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On the space of subgroups of Baumslag-Solitar groups I:
perfect kernel and phenotype

Alessandro Carderi, Damien Gaboriau, François Le Maître and
Yves Stalder

Abstract. Given a Baumslag-Solitar group, we study its space of subgroups from
a topological and dynamical perspective. We first determine its perfect kernel (the
largest closed subset without isolated points). We then bring to light a natural partition
of the space of subgroups into one closed subset and countably many open subsets
that are invariant under the action by conjugation. One of our main results is that
the restriction of the action to each piece is topologically transitive. This partition
is described by an arithmetically defined function, that we call the phenotype, with
values in the positive integers or infinity. We eventually study the closure of each open
piece and also the closure of their union. We moreover identify in each phenotype a
(the) maximal compact invariant subspace.

1. Introduction and presentation of the results

The Baumslag-Solitar group of non-zero integer parameters 𝑚 and 𝑛 is defined by the
presentation

(1.1) BS(𝑚, 𝑛) B
〈
𝑏, 𝑡 |𝑡𝑏𝑚𝑡−1 = 𝑏𝑛

〉
.

These one-relator two-generators groups were defined by Baumslag and Solitar [2] to pro-
vide examples of groups with surprising properties, depending on the arithmetic properties
of the parameters.

It results from the work of Baumslag and Solitar and of Meskin [24] that the group
BS(𝑚, 𝑛) is
• residually finite if and only if |𝑚 | = 1 or |𝑛| = 1 or |𝑚 | = |𝑛|;
• Hopfian if and only if it is residually finite or 𝑚 and 𝑛 have the same set of prime

divisors.
The group BS(𝑚, 𝑛) is amenable if and only if |𝑚 | = 1 or |𝑛| = 1, and in this case, it is

metabelian. All Baumslag-Solitar groups however share weak forms of amenability: they
are inner-amenable [27] and a-T-menable [17].
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Over the years and despite the simplicity of their presentation, these groups have served
as a standard source of examples and counter-examples, sometimes to published results
(!). They have been considered from countless different perspectives in group theory and
beyond.

Various aspects concerning the subgroups of the BS(𝑚, 𝑛) have been considered such
as the growth functions of their number of subgroups of finite index with various properties,
or such as a description of the kind of fundamental group of graphs of groups that can be
embedded as subgroups in some BS(𝑚, 𝑛); see for instance [13, 18, 22].

In this article, we consider global aspects of the space Sub(BS(𝑚, 𝑛)) of subgroups of
the BS(𝑚, 𝑛) and of the topological dynamics generated by the natural action by conjuga-
tion.

1.1. The perfect kernel

Let Γ be a countable group. We denote by Sub(Γ) the space of subgroups of Γ. If one
identifies each subgroup with its indicator function, one can view the space Sub(Γ) as
a closed subset of {0, 1}Γ. Thus Sub(Γ) is a compact, metrizable space by giving it the
restriction of the product topology. See Section 2.2 for the generalities about Sub(Γ).

By the Cantor–Bendixson theorem, Sub(Γ) admits a unique decomposition as a disjoint
union of a perfect set, called the perfect kernel K(Γ) of Γ, and of a countable open subset.
It is a challenging problem to determine the perfect kernel of a given countable group.

When Γ is finitely generated, the finite index subgroups are isolated in Sub(Γ). It is thus
relevant to introduce the subspace Sub[∞] (Γ) consisting of all infinite index subgroups of
Γ. It is a closed subspace of Sub(Γ) exactly when Γ is finitely generated (see Remark 2.3).

Our first main result completely describes the perfect kernel of the various Baumslag-
Solitar groups. When |𝑚 | = |𝑛|, the subgroup generated by 𝑏𝑚 is normal; let us denote by
𝜋 the corresponding quotient homomorphism

BS(𝑚, 𝑛) 𝜋→ BS(𝑚, 𝑛)/⟨𝑏𝑚⟩ .

We also denote by 𝜋 the map it induces between the spaces of subgroups of BS(𝑚, 𝑛) and
BS(𝑚, 𝑛)/⟨𝑏𝑚⟩.

Theorem A (Perfect kernel of BS(𝑚, 𝑛), Theorem 5.3). Let 𝑚, 𝑛 ∈ Z ∖ {0},
(1) if |𝑚 | = 1 or |𝑛| = 1, then K(BS(𝑚, 𝑛)) is empty;
(2) if |𝑚 |, |𝑛| > 1 , then

(a) if |𝑚 | ≠ |𝑛|, then K(BS(𝑚, 𝑛)) = Sub[∞] (BS(𝑚, 𝑛));
(b) if |𝑚 | = |𝑛|, then K(BS(𝑚, 𝑛)) = 𝜋−1 (Sub[∞] (BS(𝑚, 𝑛)/⟨𝑏𝑚⟩)

)
.

The fact that Sub(BS(𝑚, 𝑛)) is countable when |𝑚 | = 1 or |𝑛| = 1 (Item 1), i.e. for the
Baumslag-Solitar groups that are metabelian, was already observed by Becker, Lubotzky,
and Thom [3, Corollary 8.4]. Fortuitously or not, it turns out that the equalityK(BS(𝑚,𝑛)) =
Sub[∞] (BS(𝑚, 𝑛)) holds exactly when BS(𝑚, 𝑛) is not residually finite.

There is a general correspondence between the transitive pointed Γ-actions and the
subgroups ofΓ. It sends an action𝛼 to the stabilizer of its base point. ThisΓ-equivariant map
is a bĳection when one considers the actions up to pointed isomorphisms (see Section 2.2).
Item 2 of Theorem A has a unified reformulation in this setting:
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(2’) if |𝑚 |, |𝑛| > 1, then K(BS(𝑚, 𝑛)) is the space of subgroups Λ such that the right
BS(𝑚, 𝑛)-action on Λ\BS(𝑚, 𝑛) has infinitely many ⟨𝑏⟩-orbits.

Note that this exactly means that the quotient of the Λ-action on the standard Bass-Serre
tree (see Section 2.3) of BS(𝑚, 𝑛) is infinite.

Let us now give some more context for Theorem A. By Brouwer’s characterization of
Cantor spaces, the space K(Γ) is either empty or a Cantor space. It is empty exactly when
Sub(Γ) is countable. This happens for example for groups all whose subgroups are finitely
generated, also known as Noetherian groups. For instance all finitely generated nilpotent
groups and more generally all polycyclic groups have a countable space of subgroups.

On the opposite side, for the free group with a countably infinite number of generators,
no subgroup is isolated, thus K(F∞) = Sub(F∞) (see [11, Proposition 2.1]).

There are some classical groups for which we know that K(Γ) = Sub[∞] (Γ). This is
the case for the free groups F𝑛 (for 1 < 𝑛 < ∞), see for instance [11, Proposition 2.1]. This
is also the case for the groups with infinitely many ends, for the fundamental groups of the
closed surfaces of genus ≥ 2, and for the finitely generated LERF groups with non-zero
first ℓ2-Betti number (see [1]). Recall that a group Γ is LERF when its set of finite index
subgroups is dense in Sub(Γ) (see for instance [19, Theorem 3.1]).

Bowen, Grigorchuk and Kravchenko established that the perfect kernel of the lamp-
lighter group (Z/𝑝Z)𝑛 ≀ Z = (⊕Z (Z/𝑝Z)𝑛) ⋊ Z (for a prime number 𝑝) is exactly the space
Sub(⊕Z (Z/𝑝Z)𝑛) of subgroups of the normal subgroup [7, Theorem 1.1]. Skipper and
Wesolek uncovered the perfect kernel for a class of branch groups containing the Grig-
orchuk group and the Gupta–Sidki 3 group [26].

The perfect kernel can be obtained by successively, and transfinitely, removing the
isolated points, thus obtaining for every ordinal 𝛼 the 𝛼-th Cantor-Bendixson derivative
Sub(Γ) (𝛼) B Sub(Γ) (𝛽) ∖ {isolated points of Sub(Γ) (𝛽) } if 𝛼 = 𝛽 + 1, and Sub(Γ) (𝛼) B⋂

𝛽<𝛼 Sub(Γ) (𝛽) if 𝛼 is a limit ordinal. The Cantor–Bendixson rank rkC𝐵 (Γ) of Γ is the
first ordinal 𝜁 for which the derived space Sub(Γ) (𝜁 ) has no more isolated points, and is thus
equal to the perfect kernel (see for instance [20, Section 6.C] for details). When |𝑚 |, |𝑛| > 1
and |𝑚 | ≠ |𝑛|, then Theorem A implies that rkC𝐵 (BS(𝑚, 𝑛)) = 1. The determination of the
Cantor-Bendixson ranks rkC𝐵 (BS(𝑚, 𝑛)) for the other cases is postponed to the sequel [6].

1.2. Dynamical partition of the perfect kernel

The compact space of subgroups Sub(Γ) is equipped with the continuous action of Γ by
conjugation: Λ · 𝛾 B 𝛾−1Λ𝛾. The perfect kernel is Γ-invariant. This action is of course
not minimal in general, even when restricted to the perfect kernel: the latter may contain
normal subgroups and these subgroups are fixed points! However, the first three named
authors observed a particularly nice feature in the case of the free group F𝑛 (for 1 < 𝑛 <∞):
the action K(F𝑛) ↶ F𝑛 is topologically transitive (which means that the space admits a
dense G𝛿 subset of points whose individual orbits are dense). These F𝑛-actions are called
totipotent, see [11].

To our surprise, we uncovered a dramatically different and very rich situation for the
Baumslag-Solitar groups.

Theorem B. Whenever |𝑚 |, |𝑛| ≠ 1, the perfect kernel K(BS(𝑚, 𝑛)) admits a countably
infinite partition into BS(𝑚, 𝑛)-invariant and topologically transitive subspaces. For the
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induced topology on K(BS(𝑚, 𝑛))), one of the subspaces is closed; all the other ones are
open.

Theorem B follows from Proposition 5.8 and Theorem 5.14. In a further work [16], we
show that topological transitivity can be upgraded to high topological transitivity.

From now on in this introduction, we stick to the case |𝑚 | ≠ 1 and |𝑛| ≠ 1. In order to
describe the partition in Theorem B, we introduce a new invariant: the phenotype.

The relation 𝑡𝑏𝑚𝑏−1 = 𝑏𝑛 imposes some arithmetic conditions between the cardinalities
of the 𝑏-orbit of a point 𝑥 and the 𝑏-orbit of 𝑥𝑡. For instance, the 𝑏-orbit of 𝑥 is infinite if
and only if the 𝑏-orbit of 𝑥𝑡 is infinite.

In Definition 4.1, we introduce a function Ph𝑚,𝑛 : Z≥1 ∪ {∞} → Z≥1 ∪ {∞} called the
(𝑚, 𝑛)-phenotype, with the following property, which directly follows from Proposition
4.6, Theorem 4.13 and Proposition 3.22:

Theorem C. Whenever |𝑚 |, |𝑛| ≠ 1, there is a transitive BS(𝑚, 𝑛)-action with two 𝑏-orbits
of cardinal 𝑘 and ℓ respectively if and only if Ph𝑚,𝑛 (𝑘) = Ph𝑚,𝑛 (ℓ).

If for instance 𝑚 and 𝑛 are coprime, the phenotype Ph𝑚,𝑛 (𝑘) of any natural number
𝑘 ∈ Z≥1 is obtained as 𝑘 expunged of all its prime divisors that appear in either 𝑚 or 𝑛.
The general form is more complicated, see Definition 4.1 and Example 4.3, but it follows
readily from Definition 4.1 that Ph𝑚,𝑛 (𝑞) = 𝑞 for every 𝑞 ≥ 1 that is coprime with 𝑚 and
𝑛. Hence, the set of possible (𝑚, 𝑛)-phenotypes

Q𝑚,𝑛 B {Ph𝑚,𝑛 (𝑘) : 𝑘 ∈ Z≥1} ∪ {∞}.

is always infinite.
Theorem C allows us to define the phenotype of a transitive BS(𝑚, 𝑛)-action as the

common (𝑚, 𝑛)-phenotype of the cardinalities of its 𝑏-orbits. Then, we define, the pheno-
type Ph(Λ) of a subgroup Λ ∈ Sub(BS(𝑚, 𝑛)) as the phenotype of the (right) BS(𝑚, 𝑛)-
action on the homogeneous space Λ\BS(𝑚, 𝑛).

Notice that the BS(𝑚, 𝑛)-actions on Λ\BS(𝑚, 𝑛) and (𝑔−1Λ𝑔)\BS(𝑚, 𝑛) are isomor-
phic (both are transitive with some point stabilizer equal to Λ), so they have the same
phenotype. Hence, the partition

(1.2) Sub(BS(𝑚, 𝑛)) =
⊔

𝑞∈Q𝑚,𝑛

Ph−1 (𝑞)

is invariant under the BS(𝑚, 𝑛)-action (recall this is the action by conjugation). Let us
mention from Proposition 5.8 that
• for each finite 𝑞 ∈ Q𝑚,𝑛, the piece Ph−1 (𝑞) is open; it is also closed if and only if

|𝑚 | = |𝑛|;
• the piece Ph−1 (∞) is closed but not open.
In particular, the function Ph : Sub(BS(𝑚, 𝑛)) → Z≥1 ∪ {+∞} is Borel. It is continuous if
and only if |𝑚 | = |𝑛|.

It now follows from Theorem 5.14 that the restriction of the partition (1.2) to the perfect
kernel

(1.3) K(BS(𝑚, 𝑛)) =
⊔

𝑞∈Q𝑚,𝑛

K𝑞 (BS(𝑚, 𝑛)),
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where K𝑞 (BS(𝑚, 𝑛)) B K(BS(𝑚, 𝑛)) ∩ Ph−1 (𝑞), satisfies all the conclusions of Theorem
B. The pieces K𝑞 (BS(𝑚, 𝑛)) are indeed non-empty, see Remark 5.12.

1.3. Approximations by subgroups of other phenotypes

We still stick to the case |𝑚 | ≠ 1 and |𝑛| ≠ 1. Since the only non-open piece in partition
(1.2) is Ph−1 (∞), the subgroups of infinite phenotype are the only ones which can be
approximated in Sub(BS(𝑚, 𝑛)) by subgroups of other (that is, finite) phenotypes.

The set of limits of subgroups of finite phenotype depends on whether we fix the phe-
notype or we let it vary. About approximations by subgroups with a constant phenotype,
we have the following result (see Proposition 5.8 and Theorem 6.2).

Theorem D. Assume |𝑚 |, |𝑛| ≠ 1 and let us fix a finite (𝑚, 𝑛)-phenotype 𝑞.
(1) If |𝑚 | = |𝑛|, then Ph−1 (𝑞) is closed, hence no infinite phenotype subgroup can be

approximated by subgroups of phenotype 𝑞.
(2) If |𝑚 | ≠ |𝑛|, then an infinite phenotype subgroup Λ can be approximated by sub-

groups of phenotype 𝑞 if and only if Λ ≤ ⟨⟨𝑏⟩⟩, where ⟨⟨𝑏⟩⟩ is the normal subgroup
generated by 𝑏.

It is remarkable that the set Ph−1 (𝑞) ∩ Ph−1 (∞) is independent of 𝑞 in the previous
result.

Allowing the finite phenotype to vary yields new limit points. Our result is the following
(see Proposition 6.7 and Corollary 6.11).

Theorem E. Assume |𝑚 |, |𝑛| ≠ 1.
(1) If |𝑚 | = |𝑛| then every infinite phenotype subgroup is a limit of finite (and varying)

phenotype subgroups.
(2) On the contrary, if |𝑚 | ≠ |𝑛|, then the set of subgroups in Ph−1 (∞) which are limits

of finite (and varying) phenotypes subgroups has empty interior in Ph−1 (∞).

Therefore, in the case |𝑚 | = |𝑛|, all subgroups of infinite phenotype are limits of sub-
groups of finite phenotype, but none of them is a limit of subgroups of fixed finite pheno-
type.

The case |𝑚 | ≠ |𝑛| is more complex. We do not have a nice description of the limit set
from the above theorem. We can show however that this limit set is strictly larger than its
fixed phenotype counterpart, see Proposition 6.12 and Theorem 6.14.

1.4. Closures of orbits in finite phenotype

We still stick to the case |𝑚 | ≠ 1, |𝑛| ≠ 1, and assume moreover |𝑚 | ≠ |𝑛|. The previous
subsection shows that for any finite phenotype 𝑞, we have

Ph−1 (𝑞) ⊊ Ph−1 (𝑞) ⊊ Ph−1 (𝑞) ∪ Ph−1 (∞).

Theorem B further yields that Ph−1 (𝑞) contains dense orbits. For such an orbit O, one
has O = Ph−1 (𝑞), thus O intersects Ph−1 (∞). In fact, Theorem D completely described
O. We now turn our attention to the orbits whose closure is contained in Ph−1 (𝑞). Quite
remarkably, they form a compact set.
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Theorem F (see Theorem 5.20). Suppose |𝑚 |, |𝑛| ≠ 1 and |𝑚 | ≠ |𝑛|. For every finite phe-
notype 𝑞, there is a positive integer 𝑠 = 𝑠(𝑞, 𝑚, 𝑛) such that the subset

MC𝑞 B Ph−1 (𝑞) ∩ {Λ ∈ Sub(BS(𝑚, 𝑛)) : Λ ≥ ⟨⟨𝑏𝑠⟩⟩}

is compact and contains all the invariant compact subsets of Ph−1 (𝑞).

In particular every normal subgroup of phenotype 𝑞, and hence every finite index
subgroup, contains ⟨⟨𝑏𝑠⟩⟩. Moreover, MC𝑞 ∩K𝑞 (BS(𝑚, 𝑛)) has empty interior in the cor-
responding piece of the perfect kernel K𝑞 (BS(𝑚, 𝑛)) (Theorem 5.20-(4)).

