q finite

In other words, there are subgroups with infinite phenotype that are not limits of subgroups
with finite (variable) phenotypes.

Let us recall from Corollary 5.4 that Ph~!(c0) = K, (BS(m, n)) whenever |m| # |n|.
Hence, the subgroups given by the proposition lie in fact in Ko (BS(m, n)).
In the proof of Proposition 6.8, we will need a lemma and a proposition.

Lemma 6.9. Let m, n be integers such that |m| # |n| and |m|, |n| = 2. Let k := gcd(m, n).
Let A < BS(m, n) be a subgroup containing the following elements

t,btb™ b (D),
If A has finite phenotype, then A has finite index in BS(m, n).

Proof. Let @ be the action A\BS(m, n) v~ BS(m, n). Since the phenotype is finite, it is
sufficient to show that the Bass-Serre graph BS(«) is finite (see Remark 4.10).

Since A contains ¢, there is a loop in BS(«) at the vertex v := A (b). In particular,
Equation (3.13) gives gcd(]i((l;))’m) = gcd(LL<(UU))’n). As A has finite phenotype, L(v) is finite,

so gcd(L(v),m) = gcd(L(v),n) . Moreover, as BS(«) is a saturated (m, n)-graph, we obtain

deg;, (v) = ged(L(v),m) = ged(L(v), n) = degqy (v).

This number, that we will denote d, is the greatest common divisor of m, n and L(v). Hence
d divides k = ged(m, n).
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The d outgoing edges at v are exactly A (b"),Ab (b"),...,Ab?~1 (b™). Asd < k, the
subgroup A contains ¢, btb~L, ..., b9 1tp=(@-D Since AbJt = (Ab/th=)bi = AbJ, the
element ¢ fixes all the points A, Ab, ..., Ab%~! € A\BS(m, n). The terminal vertex of the
edge Ab/ (b") is precisely the vertex Ab/t (b) = AbJ (b) = v (see Definition 3.5), so all
outgoing edges at v are loops.

Since the outgoing degree at v is equal to the incoming degree, all incoming edges at
v are loops as well. Therefore BS(a) consists only of the vertex v and d loops. It is thus
finite as wanted. ]

Proposition 6.10. Let m, n be integers with |m|, |n| > 2. Let A be a finitely generated
subgroup of infinite phenotype and infinite Bass-Serre graph. Then there is a sequence of
conjugates of A which converges to {id}. In particular, A does not contain any non-trivial
normal subgroup of BS(m, n).

Proof. First recall that A is free. Indeed, having infinite phenotype, it acts freely on the
Bass-Serre tree 7 of BS(m, n). Taking the class (b) as a base point in 7, the subgroup A
is the fundamental group of the quotient graph A\7 based at A (). This quotient graph is
equal to the Bass-Serre graph of A, see Section 3.6, so it is infinite. Since moreover A is
finitely generated, it consists of a finite graph to which are attached finitely many infinite
trees. Moving the basepoint along one of those infinite trees toward infinity amounts to
conjugating A by a certain sequence of elements y; of BS(m, n) for which we claim that
YiNy; I — {id}. Indeed, each non-trivial element of YiNy; !is represented by a long path
in the tree, followed by a closed path in the finite graph and the long path back to the new
basepoint. All such elements have a uniformly large ¢-length which tends to +oco with i:
their ¢#-length is bounded below by twice the ¢-length of y; minus the diameter of the finite
graph. In particular, for any finite set F c I' \ {id} and large enough i, all the elements
of y,-Ayi‘l have ¢-length larger than all those of F; so y;Ay; ''n F = 0. This proves that
yiAy7! — {id} as wanted. n

Proof of Proposition 6.8. Consider the group A := (t, btb~, ... ¥ lp= (k=D > Observe
that by Britton’s Lemma (see e.g. [23, Chapter IV.2]), it is a free group freely generated by
t,btb™!, ..., b*"1th~ (k=1 Every non-trivial element of A contains at least one r*! in its
normal form, in particular A N (b) = {id}: the phenotype of A is infinite. We claim that

A¢ | ] Phl(g).

q finite

Suppose that (A;);>¢ is a sequence of subgroups of finite (variable) phenotypes con-
verging to A. For i large enough, we have 7, btb~", ..., b*"1tb~(k=1) ¢ A;, and thus the
subgroup A; has finite index by Lemma 6.9. However, recall that since |m| # |n|, the group
BS(m, n) is not residually finite [24]. Therefore there is a non-trivial normal subgroup
N < BS(m,n) contained in every finite index subgroup, and we have N < A since A; — A.
This is impossible by Proposition 6.10. |

Corollary 6.11. Let m, n be integers such that |m| # |n| and |\m|, |n| > 2. Then

U Ph!(g) N Ph™!(c0)

q finite
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has empty interior in Ph™! ().