When gcd(𝑚, 𝑛) = 1, the above theorem takes an easier form: 𝑠 = 𝑞 and MC𝑞 ∩
K(BS(𝑚, 𝑛)) = {⟨⟨𝑏𝑞⟩⟩}. In particular, ⟨⟨𝑏𝑞⟩⟩ is the unique normal subgroup of phenotype
𝑞 and infinite index, see Theorem 5.20-(5). On the other hand, if gcd(𝑚, 𝑛) ≠ 1, then the
perfect kernel contains continuum many normal subgroups of phenotype 𝑞, see Theorem
5.26.

1.5. An example: the case of BS(2, 3)

Let us specialize our theorems to the case of BS(2, 3). An illustrative picture is given in
Figure 1.

Figure 1. The space of subgroups of BS(2, 3)
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Since 2 ≠ 3, Theorem A tells us that K(BS(2, 3)) = Sub[∞] (BS(2, 3)). In this case the
phenotype is given by the following simple formula

Ph(Λ) = 𝐼

2 |𝐼 |2 3 |𝐼 |3
,

where 𝐼 is the index 𝐼 B [⟨𝑏⟩ : Λ ∩ ⟨𝑏⟩], and where |𝐼 |𝑝 denotes the 𝑝-adic valuation of
𝐼 subject to the convention that |∞|𝑝 = 0.

Therefore, the possible phenotypes for subgroups of BS(2, 3) are given by all the posi-
tive integers not divisible by 2 and 3, and infinity. Denoting K𝑞 = {Λ ≤ BS(2, 3) : Ph(Λ) =
𝑞}, the partition (1.3) becomes

K(BS(2, 3)) = K∞ ⊔
⊔

𝑞 : gcd(𝑞,2)=gcd(𝑞,3)=1
K𝑞 .

By Theorem B, the action on each K𝑞 is topologically transitive. Note that all finite index
subgroups have finite phenotype. The set K∞ is closed and colored in black in Figure 1;
the subsets K𝑞 are open and colored in gray in the figure. Finally the finite index subgroups
are denoted by the dotted lines. Note that there are infinitely many finite index subgroups
and they accumulate on the sets K𝑞 .

Note that for every finite 𝑞, the setK𝑞 ∩K∞ is non-empty and independent of 𝑞; indeed
by Theorem D this is the set of subgroups of infinite phenotype contained in ⟨⟨𝑏⟩⟩. This
set is illustrated as the black central disk in the figure. As one can guess in the figure,
∪𝑞 finiteK𝑞 ∩K∞ is strictly bigger than this set, and yet not the entirety ofK∞, as prescribed
by Theorem E.

We finally apply Theorem F. Since gcd(2, 3) = 1, for every finite phenotype 𝑞 the
largest compact invariant subset of K𝑞 consists only of one point: the unique normal sub-
group contained in K𝑞 , namely ⟨⟨𝑏𝑞⟩⟩, pictured with a small star in the figure. Moreover,
MC𝑞 consists of the finite index subgroups of phenotype 𝑞 represented by the dotted lines
emanating from the star together with the single accumulation point ⟨⟨𝑏𝑞⟩⟩ of MC𝑞 .

Remark. Figure 1 is actually quite general: as soon as |𝑚 | ≠ |𝑛|, we have the exact same
picture except that the possible phenotypes are different, and the stars turn into bigger com-
pact maximal invariant subsets. Moreover, the phenotype is given by a more complicated
formula.

1.6. Some ideas on the techniques of proofs

The definition of the topology on the space of subgroups leads us to look at the restriction
of transitive actions to some part of their Schreier graph and then on assembling such parts
from different actions (to form new actions): this leads us to the notion of pre-action, as
considered in [14], where to facilitate the verification of the group relation, we impose
that 𝑏 is defined everywhere, i.e. on the whole domain of the pre-action (see Section 3.1).
These pre-actions are more malleable but the algebraic conditions underlying them still
make them difficult to manipulate.

This is why we further downgrade the data and move on to purely combinatorial objects
associated with actions and pre-actions: the (𝑚, 𝑛)-graphs (Section 3.3). These are ori-
ented graphs which carry labels on the vertices and on the edges and which satisfy simple
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arithmetic conditions linking degrees and labels (Definition 3.12, equalities (3.13) and
inequalities (3.14)). They generalize the Bass-Serre graphs of pre-actions used in [14] by
adding their labels which record the size of the orbits of 𝑏, 𝑏𝑚 or 𝑏𝑛 according to the graph
element considered. Notice that in [14] the 𝑏-orbits were assumed to be infinite.

All the vertex labels of a connected (𝑚, 𝑛)-graph have the same (𝑚, 𝑛)-phenotype
(Proposition 4.6) which is thus defined to be the phenotype of the graph (Definition 4.8).

At this level, we can consider assembling together different parts (originating from
different actions). Consider two connected (𝑚, 𝑛)-graphs that are non-saturated (at least
one of the inequalities (3.14) is strict), then they can appear as subgraphs of the same
(𝑚, 𝑛)-graph as soon as they have the same phenotype (Theorem 4.13). This relies on two
basic constructions, the Welding Lemma 4.16 and the Connecting Theorem 4.17.

We then proceed by upgrading from (𝑚, 𝑛)-graphs to pre-actions and actions (Propo-
sition 3.23). These upgrades are not uniquely determined, however if an (𝑚, 𝑛)-graph G2
contains the (𝑚, 𝑛)-graph G1 of a pre-action 𝛼1, then the upgraded pre-action 𝛼2 can be
chosen to extend 𝛼1 (Proposition 3.23).

To summarize, we will use several times the same construction scheme: Considering
two actions, we restrict them to a large but proper part of their domain (pre-actions). We
downgrade the resulting pre-actions to (𝑚, 𝑛)-graphs and glue them together. We saturate
the resulting (𝑚, 𝑛)-graph and upgrade it into one action that "contains" the chosen parts
of both original actions as sub-pre-actions (Theorem 4.12).

1.7. Subsequent work

Since the first version of the present paper appeared, two preprints have enriched the picture
as follows.

On the one hand, the three last-named authors proved in [16] that the dynamics on
the pieces K𝑞 is in fact highly topologically transitive. They also studied the property of
high transitivity for transitive actions of BS(𝑚, 𝑛): they characterized the pieces containing
subgroups Λ such that the action Λ\BS(𝑚, 𝑛) ↶ BS(𝑚, 𝑛) is highly transitive and they
established that this property is generic in these pieces.

On the other hand, Sasha Bontemps has extended Theorems A, B and C to generalized
Baumslag-Solitar groups, where the right notion of phenotype is more subtle [5]. She also
obtained high topological transitivity results generalizing Theorem C from the aforemen-
tioned preprint [16].

2. Preliminaries and notations

In this text, we denote by Z≥0 B {0, 1, 2, . . .} the set of non-negative integers and by
Z≥1 B {1, 2, 3, . . .} the set of positive integers. Given two integers 𝑘, 𝑙 ∈ Z ∖ {0}, we
denote by gcd(𝑘, 𝑙) ∈ Z≥1 the greatest common divisor of 𝑘 and 𝑙. We use the convention
that gcd(𝑘,∞) = 𝑘 and ∞

𝑘
= 𝑘∞ = ∞.

Let P be the set of prime numbers. Given an integer 𝑘 ∈ Z ∖ {0} and a prime 𝑝 ∈ P,
we denote by |𝑘 |𝑝 the 𝑝-adic valuation of 𝑘 , that is |𝑘 |𝑝 is the largest positive integer such
that 𝑝 |𝑘 | 𝑝 divides 𝑘 .
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2.1. Graphs and Schreier graphs

All our graphs are defined as in [25]. That is, a graph G is a couple (𝑉 (G), 𝐸 (G)) where
𝑉 (G) is the vertex set and 𝐸 (G) is the edge set, endowed with:
• two maps s, t : 𝐸 (G) → 𝑉 (G) called source and target respectively;
• a fixed-point-free involution 𝐸 (G) → 𝐸 (G), 𝑒 ↦→ 𝑒;
such that s(𝑒) = t(𝑒) and t(𝑒) = s(𝑒).

An orientation of the graph G is a partition 𝐸 (G) = 𝐸+ (G) ⊔ 𝐸− (G) whose pieces are
exchanged by the involution 𝑒 ↦→ 𝑒. Edges in 𝐸+ (G) are called positive edges and edges
in 𝐸− (G) are negative.

Remark 2.1. In order to define an oriented graphG, it is enough to define the set of vertices
𝑉 (G), the set of positive edges 𝐸+ (G), and the restrictions of the source and target maps
s, t to 𝐸+ (G). Indeed, we can define 𝐸− (G) to be a copy of 𝐸+ (G) and the involution
𝑒 ↦→ 𝑒 to be the natural identification of 𝐸+ (G) with 𝐸− (G). We extend the source and
target map by setting s(𝑒) B t(𝑒) and t(𝑒) B s(𝑒).

The degree of a vertex 𝑣 in a graph G, is the cardinal

deg(𝑣) B |{𝑒 ∈ 𝐸 (G) : s(𝑒) = 𝑣}| = |{𝑒 ∈ 𝐸 (G) : t(𝑒) = 𝑣}|.

If G is oriented, we say that an edge 𝑒 is:
• a 𝑣-outgoing edge if it is positive and s(𝑒) = 𝑣;
• a 𝑣-incoming edge if it is positive and t(𝑒) = 𝑣.
The outgoing degree degout (𝑣) of 𝑣 is the number of 𝑣-outgoing edges while its incoming
degree degin (𝑣) is the number of 𝑣-incoming edges. We clearly have degout (𝑣) + degin (𝑣) =
deg(𝑣).

A subgraph G′ of a graph G is a graph such that 𝑉 (G′) ⊆ 𝑉 (G), 𝐸 (G′) ⊆ 𝐸 (G) and
the structural maps of G′ are restrictions of those of G.

Still following [25], we call circuit a subgraph isomorphic to a circular graph (of length
𝑙 ≥ 1) and loop a circuit of length 1. The edge of a loop is also called a loop.

A path in a graph G is a finite sequence of edges (𝑒1, . . . , 𝑒𝑛), such that for all 1 ≤ 𝑘 ≤
𝑛 − 1, t(𝑒𝑘) = s(𝑒𝑘+1). Similarly, an infinite path is a sequence of edges (𝑒𝑘)𝑘≥1 such that
t(𝑒𝑘) = s(𝑒𝑘+1) for all 𝑘 ≥ 1. Finally a (possibly infinite) path is called simple when the
induced sequence of vertices is injective.

The ball 𝐵(𝑣, 𝑅) of radius 𝑅 centered at a vertex 𝑣 in a graph G is the subgraph induced
by the set of vertices of G at distance ≤ 𝑅 from 𝑣 in the path metric.

Schreier graphs. Let Γ be a group and let 𝑆 be a generating set of Γ. Consider a (right)
action 𝛼 : 𝑋 ↶ Γ. The Schreier graph of 𝛼 relatively to 𝑆 is the oriented graph Sch(𝛼) =
Sch(𝛼, 𝑆) defined by

𝑉 (Sch(𝛼)) B 𝑋 and 𝐸+ (Sch(𝛼)) B {(𝑥, 𝑠) : 𝑥 ∈ 𝑋, 𝑠 ∈ 𝑆}

where s(𝑥, 𝑠) = 𝑥 and t(𝑥, 𝑠) = 𝑥𝑠, together with the following labeling: the edge (𝑥, 𝑠) is
labeled 𝑠 and its opposite (𝑥, 𝑠) is labeled by 𝑠−1.

Given a subgroup Λ ≤ Γ, we denote by Sch(Λ, 𝑆) the Schreier graph of the natural
action Λ\Γ↶ Γ.
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The Cayley graph of Γ relatively to 𝑆 is the Schreier graph Sch(𝛼, 𝑆) of the action
𝛼 : Γ ↶ Γ by (right) translations. This graph is denoted by Cay(Γ, 𝑆) and we clearly
have Cay(Γ, 𝑆) = Sch({id}, 𝑆). The Γ-action by left translations extends to the standard
left action of Γ on Cay(Γ, 𝑆) by graph automorphisms 1. In particular Λ\Cay(Γ, 𝑆) =
Sch(Λ, 𝑆).

Let 𝜑 : 𝑋 → 𝑌 be a Γ-equivariant map from 𝛼 : 𝑋 ↶ Γ to 𝛽 : 𝑌 ↶ Γ and let 𝑆 be a
generating set of Γ. The map 𝜑 extends to a graph morphism from Sch(𝛼, 𝑆) to Sch(𝛽, 𝑆)
which respects the labelings. In particular, given subgroups Λ1 ≤ Λ2 ≤ Γ, the equivariant
map Λ1\Γ → Λ2\Γ defines a surjective morphism Sch(Λ1, 𝑆) → Sch(Λ2, 𝑆).

2.2. Space of subgroups

Let Γ be a countable group. We identify its set of subsets with {0,1}Γ and we endow it with
the product topology, thus turning it into a Polish compact space. The space of subgroups
of Γ is the closed, hence compact Polish, subspace

Sub(Γ) B {Λ ∈ {0, 1}Γ : Λ is a subgroup},

which is also totally disconnected. The clopen subsets

V(𝐼, 𝑂) B {Λ ∈ Sub(Γ) : 𝐼 ⊆ Λ and Λ ∩𝑂 = ∅}

of Sub(Γ) where 𝐼, 𝑂 run over finite subsets of Γ, form a basis of the topology. Note that
a sequence (Λ𝑛)𝑛≥0 of subgroups converges to Λ if and only if for all 𝛾 ∈ Γ,

(𝛾 ∈ Λ) ⇐⇒ (𝛾 ∈ Λ𝑖 for 𝑖 large enough) .

By the Cantor-Bendixson Theorem [4, 10] (see e.g. [20, Thm. 6.4]), there is a unique
decomposition

Sub(Γ) = C(Γ) ⊔ K(Γ)

where C(Γ) is a countable open subset and K(Γ) is a closed perfect2 subspace called the
perfect kernel of Γ. The set K(Γ) is the largest subset K ⊆ Sub(Γ) without isolated points
for the induced topology. In fact, K(Γ) is exactly the set of condensation points, that is,
the points whose neighborhoods in Sub(Γ) are all uncountable.

Remark 2.2. By a theorem of Brouwer, the space K(Γ) is either empty or a Cantor space,
see [20, Thm. 7.4].

Remark 2.3. The subset Sub[∞] (Γ) of infinite index subgroups of Γ is closed in Γ if
and only if Γ is finitely generated. Indeed if Γ is finitely generated, then its finite index
subgroups are isolated. If Γ is not finitely generated, its finite index subgroups are not
finitely generated, but they are limit points of finitely generated (thus of infinite index)
subgroups; so Sub[∞] (Γ) is dense in Sub(Γ).

1This is why Schreier graphs were defined with respect to right actions.
2A topological space is called perfect if it has no isolated points.
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The group Γ acts (on the right) by conjugation via Λ · 𝛾 B 𝛾−1Λ𝛾 on the space of
its subgroups Sub(Γ). This action is continuous and the Cantor-Bendixson decomposition
Sub(Γ) = C(Γ) ⊔ K(Γ) is Γ-invariant.

By the Baire category theorem, any countable closed subset of Sub(Γ) contains an iso-
lated point, so Sub(Γ) has trivial perfect kernel if and only if it is countable. The following
well-known proposition is useful for showing the latter property.

Proposition 2.4. Let Γ be a countable group, let 𝑁 be a normal subgroup of Γ such that
Γ/𝑁 is Noetherian (all its subgroups are finitely generated), and assume that Sub(𝑁) is
countable. Then Sub(Γ) is countable.

Proof. Let Λ ≤ Γ and denote by 𝜋 : Γ → Γ/𝑁 the quotient map. Since Γ/𝑁 is Noetherian,
we have 𝜋(Λ) = ⟨𝑆⟩ for some finite set 𝑆. Fix a finite set 𝑆′ ⊆ Λ such that 𝜋(𝑆′) = 𝑆. Then
we can recover Λ from 𝑆′ and its intersection with 𝑁 as

Λ = ⟨𝑆′ ∪ (Λ ∩ 𝑁)⟩ .

In other words, the map (𝑆′, 𝑁 ′) ↦→ ⟨𝑆′ ∪ 𝑁 ′⟩ surjectsP 𝑓 (Γ) × Sub(𝑁) onto Sub(Γ), where
P 𝑓 (Γ) is the set of finite subsets of Γ, which is countable. Since Sub(𝑁) is countable as
well we conclude that Sub(Γ) is countable.

Corollary 2.5. If |𝑚 | = 1 or |𝑛| = 1 then Sub(BS(𝑚, 𝑛)) is countable.

Sketch of proof. We sketch the proof contained in [3, Cor. 8.4]. By symmetry we may as
well assume 𝑚 = 1. Then BS(𝑚, 𝑛) is isomorphic to the semi-direct product Z[1/𝑛] ⋊ Z
whereZ acts by multiplication by 𝑛. As explained in the proof of [3, Cor. 8.4], Sub(Z[1/𝑛])
is countable, so the result follows from the previous proposition.

Space of pointed actions. Let us now interpret the topological space Sub(Γ) in terms
of pointed transitive group actions and their pointed Schreier graphs. Given any pointed
transitive group action (𝛼, 𝑣), where 𝛼 : 𝑉 ↶ Γ and 𝑣 ∈ 𝑉 , we associate to it the stabilizer
Stab𝛼 (𝑣) ∈ Sub(Γ), and we notice that Stab𝛼1 (𝑣1) = Stab𝛼2 (𝑣2) if and only if (𝛼1, 𝑣1) and
(𝛼2, 𝑣2) are isomorphic as pointed transitive actions.

Notation 2.6. We denote by [𝛼, 𝑣] the isomorphism class of any pointed transitive action
(𝛼, 𝑣).

We therefore have a canonical bĳection [𝛼, 𝑣] ↦→ Stab𝛼 (𝑣) between the collection of
isomorphism classes of pointed transitive actions and Sub(Γ). Its inverse is given by Λ ↦→
[Λ\Γ↶ Γ,Λ]. Through this bĳection, the action by conjugation of Γ on Sub(Γ) becomes
[𝛼, 𝑣] · 𝛾 = [𝛼, 𝑣𝛼(𝛾)], i.e., it moves the basepoint.

Via the above identification, we obtain a topology on the set of isomorphism classes of
pointed actions [𝛼, 𝑣].

It is clear that two pointed actions are isomorphic if and only if their Schreier graphs are
isomorphic as pointed labeled graphs. Given two pointed labeled oriented graphs (G, 𝑣),
(H , 𝑤) and a positive integer 𝑅, we write (G, 𝑣) ≃𝑅 (H , 𝑤) to mean that the 𝑅-balls around
𝑣 inG and around𝑤 inH are isomorphic as pointed oriented labeled graphs. It is an exercise
to check that if Γ is generated by a finite set 𝑆, then the sets of the form

(2.7) N([𝛼, 𝑣], 𝑅) B
{
[𝛼′, 𝑣′] : (Sch(𝛼, 𝑆), 𝑣) ≃𝑅 (Sch(𝛼′, 𝑆), 𝑣′)

}
,
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constitute a basis of clopen neighborhoods of [𝛼, 𝑣].

2.3. Bass-Serre theory

Associated with the standard HNN-presentation of

BS(𝑚, 𝑛) =
〈
𝑏, 𝑡 |𝑡𝑏𝑚𝑡−1 = 𝑏𝑛

〉
,

we have the BS(𝑚, 𝑛)-action on its Bass-Serre tree T . Recall that T is the oriented tree
with 𝑉 (T ) = BS(𝑚, 𝑛)/⟨𝑏⟩, 𝐸+ (T ) = BS(𝑚, 𝑛)/⟨𝑏𝑛⟩,

s(𝛾 ⟨𝑏𝑛⟩) = 𝛾 ⟨𝑏⟩ , and t(𝛾 ⟨𝑏𝑛⟩) = 𝛾𝑡 ⟨𝑏⟩

and given a subgroup Λ ≤ BS(𝑚, 𝑛), the quotient Λ\T has the structure of a graph of
groups whose fundamental group is Λ, see [25].

Remark 2.8. Let Λ ≤ BS(𝑚, 𝑛) be a subgroup. If Λ ∩ ⟨𝑏⟩ = {id}, then Λ acts freely on
T ; thus it is the fundamental group of the quotient graph Λ\T , hence Λ is a free group.

Let us now concentrate on a subgroup Λ ≤ BS(𝑚, 𝑛) such that Λ ∩ ⟨𝑏⟩ ≠ {id}. Then
for the induced action Λ↷ T , each edge and vertex stabilizer is infinite cyclic: the tree T
is a GBS-tree (for Generalized Baumslag-Solitar), in the sense of [15, 21]. One can use this
point of view to understand the graph of groups description ofΛ. However, taking advantage
of the transitivity of the BS(𝑚,𝑛)-action on the edges and the vertices, we provide a slightly
more precise description.

Proposition 2.9. Let 𝑚 and 𝑛 be non-zero integers. Let Λ ≤ BS(𝑚, 𝑛) be a subgroup such
that Λ ∩ ⟨𝑏⟩ ≠ {id}. The quotient graph of groups arising from the action Λ↷ T is iso-
morphic to the graph of groups obtained by attaching a copy of Z to every vertex and every
edge of the quotient graph Λ\T , with structural maps of positive edges

Z𝑒 ↩→ Zs(𝑒) , 𝑘 ↦→ 𝑛

degout (s(𝑒))
· 𝑘,

Z𝑒 ↩→ Zt(𝑒) , 𝑘 ↦→ 𝑚

degin (t(𝑒))
· 𝑘.

Proof. In this proof we set Γ B BS(𝑚, 𝑛). Let us consider the action of Λ on the tree T .
Since T is locally finite, any edge adjacent to a vertex with infinite stabilizer has itself infi-
nite stabilizer. It follows that all vertex and edge Λ-stabilizers are infinite. Being subgroups
of the Γ-stabilizers, they are all isomorphic to Z.

Observe that since Γ acts transitively and the Γ-stabilizers are abelian, the Γ-stabilizers
are canonically pairwise isomorphic: given any vertex 𝑢 ∈ 𝑉 (T ) and 𝑎 ∈ StabΓ (𝑢), one
has

(2.10) 𝑔𝑎𝑔−1 = ℎ𝑎ℎ−1 for any 𝑔, ℎ ∈ Γ such that 𝑔𝑢 = ℎ𝑢.

Indeed since ℎ−1𝑔 ∈ StabΓ (𝑢), we get that ℎ−1𝑔𝑎𝑔−1ℎ = 𝑎.
We now focus on the quotient graph of groups arising from the action Λ↷ T . Let

us recall from [25] that its vertex groups are 𝐺𝑣 B StabΛ (𝑣̃) and edge groups are 𝐺𝑒 B
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StabΛ (𝑒), where 𝑣̃, 𝑒 are some lifts of 𝑣, 𝑒 in T . Given any 𝑒 ∈ 𝐸+ (Λ\T ), the structural
map 𝐺𝑒 ↩→ 𝐺t(𝑒) is

(2.11) 𝐺𝑒 = StabΛ (𝑒) ↩→ StabΛ (t(𝑒)) → StabΛ
(
t̃(𝑒)

)
= 𝐺t(𝑒)

𝑎 ↦→ 𝑎 ↦→ 𝑔𝑎𝑔−1

where 𝑔 ∈ Λ is any element such that 𝑔 · t(𝑒) = t̃(𝑒) and the map 𝐺𝑒 ↩→ 𝐺s(𝑒) is similar.
This is unambiguous by (2.10).

Let us call orientation of an infinite cyclic group the choice of one generator (over
two). This provides an identification to Z. Once every stabilizer is oriented, the inclusions
𝐺𝑒 ↩→ 𝐺s(𝑒) and 𝐺𝑒 ↩→ 𝐺t(𝑒) become multiplications by non-zero integers 𝜆−

Λ
(𝑒) and

𝜆+
Λ
(𝑒), respectively. It now suffices to prove that, for well-chosen orientations, one has

(2.12) 𝜆−
Λ (𝑒) =

𝑛

degout (s(𝑒))
and 𝜆+Λ (𝑒) =

𝑚

degin (t(𝑒))

for every positive edge 𝑒 ∈ 𝐸+ (Λ\T ).
Let us first observe that the absolute value of 𝜆±

Λ
(𝑒) does not depend on the orientations:

it is equal to [𝐺𝑣 : 𝐺𝑒]. In other words, if 𝑒 is a lift of 𝑒, 𝑣̃ B s(𝑒) = and 𝑤̃ B t(𝑒), we
have ��𝜆−

Λ (𝑒)
�� = [StabΛ (𝑣̃) : StabΛ (𝑒)] = |StabΛ (𝑣̃) · 𝑒 |(2.13) ��𝜆+Λ (𝑒)�� = [StabΛ (𝑤̃) : StabΛ (𝑒)] = |StabΛ (𝑤̃) · 𝑒 | .(2.14)

Let 𝐸out (𝑣̃) be the set of 𝑣̃-outgoing edges. Its cardinal is |𝐸out (𝑣̃) | = |𝑛|. Any generator
of StabΓ (𝑣̃) acts as a single |𝑛|-cycle on 𝐸out (𝑣̃). Hence 𝐸out (𝑣̃) splits into StabΛ (𝑣̃)-orbits
of equal size, that is

��𝜆−
Λ
(𝑒)

�� according to (2.13). The number of these StabΛ (𝑣̃)-orbits is
degout (𝑣), thus |𝑛| =

��𝜆−
Λ
(𝑒)

�� · degout (𝑣). We obtain similarly |𝑚 | =
��𝜆+

Λ
(𝑒)

�� · degin (𝑤), using
incoming edges and (2.14). We have established that (2.12) holds in absolute value.

Let us now turn to the signs in (2.12), for which we need explicit orientations of the
Λ-stabilizers. We actually start by orienting the Γ-stabilizers.

Pick the vertex 𝑢̃0B ⟨𝑏⟩ ∈𝑉 (T ), then StabΓ (𝑢̃0) = ⟨𝑏⟩ and the edge 𝑑0B ⟨𝑏𝑛⟩ ∈ 𝐸+ (T )
has source 𝑢̃0 and target 𝑡𝑢̃0. Since the Γ-stabilizers are canonically pairwise identified by
conjugation (2.10), these choices induce a canonical conjugation-invariant orientation 𝑥∗
of all the vertex and edge Γ-stabilizers: 𝑥𝑔𝑢̃0 B 𝑔𝑏𝑔−1 for StabΓ (𝑔𝑢̃0) and 𝑥𝑔𝑑0

B 𝑔𝑏𝑛𝑔−1

for StabΓ (𝑔𝑑0).
The inclusions StabΓ (𝑒) ↩→ StabΓ (s(𝑒)) and StabΓ (𝑒) ↩→ StabΓ (t(𝑒)) become mul-

tiplications by non-zero integers that we denote by 𝜇−
Γ
(𝑒) and 𝜇+

Γ
(𝑒). We have 𝜇−

Γ
(𝑒) = 𝑛

since 𝑥𝑒̃ = 𝑥𝑛
s(𝑒̃) and 𝜇+

Γ
(𝑒) = 𝑚 since

𝑥𝑒̃ = 𝑔𝑏𝑛𝑔−1 = 𝑔(𝑡𝑏𝑡−1)𝑚𝑔−1 = 𝑥𝑚t(𝑒̃) .

The Λ-stabilizers have finite index in the corresponding Γ-stabilizers. We orient them
coherently with the ambient Γ-stabilizers by using positive powers. The Λ-conjugations
between Λ-stabilizers remain orientation-preserving, therefore by (2.11) the inclusion map
StabΛ (𝑒) ↩→ StabΛ (t(𝑒)) becomes the multiplication by 𝜆+

Λ
(𝑒). Similarly, the inclusion



14 A. Carderi, D. Gaboriau, F. Le Maître and Y. Stalder

StabΛ (𝑒) ↩→ StabΛ (s(𝑒)) becomes multiplication by 𝜆−
Λ
(𝑒). Since the orientations are

coherent, we conclude that 𝜆−
Λ
(𝑒) has the same sign as 𝜇−

Γ
(𝑒) = 𝑛 and 𝜆+

Λ
(𝑒) has the same

sign as 𝜇+
Γ
(𝑒) = 𝑚.

Corollary 2.15. Let 𝑚 and 𝑛 be non-zero integers. Let Λ ≤ BS(𝑚, 𝑛) be a subgroup such
that Λ ∩ ⟨𝑏⟩ ≠ {id}. The isomorphism type of Λ is completely determined by the oriented
graph Λ\T .

Proposition 2.16. Let 𝑚 and 𝑛 be non-zero integers and let Λ ≤ BS(𝑚, 𝑛) be a subgroup.
(1) If Λ ∩ ⟨𝑏⟩ ≠ {id}, then either Λ ≃ Z is virtually a subgroup of ⟨𝑏⟩ or Λ is not a

free group.
(2) If |𝑚 | = 1 or |𝑛| = 1, then the fundamental group of the underlying graph Λ\T is

a free group of rank ≤ 1.

If Λ ∩ ⟨𝑏⟩ = {id}, then Λ is the fundamental group of the underlying graph Λ\T (see
Remark 2.8).

The first item of the proposition follows from standard techniques in ℓ2-cohomology:
if Λ ∩ ⟨𝑏⟩ ≠ {id}, then Λ is the fundamental group of a graph of groups whose vertex and
edge groups are isomorphic to Z; all the ℓ2-Betti numbers of such a group vanish. For the
comfort of the reader we propose a proof by hand.

Proof. We start with the first item. Recall that in a free group 𝐹, whenever non-trivial
elements 𝑔, ℎ ∈ 𝐹 satisfy 𝑔ℎ𝑘𝑔−1 = ℎ𝑙 with 𝑘 ≠ 0 ≠ 𝑙, then there is 𝑎 ∈ 𝐹 such that 𝑔, ℎ are
both powers of 𝑎. In particular, such elements 𝑔, ℎ always commute.

Now, assume that Λ is free and Λ ∩ ⟨𝑏⟩ ≠ {id}, say Λ ∩ ⟨𝑏⟩ = ⟨𝑏𝑠⟩ where 𝑠 > 0. Pick
any 𝜆 ∈ Λ and set 𝐻𝜆 B ⟨𝑏𝑠⟩ ∩ 𝜆 ⟨𝑏𝑠⟩ 𝜆−1, which is the intersection of Λ with the stabilizer
of the geodesic [⟨𝑏⟩ , 𝜆 ⟨𝑏⟩] in T . Observe that 𝐻𝜆 is a finite index subgroup of both ⟨𝑏𝑠⟩
and 𝜆 ⟨𝑏𝑠⟩ 𝜆−1. Therefore, there are 𝑘 ≠ 0 ≠ 𝑙 such that 𝜆𝑏𝑠𝑘𝜆−1 = 𝑏𝑠𝑙 . As Λ is free, 𝜆 and
𝑏𝑠 commute.

Consequently, the center of Λ contains ⟨𝑏𝑠⟩. Thus, the rank of Λ is 1; in other words Λ
is infinite cyclic. It is now clear that ⟨𝑏𝑠⟩ has finite index in bothΛ and ⟨𝑏⟩, soΛ is virtually
a subgroup of ⟨𝑏⟩.

Let us turn to the second item. The fundamental group of a graph of groups surjects
onto the fundamental group of the underlying graph. The condition in Item 2 implies the
amenability of BS(𝑚,𝑛). Its subgroups thus cannot surject onto a non-amenable free group.

3. Bass-Serre graphs

3.1. Pre-actions

Let 𝑚, 𝑛 ∈ Z ∖ {0} and BS(𝑚, 𝑛) = ⟨𝑏, 𝑡 | 𝑡𝑏𝑚 = 𝑏𝑛𝑡⟩.
Recall that a partial bĳection of a set 𝑋 is a bĳection between two subsets of 𝑋 . Our

actions are on the right; thus in a product of (partial) bĳections 𝜎𝜏, the transformation 𝜎

is applied first.

Definition 3.1. Given a bĳection 𝛽 of a set 𝑋 and a partial bĳection 𝜏 of 𝑋 , we say that 𝜏
is (𝛽𝑛, 𝛽𝑚)-equivariant if 𝜏𝛽𝑚 = 𝛽𝑛𝜏 as partial bĳections, that is:
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• dom(𝜏) is 𝛽𝑛-invariant;
• rng(𝜏) is 𝛽𝑚-invariant;
• 𝑥𝜏𝛽𝑚 = 𝑥𝛽𝑛𝜏 for all 𝑥 ∈ dom(𝜏).
A pre-action of BS(𝑚, 𝑛) on a set 𝑋 is a couple (𝛽, 𝜏) where 𝛽 is a bĳection of 𝑋 and
𝜏 is a (𝛽𝑛, 𝛽𝑚)-equivariant partial bĳection of 𝑋 . The set 𝑋 is called the domain of the
pre-action. Such a pre-action is saturated if dom(𝜏) = 𝑋 = rng(𝜏).

Remark 3.2. Saturated pre-actions (𝛽, 𝜏) correspond to actions 𝛼 of BS(𝑚,𝑛) on the same
set 𝑋 under the association 𝛽 ↔ 𝛼(𝑏) and 𝜏 ↔ 𝛼(𝑡).

Definition 3.3. Given a pre-action (𝛽, 𝜏) of BS(𝑚, 𝑛), its Schreier graph is the oriented
labeled graph Sch(𝛽, 𝜏) = G defined by

𝑉 (G) B 𝑋,

{
𝐸+ (G) B 𝑋 × {𝑏} ⊔ dom(𝜏) × {𝑡},
𝐸− (G) B 𝑋 × {𝑏−1} ⊔ rng(𝜏) × {𝑡−1},

where the label of any edge is its second component and:
• for all 𝑥 ∈ 𝑋 , we set

s(𝑥, 𝑏) B 𝑥, t(𝑥, 𝑏) B 𝑥𝛽, and (𝑥, 𝑏) B (𝑥𝛽, 𝑏−1);

• for all 𝑥 ∈ dom(𝜏), we set

s(𝑥, 𝑡) B 𝑥, t(𝑥, 𝑡) B 𝑥𝜏, and (𝑥, 𝑡) B (𝑥𝜏, 𝑡−1).

Notice that the orientation of any edge (𝑥, 𝑙) is determined by its label 𝑙 and that the
source of (𝑥, 𝑙) is 𝑥, regardless of its orientation.

Noting that a BS(𝑚, 𝑛)-action is transitive if and only if the associated Schreier graph
is connected, we make the following definition.

Definition 3.4. A pre-action of BS(𝑚, 𝑛) is transitive if its Schreier graph is connected.

3.2. Bass-Serre graphs

We now introduce an important tool for our study. It is the labeled graph obtained from
the Schreier graph defined in Section 3.1 by “shrinking each 𝛽-orbit to one point”. We
identify together the 𝑡-edges whose initial vertices belong to the same 𝛽𝑛-orbit. Note that
their terminal vertices automatically belong to the same 𝛽𝑚-orbit.

We label the vertices by the cardinality of the corresponding 𝛽-orbit and the edges by
the cardinality of the corresponding 𝛽𝑛-orbit. This is illustrated by Figure 2. The formal
definition is as follows.

Definition 3.5. The Bass-Serre graph associated to a pre-action 𝛼 = (𝛽, 𝜏) of BS(𝑚, 𝑛)
on a set 𝑋 is the oriented labeled graph BS(𝛼) defined by

𝑉 (BS(𝛼)) B 𝑋/⟨𝛽⟩ ,
{
𝐸+ (BS(𝛼)) B dom(𝜏)/⟨𝛽𝑛⟩ ,
𝐸− (BS(𝛼)) B rng(𝜏)/⟨𝛽𝑚⟩ .