Proof. Recall again that Ph~!(c0) = K., (BS(m, n)), see Corollary 5.4. In this space, the

subset Koo (BS(m,n)) \ U, finiePh ™! (¢) is open and Proposition 6.8 implies that it is non-
empty. By Corollary 5.15, this open subset contains a subgroup A whose orbit is dense in

K (BS(m, n)). Therefore U, aniePh ™! (¢) has empty interior in K (BS(m, n)). |

Proposition 6.12. Let m,n be integers such that |m|, |n| > 2. For any finite phenotype q,
the following inclusion is strict:

Ph~'(g9) "Ph~'(w0) € | ] Ph7'(q) N Ph™' ().
q finite
Observe that Proposition 6.12 is trivially true if |m| = |n|. Indeed, Proposition 6.7

implies that the right hand side is equal to Ph™!(c0). Since Proposition 5.8 yields that
Ph!(qo) is closed, the left hand side is empty.

Proof of Proposition 6.12. For a prime p which divides neither m nor n, define A, =
(bP,t). Then A, clearly has phenotype p (and index p in BS(m, n)). Let A be an accumu-
lation point of the sequence (A}), then by construction A has infinite phenotype, so it is in

the set Uy finite Ph~!(g) N Ph~!(c0). However, it contains 7 ¢ (b)) so it is not in Ph~!(g¢)
by Theorem 6.2. ]

Corollary 6.13. Let m,n be integers such that |m|, |n| = 2. The following inclusion is strict:

U Ph~!(g) NPh™!(c0) C U Ph~'(¢) NPh™ (o).
q finite q finite
Proof. If |m| = |n|, then as already remarked the left hand side is empty.

If |m| # |n|, recall from Theorem 6.2 that Ph~!'(¢) N Ph~!(c0) is independent of g.
The corollary thus follows from Proposition 6.12. ]

We can also give a statement analogous to Proposition 6.12 in the perfect kernel, which
is less easy to obtain.

Theorem 6.14. Let m, n be integers such that |m|, |n| > 2. For any finite phenotype qo, the
Jollowing inclusion is strict:

Kyo (BS(m,n)) N Ko (BS(m, n)) ¢ U Ky (BS(m,n)) N Ko (BS(m, n)).

q finite

Proof. For afixed prime p which divides neither m nor n, let us define a pre-action (5,, 7))
as follows. Consider three 3,,-cycles say 01, 02 and o3, of cardinals pn, p and pm respec-
tively. Then fix basepoints y; € o; fori = 1,2,3. Remark that o, splits into [n| > 2 f},-orbits
of size p and that o3 splits into |m| > 2 }}-orbits of size p. Therefore we can define 7, by
setting

. . . . iy i
VIBY T =B By T = y3By" and yiB, 'ty =B,
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Clearly the phenotype of such a pre-action is p and the associated Bass-Serre graph Gy, =
BS(B,,1,) is a triangle. Set x,, := y; and note that for every p, we have

-1
xprTp,Bpr Bp =xp.

By Lemma 4.22, we can then extend Gy, to a saturated (m, n)-graph G, see Figure
5, and by Proposition 3.23 we can extend the pre-action (), 7,,) to an action a,, whose
Bass-Serre graphis G),.

02
€1 €2

Figure 5. A (2,3)-graph G),, where m = 2 and n = 3.

Define A, to be the stabilizer of the action @, at x,, and remark that 12bt~'b € A,,.
Moreover by construction Ph(A,) = p.

By compactness, we find an accumulation point A of the sequence (A,),. Since A,
has phenotype p, the subgroup A has infinite phenotype. Since >bt~'b € A p forevery p,

we have that 12bt~'b € A. Moreover t?bt~'b ¢ (b)) so A ¢ Ph~!(g() by Theorem 6.2.
Therefore the proof is completed. |

Acknowledgments. We are very grateful to both referees for their work and their detailed
remarks which helped us to improve the paper.

Funding. A. C. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) — 281869850 (RTG 2229). D. G. is supported by the CNRS
and partially supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by
the French National Research Agency (ANR). F. L.M. acknowledges funding by the ANR
projects ANR-17-CE40-0026 AGRUME and ANR-19-CE40-0008 AODynG.