For every 𝑥 ∈ dom 𝜏, we set

s(𝑥 ⟨𝛽𝑛⟩) B 𝑥 ⟨𝛽⟩ , t(𝑥 ⟨𝛽𝑛⟩) B 𝑥𝜏 ⟨𝛽⟩ , and 𝑥 ⟨𝛽𝑛⟩ B 𝑥𝜏 ⟨𝛽𝑚⟩ = 𝑥 ⟨𝛽𝑛⟩ 𝜏.
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We define the label map 𝐿 : 𝑉 (BS(𝛼)) ⊔ 𝐸 (BS(𝛼)) → Z≥1 ∪ {∞} by

𝐿 (𝑥 ⟨𝛽⟩) B |𝑥 ⟨𝛽⟩| , 𝐿(𝑥 ⟨𝛽𝑛⟩) B |𝑥 ⟨𝛽𝑛⟩| , 𝐿(𝑦 ⟨𝛽𝑚⟩) B |𝑦 ⟨𝛽𝑚⟩| .

Remark 3.6. For any 𝑥 ∈ dom(𝜏), the (𝛽𝑛, 𝛽𝑚)-equivariant partial bĳection 𝜏 induces a
bĳection from 𝑥⟨𝛽𝑛⟩ to 𝑥𝜏⟨𝛽𝑚⟩. Thus both the target and the opposite maps of BS(𝛼) are
well-defined and the label of each edge is equal to the label of its opposite.

Remark 3.7. We view the sets 𝐸+ (BS(𝛼)) and 𝐸− (BS(𝛼)) as disjoint sets, even though
we might have that dom(𝜏)/⟨𝛽𝑛⟩ ∩ rng(𝜏)/⟨𝛽𝑚⟩ ≠ ∅. Note that the source of an edge
𝑥
〈
𝛽𝑘

〉
∈ 𝐸± (BS(𝛼)) is 𝑥 ⟨𝛽⟩ regardless of its orientation.

Remark 3.8. The groups BS(𝑚, 𝑛) and BS(𝑛, 𝑚) are isomorphic via 𝑏 ↦→ 𝑏 and 𝑡 ↦→ 𝑡−1.
For every pre-action (𝛽, 𝜏) of BS(𝑚, 𝑛), the couple (𝛽, 𝜏−1) is a pre-action of BS(𝑛,𝑚). At
the level of Bass-Serre graphs, BS(𝛽, 𝜏) and BS(𝛽, 𝜏−1) coincide, except that the orientation
is reversed.

Remark 3.9. In the case of a transitive BS(𝑚, 𝑛)-action, the graph underlying our Bass-
Serre graph is the quotient of the Bass-Serre tree T by the stabilizer of any point of 𝑋 , as
will be explained in Section 3.6.

We now clarify what we meant by “shrinking each 𝛽-orbit to a point”, by noting that
we have the following simplicial map from the Schreier graph to the Bass-Serre graph of
any pre-action.

Definition 3.10. The projection associated to a pre-action 𝛼 = (𝛽, 𝜏) is the application 𝜋𝛼

given by

𝑉 (Sch(𝛼)) → 𝑉 (BS(𝛼)), 𝑥 ↦→ 𝑥 ⟨𝛽⟩
𝐸+
𝑡 (Sch(𝛼)) → 𝐸+ (BS(𝛼)), (𝑥, 𝑡) ↦→ 𝑥 ⟨𝛽𝑛⟩

𝐸−
𝑡 (Sch(𝛼)) → 𝐸− (BS(𝛼)), (𝑥, 𝑡−1) ↦→ 𝑥 ⟨𝛽𝑚⟩

𝐸𝑏 (Sch(𝛼)) → 𝑉 (BS(𝛼)), (𝑥, 𝑏±1) ↦→ 𝑥 ⟨𝛽⟩

where 𝐸±
𝑡 (Sch(𝛼)) is the subset of edges in Sch(𝛼) whose label is 𝑡 or 𝑡−1 respectively

and 𝐸𝑏 is the subset of edges whose label is 𝑏 or 𝑏−1.

This projection is illustrated in Figure 2. Given any subgraph G ⊆ Sch(𝛼) or path 𝔭 in
Sch(𝛼) we obtain a subgraph 𝜋𝛼 (G) ⊆ BS(𝛼) or a path 𝜋𝛼 (𝔭) in BS(𝛼).

Note that for every vertex 𝑣 = 𝑥 ⟨𝛽⟩,��𝑥 〈𝛽𝑘〉�� = |𝑥 ⟨𝛽⟩|
gcd(|𝑥 ⟨𝛽⟩| , 𝑘) ,

thus the following facts hold:
• all the 𝑣-outgoing edges 𝑒 have the same label, which is:

𝐿 (𝑒) = 𝐿 (𝑣)
gcd(𝐿 (𝑣), 𝑛) ,
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Figure 2. The projection from the Schreier graph onto the Bass-Serre graph of some non-saturated
transitive BS(2, 3)-pre-action. The dotted circles represent the 𝛽-orbits in the Schreier graph.

• all the 𝑣-incoming edges 𝑒′ have the same label, which is:

𝐿 (𝑒′) = 𝐿 (𝑣)
gcd(𝐿 (𝑣), 𝑚) .

We also have the following relations between labels and degrees:
• The outgoing degree degout (𝑣) is equal to the number of 𝛽𝑛-orbits contained in 𝑥 ⟨𝛽⟩ ∩

dom(𝜏). Recall that dom(𝜏) is 𝛽𝑛-invariant. Since 𝑥 ⟨𝛽⟩ contains exactly gcd(𝐿 (𝑣), 𝑛)
orbits under 𝛽𝑛, we get

degout (𝑣) ≤ gcd(𝐿 (𝑣), 𝑛),

with equality if and only if 𝑥 ⟨𝛽⟩ ⊆ dom(𝜏).
• Similarly, the incoming degree degin (𝑣) is equal to the number of 𝛽𝑚-orbits contained

in 𝑥 ⟨𝛽⟩ ∩ rng(𝜏), so
degin (𝑣) ≤ gcd(𝐿 (𝑣), 𝑚),

with equality if and only if 𝑥 ⟨𝛽⟩ ⊆ rng(𝜏).

Remark 3.11. As a consequence of the last two items, the pre-action is an action if and
only if, for every vertex 𝑣,

degout (𝑣) = gcd(𝐿 (𝑣), 𝑛) and degin (𝑣) = gcd(𝐿 (𝑣), 𝑚).

3.3. (𝒎, 𝒏)-graphs

We now introduce an axiomatization of the Bass-Serre graphs we obtain from pre-actions.
Recall that by convention gcd(∞, 𝑘) = |𝑘 | for all 𝑘 ≠ 0.
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Definition 3.12. An (𝑚, 𝑛)-graph is an oriented labeled graph G = (𝑉, 𝐸) with label map
𝐿 : 𝑉 ⊔ 𝐸 → Z≥1 ∪ {∞} such that:
• for every positive edge 𝑒 ∈ 𝐸+,

(3.13)
𝐿 (s(𝑒))

gcd(𝐿 (s(𝑒)), 𝑛) = 𝐿 (𝑒) = 𝐿 (t(𝑒))
gcd(𝐿 (t(𝑒)), 𝑚) ;

• for every negative edge 𝑒 ∈ 𝐸− , 𝐿 (𝑒) = 𝐿 (𝑒);
• for every vertex 𝑣 ∈ 𝑉 , we have

(3.14) degout (𝑣) ≤ gcd(𝐿 (𝑣), 𝑛) and degin (𝑣) ≤ gcd(𝐿 (𝑣), 𝑚).

Example 3.15. The Bass-Serre graph of any pre-action of BS(𝑚, 𝑛) is an (𝑚, 𝑛)-graph.
The converse will be shown in Proposition 3.22.

Remark 3.16. Observe that an edge label is uniquely determined by the label of any of
its vertices. The edge labels are thus redundant and are just calculation tools (see also
Remark 4.7).

Example 3.17. Let us see how labels interact for 𝑚 = 2 and 𝑛 = 3. If 𝑒 is an edge in a
(2, 3)-graph, then once we fix the label of one of the extremities, the other one can be
chosen according to the Table 1, using Formula (3.13) for 𝐿 (𝑒). The reader is invited to
consult the webpage [12] to see the kinds of local constraints which occur in general.

If gcd(𝐿 (s(𝑒)), 2) = 1
𝐿 (t(𝑒)) ∈ {𝐿 (𝑒), 2𝐿 (𝑒)}

If gcd(𝐿 (s(𝑒)), 2) = 2
𝐿 (t(𝑒)) = 2𝐿 (𝑒)

If gcd(𝐿 (t(𝑒)), 3) = 1
𝐿 (s(𝑒)) ∈ {𝐿 (𝑒), 3𝐿 (𝑒)}

If gcd(𝐿 (t(𝑒)), 3) = 3
𝐿 (s(𝑒)) = 3𝐿 (𝑒)

Table 1. How the label of the extremities impact each other

In Figure 3, we give an illustrative example.

Remark 3.18. As in Remark 3.8, every (𝑚, 𝑛)-graph can be turned into an (𝑛, 𝑚)-graph
by flipping the orientations of its edges. Note that this operation does not affect the labels.

Remark 3.19. In a connected (𝑚, 𝑛)-graph, the labels are, either all finite, or all ∞ by
Equation (3.13). This will be made more precise in Proposition 4.6. Observe that any ori-
ented graph G satisfying degin (𝑣) ≤ 𝑚 and degout (𝑣) ≤ 𝑛 for every 𝑣 ∈ 𝑉 (G) becomes an
(𝑚, 𝑛)-graph if we set all the labels to be infinite. However one cannot always put finite
labels, see Lemma 3.33.

Definition 3.20. Let G be an (𝑚, 𝑛)-graph. A vertex 𝑣 in G is saturated if the inequalities
(3.14) are indeed equalities, i.e.

degout (𝑣) = gcd(𝐿 (𝑣), 𝑛) and degin (𝑣) = gcd(𝐿 (𝑣), 𝑚).

The (𝑚, 𝑛)-graph G is saturated if all its vertices are saturated.
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Figure 3. Two examples of (2, 3)-graphs.

Example 3.21. The Bass-Serre graph of a pre-action of BS(𝑚, 𝑛) is saturated if and only
if the pre-action is an action.

3.4. Realizing (𝒎, 𝒏)-graphs as Bass-Serre graphs

Proposition 3.22. Every (𝑚, 𝑛)-graph G is the Bass-Serre graph of at least one pre-action
of BS(𝑚, 𝑛). Any such pre-action is an action if and only if G is saturated.

The above proposition is a consequence of the following stronger statement where by
definition, a sub-(𝑚,𝑛)-graph of an (𝑚,𝑛)-graph G is a subgraph G′ labeled by the restric-
tion of the label map of G.

Proposition 3.23 (Extension of pre-actions from (𝑚, 𝑛)-graphs). Let G1 be the Bass-Serre
graph of a pre-action 𝛼1 and let G2 be an (𝑚, 𝑛)-graph that contains G1 as a sub-(𝑚, 𝑛)-
graph. Then G2 is the Bass-Serre graph of a pre-action 𝛼2 that extends 𝛼1.

Proof. We start with a pre-action (𝛽1, 𝜏1) on 𝑋1 which yields the Bass-Serre graph G1.
Let 𝑊 B 𝑉 (G2) ∖ 𝑉 (G1) and 𝑋2 B 𝑋1 ⊔

⊔
𝑣∈𝑊 𝑋𝑣 where each 𝑋𝑣 is a set of cardinality

|𝑋𝑣 | = 𝐿 (𝑣). We extend 𝛽1 to a permutation 𝛽2 of 𝑋2 by making it act as a cycle of length
𝐿 (𝑣) on 𝑋𝑣.

By Zorn’s lemma, it suffices to extend 𝜏1 when G1 only lacks one positive G2-edge. So
suppose 𝐸+ (G1) ⊔ {𝑒} = 𝐸+ (G2). Then by Inequality (3.14) in Definition 3.12,

degG1
out (s(𝑒)) < degG2

out (s(𝑒)) ≤ gcd(𝐿 (s(𝑒)), 𝑛)

and similarly
degG1

in (t(𝑒)) < degG2
in (t(𝑒)) ≤ gcd(𝐿 (t(𝑒)), 𝑚).

We can thus find a 𝛽𝑛2 -orbit 𝑦
〈
𝛽𝑛2

〉
contained in the 𝛽2-orbit s(𝑒) but disjoint from dom(𝜏1)

and a 𝛽𝑚2 -orbit 𝑧
〈
𝛽𝑚2

〉
contained in the 𝛽2-orbit t(𝑒) but disjoint from rng(𝜏1).

Since these two orbits 𝑦
〈
𝛽𝑛2

〉
and 𝑧

〈
𝛽𝑚2

〉
share the same cardinal 𝐿 (𝑒), we can define

𝜏2 as an extension of 𝜏1 which is also (𝛽𝑛2 , 𝛽
𝑚
2 )-equivariant when restricted to 𝑦

〈
𝛽𝑛2

〉
by

letting
𝑦𝛽𝑘𝑛2 𝜏2 = 𝑧𝛽𝑘𝑚2 for all 𝑘 ∈ Z.
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By construction 𝜏2 is the desired extension.

The pre-action 𝛼2 arising in Proposition 3.23 is definitively not unique in general. In
a forthcoming work, we will characterize which (𝑚, 𝑛)-graphs arise as Bass-Serre graphs
of continuum many non-isomorphic actions. In particular we will show that the (𝑚, 𝑛)-
graphs whose underlying graph has non-finitely generated fundamental group are of this
kind. Such (𝑚, 𝑛)-graphs always exist as soon as |𝑚 | ≥ 2 and |𝑛| ≥ 2. Here we give a simple
example of a graph associated to continuum many non-isomorphic actions for 𝑛 = 𝑚 = 2.

Example 3.24. Let G be the (2, 2)-graph whose underlying graph is such that 𝑉 (G) = Z
and for every 𝑧 ∈ 𝑉 (G) there are exactly two 𝑧-outgoing edges, one to 𝑧 and the other to
𝑧 + 1. That is, G is a line where every vertex has an extra loop. We set the labels of G to be
all infinite.

∞ ∞ ∞ ∞

Figure 4. The (2,2)-graph G

Set 𝑋 B 𝑉 (G) × Z � Z × Z. For every function 𝑓 : Z→ Z such that ∀𝑤 < 0, 𝑓 (𝑤) = 0
and 𝑓 (0) ≠ 0, we define an action 𝛼 𝑓 as follows: for all (𝑘, 𝑙) ∈ 𝑋

(𝑘, 𝑙)𝛼 𝑓 (𝑏) B(𝑘, 𝑙 + 1);

(𝑘, 𝑙)𝛼 𝑓 (𝑡) B
{
(𝑘 + 1, 𝑙) if 𝑙 is odd;
(𝑘, 𝑙 + 𝑓 (𝑘)) if 𝑙 is even.

It is easy to check that all 𝛼 𝑓 are actions of BS(2, 2) whose Bass-Serre graph is G, that 𝛼 𝑓

and 𝛼𝑔 are non-conjugate for 𝑓 ≠ 𝑔, and that there are continuum many such actions.

3.5. Additional properties of (𝒎, 𝒏)-graphs

In this section, we collect some basic consequences of the definition of (𝑚, 𝑛)-graphs.
Observe that Equation (3.13) is equivalent to the fact that

(3.25) max(|𝐿 (𝑠(𝑒)) |𝑝 − |𝑛|𝑝 , 0) = |𝐿 (𝑒) |𝑝 = max( |𝐿 (t(𝑒)) |𝑝 − |𝑚 |𝑝 , 0)

from which we obtain the following.

Remark 3.26. Consider an oriented labeled graph G = (𝑉, 𝐸) with label map 𝐿 : 𝑉 ⊔ 𝐸 →
Z≥1 satisfying 𝐿 (𝑒) = 𝐿 (𝑒) for every edge 𝑒. The labeled graph G is an (𝑚, 𝑛)-graph if and
only if the following two conditions hold:
• for every positive edge 𝑒 and every prime 𝑝 such that |𝐿 (𝑒) |𝑝 ≥ 1,

(3.27) |𝐿 (s(𝑒)) |𝑝 = |𝐿 (𝑒) |𝑝 + |𝑛|𝑝 and |𝐿 (t(𝑒)) |𝑝 = |𝐿 (𝑒) |𝑝 + |𝑚 |𝑝 ,
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• for every positive edge 𝑒 and every prime 𝑝 such that |𝐿 (𝑒) |𝑝 = 0,

(3.28) 0 ≤ |𝐿 (s(𝑒)) |𝑝 ≤ |𝑛|𝑝 and 0 ≤ |𝐿 (t(𝑒)) |𝑝 ≤ |𝑚 |𝑝 .

In particular, in an (𝑚, 𝑛)-graph, |𝐿 (s(𝑒)) |𝑝 > |𝑛|𝑝 if and only if |𝐿 (t(𝑒)) |𝑝 > |𝑚 |𝑝 ,
and if one of these two equivalent conditions is met then

(3.29) |𝐿 (t(𝑒)) |𝑝 = |𝐿 (s(𝑒)) |𝑝 + |𝑚 |𝑝 − |𝑛|𝑝 .

Lemma 3.30. Fix a prime 𝑝 such that |𝑛|𝑝 < |𝑚 |𝑝 and let G be an (𝑚,𝑛)-graph. If (𝑒𝑘)𝑘≥1
is any infinite path consisting of positive edges with 𝐿 (s(𝑒1)) ≠∞ and |𝐿 (s(𝑒1)) |𝑝 > |𝑛|𝑝 ,
then

lim
𝑘→+∞

|𝐿 (s(𝑒𝑘)) |𝑝 = +∞.

If (𝑒𝑘)𝑘≥1 is any infinite path consisting of negative edges with 𝐿 (s(𝑒1)) ≠ ∞, then

lim sup
𝑘→+∞

|𝐿 (s(𝑒𝑘)) |𝑝 < |𝑚 |𝑝 .

Proof. If (𝑒𝑘)𝑘≥1 is an infinite path consisting of positive edges such that |𝐿 (s(𝑒1)) |𝑝 >

|𝑛|𝑝 , then by a straightforward induction using Equation (3.29) we have that

(3.31) |𝐿 (s(𝑒𝑘)) |𝑝 = |𝐿 (s(𝑒1)) |𝑝 + 𝑘 (|𝑚 |𝑝 − |𝑛|𝑝)

for all 𝑘 ≥ 1. The first result follows.
For the second one, let (𝑒𝑘)𝑘≥1 be an infinite path consisting of negative edges. By

exchanging the roles in Equation (3.29), we have the claim: if 𝑒 is a negative edge then
|𝐿 (s(𝑒)) |𝑝 > |𝑚 |𝑝 if and only if |𝐿 (t(𝑒)) |𝑝 > |𝑛|𝑝; and when this occurs |𝐿 (t(𝑒)) |𝑝 =

|𝐿 (s(𝑒)) |𝑝 − |𝑚 |𝑝 + |𝑛|𝑝 .
Thus, |𝐿 (s(𝑒𝑘+1)) |𝑝 = |𝐿 (t(𝑒𝑘)) |𝑝 < |𝐿 (s(𝑒𝑘)) |𝑝 as long as |𝐿 (s(𝑒𝑘)) |𝑝 > |𝑚 |𝑝 . So there
must be 𝑘0 ∈N such that

��𝐿 (s(𝑒𝑘0 ))
��
𝑝
≤ |𝑚 |𝑝 (this could have already happened for 𝑘0 = 1).

From this point, we have
��𝐿 (s(𝑒𝑘0+1))

��
𝑝
=
��𝐿 (t(𝑒𝑘0 ))

��
𝑝
≤ |𝑛|𝑝 < |𝑚 |𝑝 and an inductive

use of the claim gives |𝐿 (s(𝑒𝑘)) |𝑝 ≤ |𝑛|𝑝 < |𝑚 |𝑝 for all 𝑘 > 𝑘0. This finishes the proof.

Remark 3.32. It follows from Equation (3.31) that any infinite path (𝑒𝑘)𝑘≥1 consisting of
positive edges with 𝐿 (s(𝑒1)) ≠ ∞ and |𝐿 (s(𝑒1)) |𝑝 > |𝑛|𝑝 has to be a simple path.

Lemma 3.33. If |𝑚 | > |𝑛| and G is an (𝑚, 𝑛)-graph with a vertex of finite label, then there
is a vertex 𝑣 ∈ 𝑉 (G) such that degin (𝑣) < |𝑚 |.

Proof. Assume by contradiction that degin (𝑣) = |𝑚 | for all 𝑣 ∈ 𝑉 (G). Then we can build
inductively an infinite path (𝑒𝑘)𝑘∈N consisting of negative edges with 𝐿 (s(𝑒0)) finite. By
the previous lemma this path goes through some vertex 𝑣0 that |𝐿 (𝑣0) |𝑝 < |𝑚 |𝑝 . Then
degin (𝑣0) = gcd(𝐿 (𝑣0), 𝑚) < |𝑚 |, a contradiction.
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3.6. Bass-Serre theory for BS(𝒎, 𝒏)

Take 𝑚, 𝑛 ∈ Z ∖ {0}. Set Γ B BS(𝑚, 𝑛) =
〈
𝑏, 𝑡 |𝑡𝑏𝑚𝑡−1 = 𝑏𝑛

〉
and put 𝑆 B {𝑏, 𝑡}. Denote

by T the associated Bass-Serre tree and remark that it is the underlying oriented graph of
the Bass-Serre graph of the transitive and free action: T = BS(Γ↶ Γ).

Besides the Schreier graph, we can associate to each subgroup Λ ≤ Γ two decorated
graphs:
• the Bass-Serre graph of the action Λ\Γ↶ Γ;
• the quotient graph of groups Λ\T of the action Λ↷ T .
Let us observe that the underlying oriented graphs of the two above decorated graphs are
the same. Indeed they are obtained as quotients of commuting actions as one can see in
the following diagram where by↶𝑉 ⟨𝑏⟩ we mean that ⟨𝑏⟩ acts only on the set of vertices,
where the ↙ arrows are graph morphisms obtained by quotienting by left Λ-actions, and
where the dashed ↘ arrows are projections as in Definition 3.10:

Λ↷ Cay(Γ, 𝑆) ↶𝑉 ⟨𝑏⟩

Λ\Cay(Γ, 𝑆) ↶𝑉 ⟨𝑏⟩ Λ↷ BS(Γ↶ Γ)

Sch(Λ, 𝑆) ↶𝑉 ⟨𝑏⟩ Λ↷ T

BS(Λ\Γ↶ Γ) ≃ Λ\T

Next, observe that, BS(Λ\Γ↶ Γ) being saturated, one has degin (𝑣) = gcd(𝐿 (𝑣), 𝑚)
and degout (𝑣) = gcd(𝐿 (𝑣), 𝑛) for every vertex 𝑣 in this graph. Hence, for every edge 𝑒, one
has

𝐿 (s(𝑒))
𝐿 (𝑒) = gcd(𝐿 (s(𝑒)), 𝑛) = degout (s(𝑒)) and

𝐿 (t(𝑒))
𝐿 (𝑒) = degin (t(𝑒)).

Thus Remark 2.8 and Proposition 2.9 can be immediately reformulated in terms of the
labels of the Bass-Serre graph BS(Λ\Γ↶ Γ) as follows:

Proposition 3.34. Let𝑚 and 𝑛 be non-zero integers. LetG be a saturated connected (𝑚,𝑛)-
graph and let Λ be a subgroup of Γ = BS(𝑚, 𝑛) such that BS(Λ\Γ↶ Γ) ≃ G.

(1) If all labels of G are infinite, then Λ is a free group, namely isomorphic to the
fundamental group of the graph G.

(2) If all labels of G are finite, then the quotient graph of groups arising from the action
Λ↷ T is isomorphic to the graph of groups obtained by attaching a copy of Z to
every vertex and every edge of G, with structural maps of positive edges

Z𝑒 ↩→ Zs(𝑒) , 𝑘 ↦→ 𝑛 · 𝐿 (𝑒)
𝐿 (s(𝑒)) · 𝑘,

Z𝑒 ↩→ Zt(𝑒) , 𝑘 ↦→ 𝑚 · 𝐿 (𝑒)
𝐿 (t(𝑒)) · 𝑘.
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Then, combining Proposition 3.34 and Lemma 3.33, we get the following rephrasing
of Corollary 2.15:

Corollary 3.35. Let𝑚 and 𝑛 be non-zero integers such that |𝑚 | ≠ |𝑛|. Then the isomorphism
type of Λ ≤ BS(𝑚, 𝑛) depends only on the graph structure of BS(Λ).

Proof. Recall that if an (𝑚, 𝑛)-graph is saturated and has only infinite labels, then all ver-
tices have incoming degree |𝑚 | and outgoing degree |𝑛|. Lemma 3.33 thus allows us to
detect whether the Bass Serre graph of Λ contains infinite labels by purely looking at its
graph structure: it has infinite labels if and only if all vertices have degree |𝑛| + |𝑚 |. The
result now follows from Proposition 3.34.

Remark 3.36. When |𝑚 | = |𝑛|, the statement analogue to that of Corollary 3.35 fails since
the central subgroup Λ =

〈
𝑏2𝑛〉 has the same Bass-Serre graph as the trivial subgroup {id}.

4. Phenotype

In this section, we introduce a central invariant to understand transitive BS(𝑚, 𝑛)-(pre)-
actions: the phenotype (see Definition 4.9). We first define the (𝑚,𝑛)-phenotype of a natural
number. We then prove that given a transitive pre-action (𝜏, 𝛽), all cardinalities of 𝛽-orbits
have the same phenotype.

4.1. Phenotypes of natural numbers

Recall that P denotes the set of prime numbers and that given 𝑝 ∈ P and 𝑘 ∈ Z, we denote
by |𝑘 |𝑝 the 𝑝-adic valuation of 𝑘 .

Definition 4.1 (Phenotype of a natural number). Let 𝑘 ∈ Z≥1. We set

P𝑚,𝑛 B
{
𝑝 ∈ P : |𝑚 |𝑝 = |𝑛|𝑝

}
,

P𝑚,𝑛 (𝑘) B
{
𝑝 ∈ P : |𝑚 |𝑝 = |𝑛|𝑝 and |𝑘 |𝑝 > |𝑛|𝑝

}
.

The (𝑚, 𝑛)-phenotype of 𝑘 , denoted by Ph𝑚,𝑛 (𝑘), is the following positive integer:

Ph𝑚,𝑛 (𝑘) B
∏

𝑝∈P𝑚,𝑛 (𝑘 )
𝑝 |𝑘 |𝑝 .

If 𝑘 = ∞, we set Ph𝑚,𝑛 (𝑘) B ∞.

Example 4.2. If 𝑚 and 𝑛 are coprime, then for every 𝑘 ∈ Z

P𝑚,𝑛 = {𝑝 ∈ P : 𝑝 does not divide 𝑚𝑛}
P𝑚,𝑛 (𝑘) = {𝑝 ∈ P : 𝑝 divides 𝑘 and 𝑝 does not divide 𝑚𝑛} .

In this case, Ph𝑚,𝑛 (𝑘) is the greatest divisor of 𝑘 that is coprime to 𝑚𝑛.
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Example 4.3. If 𝑚 = 22 · 32 · 5 and 𝑛 = 22 · 3, then P𝑚,𝑛 = P ∖ {3, 5} and

P𝑚,𝑛 (𝑘) =
{
{𝑝 ∈ P : 𝑝 divides 𝑘} ∖ {2, 3, 5} if 23 does not divide 𝑘

{𝑝 ∈ P : 𝑝 divides 𝑘} ∖ {3, 5} if 23 divides 𝑘.

For example Ph𝑚,𝑛 (2 · 3 · 7) = 7 and Ph𝑚,𝑛 (25 · 3 · 7) = 25 · 7.

Remark 4.4. If 𝑘, 𝑙 both have phenotype 𝑞, then so do their lcm and gcd.

The following lemma will be useful in Section 5.

Lemma 4.5. Let 𝑞 = Ph𝑚,𝑛 (𝑘) be a finite (𝑚, 𝑛)-phenotype. Then Ph−1
𝑚,𝑛 ({𝑞}) is finite if

and only if |𝑚 | = |𝑛|.

Proof. Assume first |𝑚 | ≠ |𝑛|. In this case, there is a prime number 𝑝 such that |𝑚 |𝑝 ≠ |𝑛|𝑝 .
We get Ph𝑚,𝑛 (𝑝𝑖𝑘) = 𝑞 for all 𝑖, hence Ph−1

𝑚,𝑛 ({𝑞}) is infinite.
If |𝑚 | = |𝑛|, then P𝑚,𝑛 = P. If 𝑘 and 𝑘 ′ are two integers with the same phenotype,

the only primes 𝑝 for which the valuations of 𝑘 and 𝑘 ′ may differ are those for which
|𝑘 |𝑝 ≤ |𝑚 |𝑝 and in this case |𝑘 ′ |𝑝 must also be bounded by |𝑚 |𝑝 . There are only finitely
many such 𝑘 ′.

4.2. Phenotypes of (𝒎, 𝒏)-graphs

If 𝑣 is a vertex of an (𝑚, 𝑛)-graph, we use the shorter expression “phenotype of the vertex 𝑣”
to mean “phenotype of the label of the vertex 𝑣”. The key feature of the notion of phenotype
is the following statement.

Proposition 4.6. Given a connected (𝑚, 𝑛)-graph, all its vertices have the same (𝑚, 𝑛)-
phenotype.

Proof. It is enough to check that for any positive edge 𝑒 from 𝑣− to 𝑣+, the phenotypes of
𝑣− and 𝑣+ are the same. If the phenotype of one of them is infinite, then this is a direct
consequence of Equation (3.13) from Definition 3.12. Otherwise, remark that for every
positive integer 𝑘 and every 𝑝 ∈ P𝑚,𝑛,���� 𝑘

gcd(𝑘, 𝑛)

����
𝑝

> 0 ⇔ 𝑝 ∈ P𝑚,𝑛 (𝑘).

Equation (3.13) implies���� 𝐿 (𝑣−)
gcd(𝐿 (𝑣−), 𝑛)

����
𝑝

= |𝐿 (𝑒) |𝑝 =

���� 𝐿 (𝑣+)
gcd(𝐿 (𝑣+), 𝑚)

����
𝑝

and hence P𝑚,𝑛 (𝐿 (𝑣−)) = P𝑚,𝑛 (𝐿 (𝑣+)). If 𝑝 ∈ P𝑚,𝑛 (𝐿 (𝑣−)), then 𝐿 (𝑣−) has higher 𝑝-
valuation than 𝑚 and 𝑛, so

|𝐿 (𝑣−) |𝑝 − |𝑛|𝑝 =

���� 𝐿 (𝑣−)
gcd(𝐿 (𝑣−), 𝑛)

����
𝑝

=

���� 𝐿 (𝑣+)
gcd(𝐿 (𝑣+), 𝑚)

����
𝑝

= |𝐿 (𝑣+) |𝑝 − |𝑚 |𝑝 .

Since |𝑛|𝑝 = |𝑚 |𝑝 , we conclude that for all 𝑝 ∈ P𝑚,𝑛 (𝐿 (𝑣−)) = P𝑚,𝑛 (𝐿 (𝑣+)), we have
|𝐿 (𝑣−) |𝑝 = |𝐿 (𝑣+) |𝑝 . Therefore 𝐿 (𝑣−) and 𝐿 (𝑣+) share the same phenotype.
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Remark 4.7. One can prove that the edges of a connected (𝑚, 𝑛)-graph also all have the
same (𝑚, 𝑛)-phenotype. However, it is a coarser invariant: there are connected graphs with
different vertex phenotypes, but with the same edge phenotype. For example, fix

𝑚 = 22 · 32 · 5, 𝑛 = 22 · 3

and consider the graph consisting of a single oriented edge 𝑒 and its two endpoints. If the
label of its origin is 𝐿 (s(𝑒)) = 23 · 7, then

𝐿 (𝑒) = 𝐿 (s(𝑒))
gcd(𝐿 (s(𝑒)), 𝑛) = 2 · 7 and Ph𝑚,𝑛 (𝐿 (𝑒)) = 7

while Ph𝑚,𝑛 (𝐿 (s(𝑒)) = 23 · 7. If instead we set the label of its origin to be 𝐿 (s(𝑒)) = 24 · 7,
then we get

𝐿 (𝑒) = 22 · 7 and Ph(𝐿 (𝑒)) = 7

while Ph𝑚,𝑛 (𝐿 (s(𝑒)) = 24 · 7 ≠ 23 · 7. We will thus not use the phenotype of edges.

Proposition 4.6 allows us to define the phenotypes of connected (𝑚, 𝑛)-graphs and
transitive BS(𝑚, 𝑛)-pre-actions.

Definition 4.8. The phenotype of a connected (𝑚, 𝑛)-graph G is the common phenotype
of the labels of its vertices. We denote it Ph(G).

4.3. Phenotypes of BS(𝒎, 𝒏)-actions

Recall that a pre-action is transitive if its Schreier graph is connected, which is equivalent
to its Bass-Serre graph being connected.

Definition 4.9. The phenotype of a transitive (pre)-action 𝛼 of BS(𝑚, 𝑛) is the common
phenotype of the cardinalities Ph𝑚,𝑛 (|𝑥 ⟨𝑏⟩|) of its ⟨𝑏⟩-orbits. We denote it Ph(𝛼).

By definition, the phenotype of any transitive (pre)-action coincides with the phenotype
of its Bass-Serre graph.

Remark 4.10. Any BS(𝑚, 𝑛)-action with finite Bass-Serre graph and finite phenotype is
necessarily an action on a finite set whose cardinality is the sum of the labels of the vertices.

For infinite phenotype, we have the following.

Lemma 4.11. There exists an infinite phenotype transitive BS(𝑚, 𝑛)-action with finite
Bass-Serre graph if and only if |𝑚 | = |𝑛|.

Proof. Consider an infinite phenotype BS(𝑚, 𝑛)-action with finite Bass-Serre graph G.
Since G is saturated, all its vertices have outgoing degree |𝑛| and incoming degree |𝑚 |. But
there must be globally as many outgoing edges as incoming edges, so since G is finite we
must have |𝑛| = |𝑚 |.

Conversely if |𝑛| = |𝑚 |, consider the bouquet of |𝑛| circles with edges and vertices
labeled by ∞, and observe that this is a connected saturated (𝑚, 𝑛)-graph. Proposition 3.22
provides a transitive action having this labeled bouquet of circles as its finite Bass-Serre
graph of infinite phenotype.
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4.4. Merging pre-actions

In order to establish some of the main results of this article, we will need “cut and paste”
operations on pre-actions, for instance:
• putting two prescribed pre-actions inside a single transitive action (useful for topolog-

ical transitivity properties);
• modifying an action so as to add or remove a circuit in its Schreier graph (useful to get

a new action that is close but distinct from the original one).
We now present these “cut and paste” operations. The main one is the following and the
rest of this section will be devoted to its proof. Other useful results will appear in the course
of the proof.

Theorem 4.12 (The merging machine). Assume |𝑚 | ≥ 2 and |𝑛| ≥ 2. Let 𝛼1 and 𝛼2 two
transitive non-saturated pre-actions of BS(𝑚, 𝑛) with the same phenotype. There exists a
transitive action 𝛼 which contains copies of 𝛼1 and 𝛼2 with disjoint domains.

Given a pre-action 𝛼 = (𝛽, 𝜏) and two sub-pre-actions 𝛼1, 𝛼2, let us recall that the
domain of 𝛼 is the set dom(𝛽) = rng(𝛽). Notice that 𝛼1 and 𝛼2 have disjoint domains
if and only if their Bass-Serre graphs BS(𝛼1) and BS(𝛼2) are disjoint (that is, have no
common vertex) in BS(𝛼).