References
[1] Pénélope Azuelos and Damien Gaboriau. Perfect kernel and dynamics: from Bass-

Serre theory to hyperbolic groups. fo appear in Mathematische Annalen, 2023. doi :
10.1007/s00208-024-03038-w.


https://doi.org/10.1007/s00208-024-03038-w
https://doi.org/10.1007/s00208-024-03038-w

46

A. Carderi, D. Gaboriau, F. Le Maitre and Y. Stalder

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

[13]

[14]

(15]

Gilbert Baumslag and Donald Solitar. Some two-generator one-relator non-Hopfian
groups. Bulletin of the American Mathematical Society, 68(3):199-201, 1962. doi:
10.1090/S0002-9904-1962-10745-9.

Oren Becker, Alexander Lubotzky, and Andreas Thom. Stability and invariant random
subgroups. Duke Mathematical Journal, 168(12):2207-2234,2019. doi:10.1215/
00127094-2019-0024.

Ivar Bendixson. Quelques théorémes de la théorie des ensembles de points. Acta
Mathematica, 2(1):415-429, 1883. doi:10.1007/BF02612172.

Sasha Bontemps. Perfect kernel of generalized Baumslag-Solitar groups. arXiv
preprint, 2024. doi:10.48550/arXiv.2411.03221.

Sasha Bontemps, Damien Gaboriau, Francois Le Maitre, and Yves Stalder. On the
space of subgroups of Baumslag-Solitar groups III: The Cantor-Bendixson rank. In
preparation, 2025.

Lewis Bowen, Rostislav Grigorchuk, and Rostyslav Kravchenko. Invariant random
subgroups of lamplighter groups. Israel Journal of Mathematics, 207(2):763-782,
2015. doi:10.1007/s11856-015-1160-1.

Lewis Bowen, Rostislav Grigorchuk, and Rostyslav Kravchenko. Characteristic
random subgroups of geometric groups and free abelian groups of infinite rank. Trans-
actions of the American Mathematical Society, 369(2), 2017. doi:10.1090/tran/
6695.

Roger M. Bryant. Characteristic Subgroups of Free Groups. In M. F. Newman,
editor, Proceedings of the Second International Conference on the Theory of Groups,
Lecture Notes in Mathematics, pages 141-149, Berlin, Heidelberg, 1974. Springer.
doi:10.1007/978-3-662-21571-5_11.

Georg Cantor. Ueber unendliche, lineare Punktmannichfaltigkeiten, part 6. Mathe-
matische Annalen, 23(4):453-488, 1884. doi:10.1007/BF01446598.

Alessandro Carderi, Damien Gaboriau, and Frangois Le Maitre. On dense totipotent
free subgroups in full groups. Geometry & Topology, 27(6):2297-2318, 2023. doi:
10.2140/9t.2023.27.2297.

Alessandro Carderi, Damien Gaboriau, Francois Le Maitre, and Yves Stalder. How
to build (m,n)-graphs. Zenodo, 2022. doi:10.5281/zenodo.7225585.

Fedor A. Dudkin. Subgroups of Baumslag—Solitar groups. Algebra and Logic,
48(1):1-19,2009. doi:10.1007/s10469-009-9038-0.

Pierre Fima, Frangois Le Maitre, Soyoung Moon, and Yves Stalder. A characterization
of high transitivity for groups acting on trees. Discrete Analysis, (8), 2022. doi:
10.19086/da.37645.

Max Forester. Splittings of generalized Baumslag—Solitar groups. Geometriae Ded-
icata, 121(1):43-59, 2006. doi:10.1007/s10711-006-9085-9.


https://doi.org/10.1090/S0002-9904-1962-10745-9
https://doi.org/10.1090/S0002-9904-1962-10745-9
https://doi.org/10.1215/00127094-2019-0024
https://doi.org/10.1215/00127094-2019-0024
https://doi.org/10.1007/BF02612172
https://doi.org/10.48550/arXiv.2411.03221
https://doi.org/10.1007/s11856-015-1160-1
https://doi.org/10.1090/tran/6695
https://doi.org/10.1090/tran/6695
https://doi.org/10.1007/978-3-662-21571-5_11
https://doi.org/10.1007/BF01446598
https://doi.org/10.2140/gt.2023.27.2297
https://doi.org/10.2140/gt.2023.27.2297
https://doi.org/10.5281/zenodo.7225585
https://doi.org/10.1007/s10469-009-9038-0
https://doi.org/10.19086/da.37645
https://doi.org/10.19086/da.37645
https://doi.org/10.1007/s10711-006-9085-9

On the space of subgroups of Baumslag-Solitar groups I: perfect kernel and phenotype 47

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Damien Gaboriau, Francois Le Maitre, and Yves Stalder. On the space of subgroups of
Baumslag-Solitar groups II: High transitivity. arXiv preprint,2024. doi: 10.48550/
arXiv.2410.23224.