First, taking advantage of Proposition 3.23, we reduce to the case of (𝑚, 𝑛)-graphs, for
which the analogous result is the following.

Theorem 4.13 (The merging machine for (𝑚, 𝑛)-graphs). Assume |𝑚 | ≥ 2 and |𝑛| ≥ 2. Let
G1 and G2 be two connected and non-saturated (𝑚, 𝑛)-graphs with the same phenotype.
There exists a connected and saturated (𝑚, 𝑛)-graph G which contains disjoint copies of
G1 and G2.

Remark 4.14. The hypothesis that both |𝑚 |, |𝑛| ≥ 2 is necessary. If 𝑚 = 1 but |𝑛| ≠ 1,
we can consider the (1, 𝑛)-graph consisting of a single vertex with infinite label and only
one loop. This graph is not saturated but it cannot be connected to another copy of itself.
Indeed, the reader can check that the only saturated graph containing it admits a unique
circuit, namely the loop itself.

Proof of Theorem 4.12 based on Theorem 4.13. The two Bass-Serre graphs BS(𝛼1) and
BS(𝛼2) are connected non-saturated (𝑚, 𝑛)-graphs with the same phenotype. Therefore
we can apply Theorem 4.13 to obtain a connected and saturated (𝑚, 𝑛)-graph G which
contains disjoint copies of BS(𝛼1) and BS(𝛼2).

Then, we apply Proposition 3.23 to the pre-action 𝛼1 ⊔ 𝛼2, whose Bass-Serre graph
BS(𝛼1) ⊔ BS(𝛼2) is contained in G, to ensure the existence of a BS(𝑚, 𝑛)-pre-action 𝛼

which extends 𝛼1 ⊔ 𝛼2. Thus 𝛼 extends both 𝛼1 and 𝛼2 with disjoint domains. Since G
is connected and saturated, 𝛼 is a transitive and saturated pre-action, i.e., it is a genuine
transitive action of BS(𝑚, 𝑛) that satisfies the requirements of Theorem 4.12.

We now present some general results we will use in order to prove Theorem 4.13. We
begin with two easy properties of phenotypes which will be useful in the proof.

Lemma 4.15. For any 𝑘 ∈ Z≥1, if 𝑞 = Ph𝑚,𝑛 (𝑘), then Ph𝑚,𝑛 (𝑞) = 𝑞 and gcd(𝑞, 𝑛) =
gcd(𝑞, 𝑚).
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Proof. We get directly from Definition 4.1 that |𝑞 |𝑝 = |𝑘 |𝑝 if 𝑝 ∈ P𝑚,𝑛 (𝑘), and |𝑞 |𝑝 = 0
for the other primes 𝑝. Consequently, we get P𝑚,𝑛 (𝑞) = P𝑚,𝑛 (𝑘) and then Ph𝑚,𝑛 (𝑞) =
Ph𝑚,𝑛 (𝑘) = 𝑞. Finally, since every prime 𝑝 dividing 𝑞 satisfies |𝑚 |𝑝 = |𝑛|𝑝 and |𝑛|𝑝 < |𝑞 |𝑝 ,
we obtain

gcd(𝑞, 𝑛) =
∏

𝑝∈P: 𝑝 |𝑞
𝑝 |𝑛 | 𝑝 =

∏
𝑝∈P: 𝑝 |𝑞

𝑝 |𝑚 | 𝑝 = gcd(𝑞, 𝑚).

In the following lemma, by welding two vertices we mean taking the quotient graph
obtained by identifying these vertices. Its proof is a direct consequence of the definition of
an (𝑚, 𝑛)-graph, so we omit it.

Lemma 4.16 (Welding lemma). Let 𝑚, 𝑛 ∈ Z ∖ {0} and let G be an (𝑚, 𝑛)-graph and 𝑣, 𝑤

be two distinct vertices such that:
• 𝐿 B 𝐿 (𝑣) = 𝐿 (𝑤);
• degout (𝑣) + degout (𝑤) ≤ gcd(𝑛, 𝐿);
• degin (𝑣) + degin (𝑤) ≤ gcd(𝑚, 𝐿).
Welding together 𝑣 and 𝑤 delivers an (𝑚, 𝑛)-graph.

Note that in this lemma G can be finite or infinite, connected or not. Together with the
welding lemma, the following result will allow us to connect non saturated (𝑚, 𝑛)-graphs
via the well-known technique of arc welding.

Theorem 4.17 (Connecting lemma). Assume |𝑚 | ≥ 2 and |𝑛| ≥ 2. Let 𝑘, ℓ ∈ Z≥1 such that
Ph𝑚,𝑛 (𝑘) = Ph𝑚,𝑛 (ℓ), and let 𝜀𝑘 , 𝜀ℓ ∈ {+,−}. There exists an (𝑚, 𝑛)-graph G which is a
simple edge path (𝑒1, . . . , 𝑒ℎ) of length ℎ ≥ 1 such that:
• 𝐿 (s(𝑒1)) = 𝑘 and 𝐿 (t(𝑒ℎ)) = ℓ;
• the orientations of 𝑒1 and 𝑒ℎ are given by 𝑒1 ∈ 𝐸 (G)𝜀𝑘 and 𝑒ℎ ∈ 𝐸 (G)𝜀ℓ .

Proof. Observe that every (𝑚, 𝑛)-graph can be turned into an (𝑛, 𝑚)-graph by flipping the
orientations of its edges. Note that this operation does not affect the labels nor its phenotype.
We thus can restrict ourselves to the case where the orientation 𝜀𝑘 of the first edge in the
path is asked to be positive and no assumption is made on 𝜀ℓ . Let us set 𝑞 B Ph𝑚,𝑛 (𝑘) =
Ph𝑚,𝑛 (ℓ).

We first treat the case 𝑘 = 𝑞 = ℓ. Recall from Lemma 4.15 that Ph𝑚,𝑛 (𝑞) = 𝑞 and that
we have gcd(𝑚, 𝑞) = gcd(𝑛, 𝑞). Hence, there exists an (𝑚, 𝑛)-graph with two vertices and a
unique positive edge 𝑓1 such that 𝐿 (s( 𝑓1)) = 𝑞 = 𝐿 (t( 𝑓1)), and 𝐿 ( 𝑓1) = 𝑞

gcd(𝑚,𝑞) =
𝑞

gcd(𝑛,𝑞) .
If 𝜀ℓ is positive, we are done. If not, create a vertex 𝑣 with label 𝐿 (𝑣) = 𝑞

gcd(𝑛,𝑞)𝑚. We get
gcd(𝑚, 𝐿 (𝑣)) = |𝑚 |, hence gcd(𝑚, 𝐿 (𝑣)) ≥ 2. Therefore, we can equip 𝑣 with two distinct
incoming positive edges 𝑓1, 𝑓2. Such edges have to be labeled by 𝐿 (𝑣)

gcd(𝑚,𝐿 (𝑣) ) =
𝑞

gcd(𝑛,𝑞) so
that we can label s( 𝑓1) and s( 𝑓2) by 𝑞, and ( 𝑓1, 𝑓2) is the path we are looking for. The
theorem is thus proved for 𝑘 = ℓ = 𝑞.

Let us now treat the case 𝑘 ≠ 𝑞 and ℓ = 𝑞. Recall that P𝑚,𝑛 (𝑘) = {𝑝 ∈ P : |𝑚 |𝑝 = |𝑛|𝑝
and |𝑛|𝑝 < |𝑘 |𝑝} and that Ph𝑚,𝑛 (𝑘) =

∏
𝑝∈P𝑚,𝑛 (𝑘 ) 𝑝

|𝑘 |𝑝 . Thus any number 𝐿 ∈ Z≥1 with
phenotype 𝑞 admits a unique decomposition as follows:
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(4.18) 𝐿 = 𝑞 ·
∏

𝑝∈P∖P𝑚,𝑛 (𝑘 )
|𝑚 | 𝑝≤ |𝑛 | 𝑝

𝑝 |𝐿 | 𝑝
∏
𝑝∈P

|𝑚 | 𝑝> |𝑛 | 𝑝

𝑝 |𝐿 | 𝑝 .

In a first step, we construct (algorithmically) a simple path consisting of positive edges
with vertices 𝑣0, 𝑣1, . . . , 𝑣𝑟 , such that 𝑣0 has label 𝑘 , and such that the decomposition of
𝐿 (𝑣𝑟 ) reduces to

(4.19) 𝐿 (𝑣𝑟 ) = 𝑞 ·
∏

𝑝∈P : |𝑚 | 𝑝> |𝑛 | 𝑝

𝑝 |𝐿 (𝑣𝑟 ) | 𝑝 ,

that is, such that |𝐿 (𝑣𝑟 ) |𝑝 = 0 whenever |𝑚 |𝑝 ≤ |𝑛|𝑝 and 𝑝 ∉ P𝑚,𝑛 (𝑘).
To do so, starting with 𝑖 = 0 and 𝐿 (𝑣0) = 𝑘 , while 𝐿 (𝑣𝑖) has prime divisors 𝑝 such that

|𝑚 |𝑝 ≤ |𝑛|𝑝 and 𝑝 ∉ P𝑚,𝑛 (𝑘), we connect 𝑣𝑖 to a new vertex 𝑣𝑖+1 by a positive edge 𝑓𝑖 .
According to Remark 3.26, we label 𝑓𝑖 by |𝐿 ( 𝑓𝑖) |𝑝 B max( |𝐿 (𝑣𝑖) |𝑝 − |𝑛|𝑝 , 0) and set

|𝐿 (𝑣𝑖+1) |𝑝 B
{
|𝐿 ( 𝑓𝑖) |𝑝 + |𝑚 |𝑝 if |𝐿 ( 𝑓𝑖) |𝑝 ≥ 1
0 if |𝐿 ( 𝑓𝑖) |𝑝 = 0

for every prime 𝑝. Then, we replace 𝑖 by 𝑖 + 1, which terminates the “while” loop. Notice
that we exit from the loop after finitely many steps. Indeed, given a prime 𝑝 such that
|𝑚 |𝑝 ≤ |𝑛|𝑝 and 𝑝 ∉ P𝑚,𝑛 (𝑘), we have:
• either |𝐿 ( 𝑓1) |𝑝 = 0 in the case |𝑚 |𝑝 = |𝑛|𝑝 and |𝑘 |𝑝 ≤ |𝑛|𝑝 , which implies |𝐿 (𝑣𝑖) |𝑝 = 0

for all 𝑖 ≥ 1;
• or |𝐿 (𝑣𝑖+1) |𝑝 = |𝐿 (𝑣𝑖) |𝑝 − |𝑛|𝑝 + |𝑚 |𝑝 < |𝐿 (𝑣𝑖) |𝑝 whenever |𝐿 (𝑣𝑖) |𝑝 ≥ 1 in the case

|𝑚 |𝑝 < |𝑛|𝑝 .
When we exit the “while” loop, Remark 3.26 guarantees that we have constructed an
(𝑚, 𝑛)-graph, and the loop condition guarantees that the last vertex 𝑣𝑟 satisfies |𝐿 (𝑣𝑟 ) |𝑝 = 0
whenever |𝑚 |𝑝 ≤ |𝑛|𝑝 and 𝑝 ∉ P𝑚,𝑛 (𝑘).

If we are lucky, we have 𝐿 (𝑣𝑟 ) = 𝑞. If not, in a second step, we notice that the same
algorithm, exchanging the roles of 𝑚 and 𝑛, produces a simple path consisting of negative
edges from a vertex 𝑤0 such that 𝐿 (𝑤0) = 𝐿 (𝑣𝑟 ) to a vertex 𝑤𝑠 labeled by 𝑞. The decompo-
sition (4.19) of 𝐿 (𝑣𝑟 ) ≠ 𝑞 also shows that gcd(𝑚, 𝐿(𝑣𝑟 )) ≥ 2, so vertices labeled 𝐿 (𝑣𝑟 ) can
have two distinct positive incoming edges. Using Lemma 4.16, we weld 𝑣𝑟 and 𝑤0 together
and get a simple path from 𝑣0 to 𝑤𝑠 .

In any subcase, we now have a path (𝑒1, . . . , 𝑒ℎ′ ) such that 𝑒1 is positive, 𝐿 (s(𝑒1)) = 𝑘 ,
and 𝐿 (t(𝑒ℎ′ )) = 𝑞. If 𝑒ℎ′ has the orientation prescribed by 𝜀ℓ , we are done; if not, using
the case 𝑘 = 𝑞 = ℓ, with the first edge having the same orientation as 𝑒ℎ′ , and the last one
having the orientation prescribed by 𝜀ℓ , we extend our path to a simple path (𝑒1, . . . , 𝑒ℎ)
with 𝐿 (s(𝑒1)) = 𝑘 and 𝐿 (t(𝑒ℎ)) = 𝑞 such that 𝑒1, 𝑒ℎ have the correct orientations. This
concludes the case ℓ = 𝑞 and 𝑘 ≠ 𝑞.

The case 𝑘 = 𝑞 and ℓ ≠ 𝑞 is obtained by exchanging the roles of 𝑘 and 𝑙 in the above
argument. Therefore, let us finally treat the case 𝑘 ≠ 𝑞 and ℓ ≠ 𝑞. The former cases furnish
paths ( 𝑓1, . . . , 𝑓𝑟 ) and ( 𝑓 ′1 , . . . , 𝑓

′
𝑠 ), that we may assume disjoint, such that

𝐿 (s( 𝑓1)) = 𝑘, 𝐿(t( 𝑓𝑟 )) = 𝑞 = 𝐿 (s( 𝑓 ′1 )), 𝐿(t( 𝑓 ′𝑠 )) = ℓ,
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the orientations of 𝑓1 and 𝑓 ′𝑠 are given by 𝜀𝑘 and 𝜀ℓ , and the orientations 𝑓𝑟 , 𝑓
′
1 coincide.

Then, we just weld the verticest( 𝑓𝑟 ) ands( 𝑓 ′1 ) together, and the path ( 𝑓1, . . . , 𝑓𝑟 , 𝑓 ′1 , . . . , 𝑓
′
𝑠 )

is as desired.

Remark 4.20. In Theorem 4.17, the assumption |𝑚 | ≥ 2 and |𝑛| ≥ 2 is necessary. Indeed
Theorem 4.17 would be false for 𝑛 = 1. If 𝑣 is a vertex in a (𝑚, 1)-graph with 𝐿 (𝑣) = 1 and
𝑒 is an edge such that t(𝑒) = 𝑣, then

1 = 𝐿 (t(𝑒)) = 𝐿 (t(𝑒))
gcd(𝐿 (t(𝑒)), 𝑚) =

𝐿 (s(𝑒))
gcd(𝐿 (s(𝑒)), 1) = 𝐿 (s(𝑒)).

Clearly any vertex with label 1 has at most one outgoing and one incoming edge. This
implies that the labels of the vertices in any directed path which ends in 𝑣 must be all 1.
In other words, if we have any simple edge path as in Theorem 4.17 such that ℓ = 1 and
𝜀ℓ = −, then we must have that 𝑘 = 1 (and 𝜀𝑘 = +).

Definition 4.21. Let G be a connected (𝑚, 𝑛)-graph. A saturated extension G′ of G is
called a forest-saturation of G if it satisfies
• the subgraph induced in G′ by 𝑉 (G) is exactly G;
• the subgraph induced in G′ by 𝑉 (G′) ∖𝑉 (G) is a forest F ;
• each connected component of F is connected to G by a single edge of G′.

Lemma 4.22 (Forest-saturation lemma). Let G be a connected (𝑚, 𝑛)-graph. There is a
forest-saturation G′ of G such that all vertices of the forest F induced in G′ by 𝑉 (G′) ∖
𝑉 (G) have degree ≥ 1 + min( |𝑚 |, |𝑛|) in G′.

The reader can observe in the following construction proving Lemma 4.22 that, while
the labels of the new edges are prescribed, the axioms of (𝑚,𝑛)-graphs allows some choices
concerning the labels of the new vertices. The systematic choice of the maximal label
will be made for the new vertices among all those satisfying the transfer equation (3.13)

𝐿 (s(𝑒) )
gcd(𝐿 (s(𝑒) ) ,𝑛) = 𝐿 (𝑒) = 𝐿 (t(𝑒) )

gcd(𝐿 (t(𝑒) ) ,𝑚) . Hence the forest-saturation constructed in this proof
is called the maximal forest-saturation of G. Notice that other choices would have led to
forest-saturations with different underlying graphs, by virtue of the relationship between
labels and degrees (see Definition 3.20). These forest-saturations are further studied in the
recent preprint [16].

Proof of Lemma 4.22. We can assume that the connected graph G is not yet saturated:
it admits non-saturated vertices i.e., vertices 𝑣 for which one of the inequalities (3.14)
degout (𝑣) ≤ gcd(𝐿 (𝑣), 𝑛) or degin (𝑣) ≤ gcd(𝐿 (𝑣), 𝑚) is strict. For every non-saturated ver-
tex 𝑣 of G we add
• (gcd(𝐿 (𝑣), 𝑛) − degout (𝑣))-many new 𝑣-outgoing edges labeled 𝐿out B

𝐿 (𝑣)
gcd(𝑛,𝐿 (𝑣) ) with

extra target vertices labeled 𝑚𝐿out; and
• (gcd(𝐿 (𝑣), 𝑚) − degin (𝑣))-many new 𝑣-incoming edges labeled 𝐿in B

𝐿 (𝑣)
gcd(𝑚,𝐿 (𝑣) ) with

extra source vertices labeled 𝑛𝐿in.
We then iterate this construction. All the non-saturated vertices of the 𝑗-th step become

saturated at the ( 𝑗 + 1)-th one. The increasing union G′ of these (𝑚,𝑛)-graphs is a saturated
(𝑚, 𝑛)-graph. The complement of G in it is a forest since at each step, each new edge has
a new vertex as one of its vertices. The label of each new vertex 𝑣 is an integer multiple of
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either 𝑚 or 𝑛. Thus the degree degout (𝑣) + degin (𝑣) = gcd(𝐿 (𝑣), 𝑛) + gcd(𝐿 (𝑣), 𝑚) of 𝑣 is
larger than 1 + min( |𝑚 |, |𝑛|) as expected.

Proof of Theorem 4.13. By hypothesis, for 𝑖 = 1, 2, there is a non-saturated vertex 𝑣𝑖 in G𝑖;
i.e. a vertex for which one of the inequalities (3.14) is strict. If degin (𝑣𝑖) < gcd(𝐿 (𝑣𝑖), 𝑚),
then let 𝜖𝑖 B +; otherwise let 𝜖𝑖 B −. The labels of 𝑣1, 𝑣2 having identical phenotypes, the
connecting lemma (Theorem 4.17) furnishes an (𝑚, 𝑛)-graph G0 which is a simple edge
path (𝑒1, . . . , 𝑒ℎ) such that 𝐿 (s(𝑒1)) = 𝐿 (𝑣1) and 𝐿 (t(𝑒ℎ)) = 𝐿 (𝑣2), and the orientations
of 𝑒1 and 𝑒ℎ are given by −𝜖1 and 𝜖2 respectively.

We then consider the disjoint union G1 ⊔ G0 ⊔ G2. We claim that we can merge the
vertices 𝑣1 and s(𝑒1) thanks to the welding Lemma 4.16. Indeed, the choice of orientation
for 𝑒1 and the form of G0 (a path of edges) are made for the assumptions of Lemma 4.16 to
hold. Then, we can merge 𝑣2 and t(𝑒ℎ), applying Lemma 4.16 again (this time, using the
fact that the orientation of 𝑒ℎ is well chosen). This produces a connected (𝑚, 𝑛)-graph G3
which contains disjoint copies of G1 and G2.

It now suffices to apply the saturation Lemma 4.22 to G3 so as to obtain a connected
saturated (𝑚, 𝑛)-graph G that satisfies the requirements of Theorem 4.13.

5. Perfect kernel and dense orbits

5.1. Perfect kernels of Baumslag-Solitar groups

In case |𝑚 | = 1 or |𝑛| = 1, it follows from the proof of [3, Cor. 8.4] that Sub(BS(𝑚, 𝑛)) is
countable, hence the perfect kernel K(BS(𝑚, 𝑛)) is empty. Our main theorem describes
the perfect kernels in the remaining cases.

Theorem 5.1. Let 𝑚, 𝑛 ∈ Z such that |𝑚 | ≥ 2 and |𝑛| ≥ 2. We have

K(BS(𝑚, 𝑛)) =
{
Λ ∈ Sub(BS(𝑚, 𝑛)) : Λ\BS(𝑚, 𝑛)/⟨𝑏⟩ is infinite

}
.

Let us temporarily give a name to the set appearing in Theorem 5.1:

J = J (𝑚, 𝑛) B
{
Λ ∈ Sub(BS(𝑚, 𝑛)) : Λ\BS(𝑚, 𝑛)/⟨𝑏⟩ is infinite

}
,

and recall that Sub[∞] (Γ) denotes the space of infinite index subgroups of Γ.
Given an action 𝛼 of Γ on a space 𝑋 and a point 𝑣 ∈ 𝑋 , we have already introduced the

notation [𝛼, 𝑣] for the action 𝛼 pointed at 𝑣.

Remark 5.2. In terms of pointed transitive actions, J (𝑚, 𝑛) is the set of pointed transitive
actions with infinitely many 𝑏-orbits, whence J =

{
[𝛼, 𝑣] : BS(𝛼) is infinite

}
. Moreover:

• if |𝑚 | ≠ |𝑛|, we have J (𝑚, 𝑛) = Sub[∞] (BS(𝑚, 𝑛)), since every infinite action has an
infinite Bass-Serre graph by Lemma 4.11.

• if |𝑚 | = |𝑛|, we have J (𝑚, 𝑛) = 𝜋−1 (Sub[∞] (BS(𝑚, 𝑛)/⟨𝑏𝑚⟩)
)
, where 𝜋 is the homo-

morphism from BS(𝑚, 𝑛) to its quotient by the normal subgroup ⟨𝑏𝑚⟩ = ⟨𝑏𝑛⟩. Indeed,
since ⟨𝑏𝑚⟩ has finite index in ⟨𝑏⟩, we get that Λ\BS(𝑚, 𝑛)/⟨𝑏⟩ is finite if and only if
Λ\BS(𝑚, 𝑛)/⟨𝑏𝑚⟩ is finite.

Therefore, Theorem 5.1 can be rephrased in two ways, as follows.
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Theorem 5.3. Let 𝑚, 𝑛 ∈ Z such that |𝑚 | ≥ 2 and |𝑛| ≥ 2.
(1) In terms of pointed transitive actions, the perfect kernel corresponds exactly to

actions whose Bass-Serre graph is infinite:

K(BS(𝑚, 𝑛)) =
{
[𝛼, 𝑣] : BS(𝛼) is infinite

}
.

(2) In terms of subgroups:
• if |𝑚 | ≠ |𝑛|, the perfect kernel is equal to the space of infinite index subgroups:

K(BS(𝑚, 𝑛)) = Sub[∞] (BS(𝑚, 𝑛));

• if |𝑚 | = |𝑛|, we have:

K(BS(𝑚, 𝑛)) = 𝜋−1 (Sub[∞] (BS(𝑚, 𝑛)/⟨𝑏𝑚⟩)
)
,

where 𝜋 is the homomorphism from BS(𝑚, 𝑛) to its quotient by the normal
subgroup ⟨𝑏𝑚⟩ = ⟨𝑏𝑛⟩.

Proof of Theorem 5.1. Our aim is to prove that K(BS(𝑚, 𝑛)) = J (𝑚, 𝑛). It will be conve-
nient to write one inclusion in terms of pointed transitive actions and the other in terms of
subgroups.

Let us first prove the inclusion K(BS(𝑚, 𝑛)) ⊇ J . It suffices to show that no element
of J is isolated in J . Recall the definition of the topology in terms of pointed actions, see
Section 2.2 and in particular Equation (2.7). Let us fix a pointed transitive action (𝛼0, 𝑣)
representing an element of J and a radius 𝑅 ≥ 0. We will show that the basic neighborhood
N([𝛼0, 𝑣], 𝑅) contains at least two distinct elements of J .

Let (𝛽, 𝜏) be the pre-action obtained by restricting 𝛼0 to the union of the 𝑏-orbits of the
vertices of the ball of radius 𝑅 + 1 centered at 𝑣 in the Schreier graph of 𝛼0. The Bass-Serre
graph of (𝛽, 𝜏) is the projection in BS(𝛼0) (see Definition 3.10) of this ball, hence is finite.
Since BS(𝛼0) is infinite, the pre-action (𝛽, 𝜏) is not saturated.

We now build two (𝑚, 𝑛)-graphs G1,G2 that extend the finite non-saturated Bass-Serre
graph G of (𝛽, 𝜏) in two different ways. First, let G1 be a forest-saturation of G given by
Lemma 4.22. In particular, the subgraph induced in G1 by𝑉 (G1) ∖𝑉 (G) is a forest whose
vertices have degree at least 3 ≤ 1 + min(|𝑚 | , |𝑛|) in G1.

We then construct G2 by modifying G1. Let us pick a vertex 𝑣 ∈ 𝑉 (G1) ∖ 𝑉 (G). The
subgraph induced in G1 by 𝑉 (G1) ∖ {𝑣} has at least 3 connected components. Choose two
connected components disjoint from G and remove them. In the resulting (𝑚, 𝑛)-graph G′

1,
the vertex 𝑣 is the only one that is not saturated: two edges are missing.

Theorem 4.17 gives us an (𝑚,𝑛)-graph which is a simple edge pathP whose extremities
have the same label as 𝑣 and for which the orientations of the end edges are compatible with
that of the missing edges of 𝑣. We then apply twice the welding lemma, Lemma 4.16, so as
to weld the two extremities of P to 𝑣. We eventually define G2 to be a forest-saturation of
the graph that we obtained. Observe that G1 is not isomorphic to G2 since the fundamental
groups of their underlying graphs are free groups of distinct ranks.

Finally, we extend (𝛽, 𝜏) to pre-actions 𝛼1 and 𝛼2 whose Bass-Serre graphs are G1 and
G2 respectively, thanks to Proposition 3.23. Since G1,G2 are saturated, 𝛼1, 𝛼2 are actually
actions by Example 3.21. We already remarked that G1 is not isomorphic to G2, so the
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pointed transitive actions (𝛼1, 𝑣) and (𝛼2, 𝑣) are not isomorphic: [𝛼1, 𝑣] ≠ [𝛼2, 𝑣]. Moreover,
the balls of radius 𝑅 centered at the basepoints in the Schreier graphs of 𝛼0, 𝛼1, 𝛼2 all
coincide by construction with that of (𝛽, 𝜏), so [𝛼1, 𝑣] and [𝛼2, 𝑣] are both inN([𝛼0, 𝑣], 𝑅).

Let us now turn to the inclusion K(BS(𝑚, 𝑛)) ⊆ J . Let us pick a subgroup Λ ∈
Sub(BS(𝑚, 𝑛)) ∖ J (𝑚, 𝑛) and let us prove that it is not in the perfect kernel.

If |𝑚 | ≠ |𝑛|, then Λ has finite index in BS(𝑚, 𝑛) by Remark 5.2, hence it is isolated in
Sub(BS(𝑚, 𝑛)).

If |𝑚 | = |𝑛|, then 𝜋(Λ) has finite index in BS(𝑚, 𝑛)/⟨𝑏𝑚⟩ by Remark 5.2, hence it is
finitely generated. Therefore, the set

V B {Λ′ ∈ Sub(BS(𝑚, 𝑛)) : 𝜋(Λ′) ≥ 𝜋(Λ)}

is a neighborhood of Λ, since it contains the basic neighborhood

V(𝑆, ∅) = {Λ′ ∈ Sub(BS(𝑚, 𝑛)) : 𝑆 ⊆ Λ′}

where 𝑆 ⊆ Λ is a finite set such that 𝜋(𝑆) generates 𝜋(Λ).
Now, for any Λ′ ∈ V, the subgroup 𝜋(Λ′) has finite index in BS(𝑚, 𝑚)/⟨𝑏𝑚⟩. Hence

𝜋(Λ′) is finitely generated, soΛ′ itself is finitely generated since it is written as an extension
with cyclic kernel:

1 → ⟨𝑏𝑚⟩ ∩ Λ′ → Λ′ → 𝜋(Λ′) → 1.

Therefore all subgroups of V are finitely generated, which implies that V is countable and
hence Λ is not in K(BS(𝑚, 𝑛)).

Corollary 5.4. If |𝑚 | ≥ 2, |𝑛| ≥ 2 and |𝑚 | ≠ |𝑛|, then

Ph−1 (∞) ⊆ K(BS(𝑚, 𝑛));

in other words, every infinite phenotype subgroup is in the perfect kernel.

Proof. Any subgroup with infinite phenotype has infinite index and hence it belongs to
K(BS(𝑚, 𝑛)) according to Theorem 5.3.

5.2. Phenotypical decomposition of the perfect kernel

Let us now turn to a description of the internal structure of K(BS(𝑚, 𝑛)).

Notation 5.5. Let 𝑚, 𝑛 ∈ Z ∖ {−1, 0, 1}. We denote by Q𝑚,𝑛 the set of all possible (𝑚, 𝑛)-
phenotypes, that is, Q𝑚,𝑛 B Ph𝑚,𝑛 (Z≥1 ∪ {∞}).

Definition 5.6. The phenotype of a subgroup Λ ≤ BS(𝑚, 𝑛) is the (𝑚, 𝑛)-phenotype of the
index of Λ ∩ ⟨𝑏⟩ in ⟨𝑏⟩

Ph(Λ) = Ph(Λ ∩ ⟨𝑏⟩) ≔ Ph𝑚,𝑛

(
[⟨𝑏⟩ : Λ ∩ ⟨𝑏⟩]

)
.

This yields a function Ph : Sub(BS(𝑚, 𝑛)) → Q𝑚,𝑛 ⊆ Z≥1 ∪ {∞}.

In particular Ph(⟨𝑏𝑘⟩) = Ph𝑚,𝑛 (𝑘) for 𝑘 ∈ Z≥1 and the phenotype of the trivial subgroup
is infinite.
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Remark 5.7. The index [⟨𝑏⟩ : Λ ∩ ⟨𝑏⟩] is the cardinal of the ⟨𝑏⟩-orbit of the point Λ
in the action Λ\BS(𝑚, 𝑛) ↶ BS(𝑚, 𝑛). Hence Ph(Λ) is the phenotype of this action (as
given in Definition 4.9). Since the latter doesn’t depend on the basepoint, the function Ph
is invariant under conjugation.

It easily follows form the definitions that if Ph(Λ) = Ph(Λ′) then Ph(Λ) = Ph(Λ∩Λ′),
see Remark 4.4.

Proposition 5.8. In the partition of the space of subgroups of BS(𝑚, 𝑛) according to their
phenotype

Sub(BS(𝑚, 𝑛)) =
⊔

𝑞∈Q𝑚,𝑛

Ph−1 (𝑞),

the pieces are non-empty and satisfy:
(1) For every finite 𝑞 ∈ Q𝑚,𝑛, the piece Ph−1 (𝑞) is open; it is also closed if and only

if |𝑚 | = |𝑛|.
(2) For 𝑞 = ∞, the piece Ph−1 (∞) is closed and not open.

In particular, the function Ph: Sub(BS(𝑚,𝑛)) → Z≥1 ∪ {+∞} is Borel. It is continuous
if and only if |𝑚 | = |𝑛|.

Proof. Given 𝑘 ∈ Z≥1, we set

𝐴𝑘 B
{
Λ ∈ Sub(BS(𝑚, 𝑛)) : Λ ∩ ⟨𝑏⟩ =

〈
𝑏𝑘

〉}
.

Writing 𝐴𝑘 as

𝐴𝑘 = {Λ ∈ Sub(BS(𝑚, 𝑛) : 𝑏𝑘 ∈ Λ, 𝑏𝑖 ∉ Λ for every 1 ≤ 𝑖 < 𝑘}

makes it clear that 𝐴𝑘 is clopen for every 𝑘 ∈ Z≥1. Moreover ⟨𝑏𝑘⟩ ∈ 𝐴𝑘 , so in particular
𝐴𝑘 is not empty. Now, by definition, for every 𝑞 ∈ Z≥1 we have

(5.9) Ph−1 (𝑞) =
⊔

𝑘∈Ph−1
𝑚,𝑛 (𝑞)

𝐴𝑘 .

Hence Ph−1 (𝑞) is open for every finite 𝑞 and, by taking the complement, Ph−1 (∞) is
closed.

Take a sequence of positive integers (𝑘𝑖)𝑖∈N tending to ∞. Observe that the subgroups
{⟨𝑏𝑘𝑖 ⟩}𝑖 have finite phenotype and converge to the trivial subgroup which has infinite phe-
notype. Therefore Ph−1 (∞) is not open. Moreover, if Ph−1

𝑚,𝑛 (𝑞) is not finite, we can choose
all the 𝑘𝑖’s with phenotype 𝑞; the same argument shows that Ph−1 (𝑞) is not closed. Finally,
the clopen decomposition (5.9) shows that Ph−1 (𝑞) is closed as soon as Ph−1

𝑚,𝑛 (𝑞) is finite.
By Lemma 4.5, Ph−1

𝑚,𝑛 (𝑞) is finite exactly when |𝑚 | = |𝑛|.

We now restrict the above partition to the perfect kernel

(5.10) K(BS(𝑚, 𝑛)) =
⊔

𝑞∈Q𝑚,𝑛

K𝑞 (BS(𝑚, 𝑛)),

where

(5.11) K𝑞 (BS(𝑚, 𝑛)) B K(BS(𝑚, 𝑛)) ∩ Ph−1
𝑚,𝑛 (𝑞).
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Remark 5.12. Observe that each K𝑞 (BS(𝑚, 𝑛)) is not empty: indeed it contains ⟨𝑏𝑞⟩
which belongs to the perfect kernel by Theorem 5.1. Moreover, in the proof of Theorem 5.1
the (𝑚,𝑛)-graphs we construct have the same phenotype, so every element ofK𝑞 (BS(𝑚,𝑛))
is actually a non-trivial limit of elements ofK𝑞 (BS(𝑚,𝑛)). We conclude thatK𝑞 (BS(𝑚,𝑛))
is equal to the perfect kernel of Ph−1

𝑚,𝑛 (𝑞).

Let us show that the action of BS(𝑚, 𝑛) by conjugation on each term is topologically
transitive in the following sense.

Definition 5.13. An action by homeomorphisms of a group Γ on a topological space 𝑋 is
called topologically transitive if for every nonempty open sets 𝑈 and 𝑉 , there is a point
whose Γ-orbit intersects both 𝑈 and 𝑉 .

Theorem 5.14. Let 𝑚, 𝑛 be integers such that |𝑚 |, |𝑛| ≥ 2. Then for every phenotype 𝑞 ∈
Q𝑚,𝑛, the action by conjugation of BS(𝑚, 𝑛) on the invariant subspace K𝑞 (BS(𝑚, 𝑛)) is
topologically transitive.

Proof. We again use the definition of the topology in terms of pointed actions, see Sec-
tion 2.2 and in particular Equation (2.7). So let us fix two pointed actions (𝛼1, 𝑣1) and
(𝛼2, 𝑣2) in K𝑞 (BS(𝑚, 𝑛)), take 𝑅 > 0, and consider the basic open sets N([𝛼1, 𝑣1], 𝑅) and
N([𝛼2, 𝑣2], 𝑅). We need to construct a pointed action whose orbit meets both open sets.