Swiatostaw R. Gal and Tadeusz Januszkiewicz. New a-T-menable HNN-extensions.
Journal of Lie Theory, 13(2):383-385, 2003. URL: https://www.emis.de/journals/
JLT/vol.13_no.2/5.html.

Efraim Gelman. Subgroup growth of Baumslag—Solitar groups. Journal of Group
Theory, 8(6):801-806, 2005. doi:10.1515/jgth.2005.8.6.801.

Yair Glasner, Daniel Kitroser, and Julien Melleray. From isolated subgroups to
generic permutation representations. Journal of the London Mathematical Society,
94(3):688-708, 2016. doi:10.1112/jlms/jdw054.

Alexander S. Kechris. Classical Descriptive Set Theory, volume 156 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1995. doi:10.1007/
978-1-4612-4190-4.

Gilbert Levitt. On the automorphism group of generalized Baumslag—Solitar groups.
Geometry & Topology, 11(1):473-515, 2007. doi:10.2140/gt.2007.11.473.

Gilbert Levitt. Quotients and subgroups of Baumslag—Solitar groups. Journal of
Group Theory, 18(1):1-43,2015. doi:10.1515/jgth-2014-0028.

Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory, volume 89
of Classics in Mathematics. Springer, Berlin, Heidelberg, 2001. doi:10.1007/
978-3-642-61896-3.

Stephen Meskin. Nonresidually finite one-relator groups. Transactions of the Amer-
ican Mathematical Society, 164:105-114, 1972. doi:10.2307/1995962.

Jean-Pierre Serre. Trees. Springer-Verlag, Berlin Heidelberg, 1980. doi:10.1007/
978-3-642-61856-7.

Rachel Skipper and Phillip Wesolek. On the Cantor-Bendixson rank of the Grig-
orchuk group and the Gupta—Sidki 3 group. Journal of Algebra, 555:386-405, 2020.
doi:10.1016/j.jalgebra.2020.02.034.

Yves Stalder. Moyennabilité intérieure et extensions HNN. Annales de !institut
Fourier, 56(2):309-323, 2006. doi:10.5802/aif.2183.

Alessandro Carderi
No longer affiliated with any mathematical institution.

Damien Gaboriau

Unité de Mathématiques Pures et Appliquées, Ecole Normale Supérieure de Lyon
46 allée d’Italie, 69364 Lyon, France;

gaboriau @ens-lyon.fr


https://doi.org/10.48550/arXiv.2410.23224
https://doi.org/10.48550/arXiv.2410.23224
https://www.emis.de/journals/JLT/vol.13_no.2/5.html
https://www.emis.de/journals/JLT/vol.13_no.2/5.html
https://doi.org/10.1515/jgth.2005.8.6.801
https://doi.org/10.1112/jlms/jdw054
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.2140/gt.2007.11.473
https://doi.org/10.1515/jgth-2014-0028
https://doi.org/10.1007/978-3-642-61896-3
https://doi.org/10.1007/978-3-642-61896-3
https://doi.org/10.2307/1995962
https://doi.org/10.1007/978-3-642-61856-7
https://doi.org/10.1007/978-3-642-61856-7
https://doi.org/10.1016/j.jalgebra.2020.02.034
https://doi.org/10.5802/aif.2183
mailto:gaboriau@ens-lyon.fr

48 A. Carderi, D. Gaboriau, F. Le Maitre and Y. Stalder

Francois Le Maitre

IMB UMR 5584, Université Bourgogne Europe, CNRS
F-21000 Dijon, France;

flemaitre @math.cnrs.fr

Yves Stalder

Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne, CNRS
F-63000 Clermont-Ferrand, France;

yves.stalder @uca.fr


mailto:flemaitre@math.cnrs.fr
mailto:yves.stalder@uca.fr

	1. Introduction and presentation of the results
	2. Preliminaries and notations
	3. Bass-Serre graphs
	4. Phenotype
	5. Perfect kernel and dense orbits
	6. Limits of finite phenotype subgroups
	References