As in the proof of Theorem 5.1, we let (𝛽𝑖 , 𝜏𝑖), for 𝑖 = 1,2, be the pre-action obtained by
restricting 𝛼𝑖 to the union of the 𝑏-orbits of the vertices of the balls 𝐵(𝑣𝑖 , 𝑅 + 1) of radius
𝑅 + 1 centered at 𝑣𝑖 in the Schreier graph of 𝛼𝑖 . The Bass-Serre graph of (𝛽𝑖 , 𝜏𝑖) is finite.
Since BS(𝛼𝑖) is infinite, the pre-action (𝛽𝑖 , 𝜏𝑖) is not saturated.

Moreover (𝛽1, 𝜏1) and (𝛽2, 𝜏2) have the same phenotype, so we can apply the merging
machine (Theorem 4.12) to obtain an action 𝛼 whose Schreier graph contains (copies of)
the balls 𝐵(𝑣𝑖 , 𝑅 + 1).

Pointing 𝛼 at the copy of 𝑣1 that we denote by 𝑣, we have (Sch(𝛼), 𝑣) ≃𝑅 (Sch(𝛼1), 𝑣1).
By transitivity of 𝛼, there is 𝛾 ∈ BS(𝑚, 𝑛) such that 𝑣𝛼(𝛾) is the copy of 𝑣2, and thus
(Sch(𝛼), 𝑣𝛼(𝛾)) ≃𝑅 (Sch(𝛼2), 𝑣2). In particular, the orbit of [𝛼, 𝑣] meets both open sets
N([𝛼1, 𝑣1], 𝑅) and N([𝛼2, 𝑣2], 𝑅).

Corollary 5.15. Let 𝑚, 𝑛 be integers such that |𝑚 |, |𝑛| ≥ 2. Then for every 𝑞 ∈ Q𝑚,𝑛, there
is a dense 𝐺 𝛿 subset of K𝑞 (BS(𝑚, 𝑛)) consisting of subgroups with dense conjugacy class
in K𝑞 (BS(𝑚, 𝑛)).

Proof of Corollary 5.15. By Proposition 5.8, each K𝑞 (BS(𝑚, 𝑛)) is Polish as an open or
a closed subset of the Polish space K(BS(𝑚, 𝑛)).

The corollary now follows from a well-known characterization of topological transi-
tivity in Polish spaces: if (𝑈𝑖) is a countable base of non-empty open subsets, then the set
∩𝑖∈N𝑈𝑖Γ of points with dense orbit is a dense 𝐺 𝛿 by the Baire theorem.

5.3. Closed invariant subsets with a fixed finite phenotype

Given a finite phenotype 𝑞, we will show that there is a largest closed invariant subset inside
the (open but non closed when |𝑚 | ≠ |𝑛|) set of subgroups of phenotype 𝑞. The following
lemma is key.
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Lemma 5.16. Let |𝑚 | ≠ |𝑛|, and let 𝐿 ∈ Z≥1 satisfying:

∃𝑝 ∈ P, |𝑚 |𝑝 ≠ |𝑛|𝑝 and |𝐿 |𝑝 > min(|𝑚 |𝑝 , |𝑛|𝑝).

Then for any saturated (𝑚, 𝑛)-graph which contains 𝐿 as a label, the range of the label
map is unbounded.

Proof. By symmetry, we may as well assume that |𝑛|𝑝 < |𝑚 |𝑝 for a fixed prime 𝑝, and
so |𝐿 |𝑝 > |𝑛|𝑝 . Let 𝑣0 ∈ 𝑉 (G) have label 𝐿. Since our Bass-Serre graph G is saturated,
every vertex has at least one outgoing edge. We can thus build inductively an infinite path
(𝑒𝑘)𝑘∈N consisting of positive edges with s(𝑒0) = 𝑣0. The conclusion then follows directly
from Lemma 3.30.

Remark 5.17. When |𝑛| = |𝑚 |, the lemma fails because labels are bounded: if 𝐿0 is a label
then all labels in the same connected component must satisfy |𝐿 |𝑝 ≤ max(|𝐿0 |𝑝 , |𝑚 |𝑝 , |𝑛|𝑝)
for all primes 𝑝 by Equation (3.29) and the discussion that precedes it.

Let 𝑞 be a finite (𝑚, 𝑛)-phenotype. In order to describe which saturated (𝑚, 𝑛)-graphs
have unbounded labels, we now define

(5.18) 𝑠(𝑞, 𝑚, 𝑛) B 𝑞 ·
∏
𝑝∈P

|𝑞 | 𝑝=0;
|𝑚 | 𝑝= |𝑛 | 𝑝>0

𝑝 |𝑚 |𝑝 ·
∏
𝑝∈P

|𝑚 | 𝑝≠ |𝑛 | 𝑝

𝑝min { |𝑛 | 𝑝 , |𝑚 | 𝑝 } .

Remark 5.19. The definition is motivated by the fact that 𝑠(𝑞, 𝑚, 𝑛) is the largest label of
phenotype 𝑞 which does not satisfy the hypothesis of Lemma 5.16. As we will see in the
proof of Theorem 5.20, a saturated (𝑚, 𝑛)-graph with phenotype 𝑞 has unbounded labels
if and only if one of its labels does not divide 𝑠(𝑞, 𝑚, 𝑛).

Proposition 5.8 implies that every subgroup (or pointed action) that lies in the closure
of the set of subgroups of phenotype 𝑞 has phenotype either 𝑞 or ∞, and phenotype ∞ can
occur only when |𝑚 | ≠ |𝑛|. We can now characterize the subgroups Λ with phenotype 𝑞

whose orbit approaches subgroups with infinite phenotype.

Theorem 5.20. Let 𝑚, 𝑛 be integers such that |𝑚 |, |𝑛| ≥ 2 and denote by 𝑞 ∈ Q𝑚,𝑛 ∖ {∞}
a finite (𝑚, 𝑛)-phenotype. Let 𝑠 = 𝑠(𝑞, 𝑚, 𝑛) as in Equation (5.18). Then the space

MC𝑞 B Ph−1 (𝑞) ∩ {Λ ∈ Sub(BS(𝑚, 𝑛)) : Λ ≥ ⟨⟨𝑏𝑠⟩⟩}

of subgroups of phenotype 𝑞 containing the normal subgroup ⟨⟨𝑏𝑠⟩⟩ satisfies the following
properties:

(1) MC𝑞 is the largest closed BS(𝑚, 𝑛)-invariant subset of Sub(BS(𝑚, 𝑛)) contained
in Ph−1 (𝑞); in particular, all normal subgroups of phenotype 𝑞 and all finite index
subgroups of phenotype 𝑞 contain ⟨⟨𝑏𝑠⟩⟩;

(2) If |𝑚 | = |𝑛|, then MC𝑞 = Ph−1 (𝑞);
(3) For every Λ ∈ Ph−1 (𝑞) ∖MC𝑞 , the orbit of Λ accumulates to Ph−1 (∞);
(4) If |𝑚 | ≠ |𝑛|, then MC𝑞 ∩ K𝑞 (BS(𝑚, 𝑛)) has empty interior in K𝑞 (BS(𝑚, 𝑛));
(5) If gcd(𝑚, 𝑛) = 1, then 𝑠 = 𝑞 and MC𝑞 ∩ K(BS(𝑚, 𝑛)) = {⟨⟨𝑏𝑞⟩⟩}; in particular

⟨⟨𝑏𝑞⟩⟩ is the unique normal subgroup of phenotype 𝑞 of infinite index.
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Proof of Theorem 5.20. The proofs of (2) and (3) rely on the following claim.

Claim. For any Λ ∈ Ph−1 (𝑞) ∖MC𝑞 , there is a prime 𝑝 such that |𝑚 |𝑝 ≠ |𝑛|𝑝 and a
vertex label 𝐿 in the Bass-Serre graph of Λ such that |𝐿 |𝑝 > |𝑠 |𝑝 .

Proof of the claim. Observe that a subgroup Λ contains ⟨⟨𝑏𝑠⟩⟩ if and only if all the 𝑏-orbits
of the corresponding action Λ\BS(𝑚, 𝑛)↶ BS(𝑚, 𝑛) have cardinality which divides 𝑠. So
if Λ ∈ Ph−1 (𝑞) ∖MC𝑞 , we can fix a prime 𝑝 such that |𝐿 |𝑝 > |𝑠 |𝑝 , and we will prove that
|𝑚 |𝑝 ≠ |𝑛|𝑝 .

Assume by contradiction that |𝑚 |𝑝 = |𝑛|𝑝 . Then |𝑠 |𝑝 ≥ |𝑚 |𝑝 = |𝑛|𝑝: if |𝑚 |𝑝 = 0 then
the inequality clearly holds, otherwise by Equation (5.18),
• if 𝑝 divides 𝑞 = Ph𝑚,𝑛 (𝑠), then |𝑠 |𝑝 = |𝑞 |𝑝 > |𝑚 |𝑝 = |𝑛|𝑝;
• if 𝑝 does not divide 𝑞 = Ph𝑚,𝑛 (𝑠), then |𝑠 |𝑝 = |𝑚 |𝑝 = |𝑛|𝑝 .
Thus, we have |𝐿 |𝑝 > |𝑚 |𝑝 = |𝑛|𝑝 , in other words 𝑝 ∈ P𝑚,𝑛 (𝐿) (see Definition 4.1). Hence,
we have

��Ph𝑚,𝑛 (𝐿)
��
𝑝
= |𝐿 |𝑝 > |𝑠 |𝑝 ≥

��Ph𝑚,𝑛 (𝑠)
��
𝑝
. This is a contradiction since both phe-

notypes are equal to 𝑞. □claim

We can now easily prove (2) by the contrapositive: by the above claim if MC𝑞 ≠

Ph−1 (𝑞) then there is a prime 𝑝 such that |𝑚 |𝑝 ≠ |𝑛|𝑝 , in particular |𝑚 | ≠ |𝑛|.
Let us prove (3). Let Λ ∈ Ph−1 (𝑞) ∖MC𝑞 . The claim above provides a prime 𝑝 such

that |𝑚 |𝑝 ≠ |𝑛|𝑝 and the Bass-Serre graph ofΛ admits a vertex label 𝐿 such that |𝐿 |𝑝 > |𝑠 |𝑝 .
It follows from Equation (5.18) that |𝑠 |𝑝 = min( |𝑚 |𝑝 , |𝑛|𝑝), so |𝐿 |𝑝 > min( |𝑚 |𝑝 , |𝑛|𝑝).
Lemma 5.16 thus applies, and so there is a sequence of vertices in the Bass-Serre graph
of Λ whose labels tend to +∞. In other words, there is a sequence (𝛾𝑖)𝑖≥0 such that the
index of 𝛾𝑖Λ𝛾

−1
𝑖

∩ ⟨𝑏⟩ in ⟨𝑏⟩ tends to +∞. By compactness, we may assume that this
sequence converges, and its limit Δ cannot contain a non-zero power of 𝑏 since [⟨𝑏⟩ :
𝛾𝑖Λ𝛾

−1
𝑖

∩ ⟨𝑏⟩] → +∞. Hence Δ has infinite phenotype, which proves (3).
We now prove (1). We first claim that MC𝑞 is closed in Sub(BS(𝑚, 𝑛)). Indeed the set

B𝑠 B {Λ ∈ Sub(BS(𝑚, 𝑛)) : Λ ≥ ⟨⟨𝑏𝑠⟩⟩}

is a countable intersection of basic clopen sets and hence it is closed. Then, notice that B𝑠

intersects only finitely many sets Ph−1 (𝑞′), since 𝑞′ must be finite and divide 𝑠. Proposition
5.8 claims that the Ph−1 (𝑞′) are open, hence

MC𝑞 = B𝑠 ∖
⋃
𝑞′≠𝑞

𝑞′ divides 𝑠

Ph−1 (𝑞′)

is closed. Also note that MC𝑞 is obviously BS(𝑚, 𝑛)-invariant. Finally Item (3) implies
that every closed BS(𝑚, 𝑛)-invariant subset of Ph−1 (𝑞) is contained in MC𝑞 . This proves
that MC𝑞 is the largest closed BS(𝑚, 𝑛)-invariant subset of Sub(BS(𝑚, 𝑛)) contained in
Ph−1 (𝑞). Since all normal subgroups and all finite index subgroups have finite (hence
closed) orbits, the remaining statement in Item (1) is clear.

Let us prove Item (4). Suppose |𝑛| ≠ |𝑚 |; let 𝑝 be a prime number such that |𝑚 |𝑝 ≠ |𝑛|𝑝 .
By definition Ph𝑚,𝑛 (𝑠𝑝) = Ph𝑚,𝑛 (𝑠) = 𝑞, so ⟨𝑏𝑠𝑝⟩ ∈ K𝑞 (BS(𝑚, 𝑛)) ∖MC𝑞 . Consider
a subgroup Λ ∈ K𝑞 (BS(𝑚, 𝑛)) whose orbit is dense in K𝑞 (BS(𝑚, 𝑛)), as provided by
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Corollary 5.15. Since the orbit of Λ accumulates to ⟨𝑏𝑠𝑝⟩ ∉ MC𝑞 and MC𝑞 is invari-
ant and closed, the latter does not contain any point of that orbit. Hence the comple-
ment K𝑞 (BS(𝑚, 𝑛)) ∖MC𝑞 contains the dense orbit of Λ. We conclude that MC𝑞 ∩
K𝑞 (BS(𝑚, 𝑛)) has empty interior in K𝑞 (BS(𝑚, 𝑛)).

We finally prove Item (5). The equality 𝑠 = 𝑞 follows immediately from Formula (5.18)
for 𝑠(𝑞, 𝑚, 𝑛). We have the presentation

BS(𝑚, 𝑛)/⟨⟨𝑏𝑞⟩⟩ =
〈
𝑏̄, 𝑡 : 𝑡 𝑏̄𝑚𝑡−1 = 𝑏̄𝑛, 𝑏̄𝑞 = 1

〉
.

Since gcd(𝑞, 𝑚) = gcd(𝑞, 𝑛) = 1, the elements 𝑏̄𝑚 and 𝑏̄𝑛 both generate ⟨𝑏̄⟩ in the quotient
group BS(𝑚, 𝑛)/⟨⟨𝑏𝑞⟩⟩. We thus have a natural semi-direct product decomposition

BS(𝑚, 𝑛)/⟨⟨𝑏𝑞⟩⟩ � Z/𝑞Z ⋊ Z =
〈
𝑏̄
〉
⋊ ⟨𝑡⟩

Consider Λ ∈ MC𝑞 in the perfect kernel; it contains ⟨⟨𝑏𝑞⟩⟩. It suffices to prove that the
imageΛ𝑞 B Λ/⟨⟨𝑏𝑞⟩⟩ ofΛ in

〈
𝑏̄
〉
⋊ ⟨𝑡⟩ is trivial. Since Ph(Λ) = 𝑞, the index [⟨𝑏⟩ : Λ∩ ⟨𝑏⟩]

is a multiple of 𝑞, so we haveΛ𝑞 ∩
〈
𝑏̄
〉
= {id}. ThusΛ𝑞 is mapped injectively in the quotient〈

𝑏̄
〉
⋊ ⟨𝑡⟩ /

〈
𝑏̄
〉
≃ Z. If this image were not {0}, then Λ would have finite index in BS(𝑚, 𝑛),

contradicting that Λ is in the perfect kernel. The group Λ𝑞 is thus trivial as wanted.

Remark 5.21. In terms of actions,MC𝑞 is the set of classes [𝛼, 𝑣] all of whose cardinalities
of 𝑏-orbits divide 𝑠 and have phenotype 𝑞.

Proposition 5.22. Let 𝑚, 𝑛 ∈ Z ∖ {0} and 𝑘 ∈ Z≥1. Let

𝐺𝑚,𝑛,𝑘 B BS(𝑚, 𝑛)/
〈〈
𝑏𝑘

〉〉
=
〈
𝑡, 𝑏̄ | 𝑡 𝑏̄𝑚𝑡−1 = 𝑏̄𝑛, 𝑏̄𝑘 = 1

〉
and let

𝑟 (𝑘) B max{𝑟 ′ ∈ N : 𝑟 ′ divides 𝑘 and gcd(𝑟 ′, 𝑚) = gcd(𝑟 ′, 𝑛)}.
Then:

(1) 𝑏 has order 𝑟 (𝑘) in the quotient 𝐺𝑚,𝑛,𝑘; in particular ⟨⟨𝑏𝑘⟩⟩ = ⟨⟨𝑏𝑟 (𝑘 )⟩⟩;
(2) the group 𝐺𝑚,𝑛,𝑘 = 𝐺𝑚,𝑛,𝑟 (𝑘 ) is the HNN extension of Z/𝑟 (𝑘)Z = ⟨𝑏̄⟩ with respect

to the relation 𝑡 𝑏̄𝑚𝑡−1 = 𝑏̄𝑛.
(3) Ph𝑚,𝑛 (𝑘) = Ph𝑚,𝑛 (𝑟 (𝑘)) = Ph(⟨⟨𝑏𝑘⟩⟩).

Remark 5.23. It follows from Item 1 in the above proposition that 𝑟 (𝑘) = [⟨𝑏⟩ : ⟨⟨𝑏𝑘⟩⟩ ∩
⟨𝑏⟩].

It is a routine computation, working prime number by prime number, to check that

(5.24) 𝑟 (𝑘) =
∏
𝑝∈P

|𝑚 | 𝑝= |𝑛 | 𝑝

𝑝 |𝑘 |𝑝 ·
∏
𝑝∈P

|𝑚 | 𝑝≠ |𝑛 | 𝑝

𝑝min( |𝑘 |𝑝 , |𝑚 |𝑝 , |𝑛 |𝑝 )

In particular, 𝑟 (𝑘) is a multiple of all the 𝑟 ′s which divide 𝑘 and satisfy gcd(𝑟 ′, 𝑚) =
gcd(𝑟 ′, 𝑛). Moreover 𝑟 (𝑟 (𝑘)) = 𝑟 (𝑘).

Remark 5.25. It also follows from Item 1 and 3 of the above proposition that the set of
integers 𝑘 of phenotype 𝑞 such that 𝑟 (𝑘) = 𝑘 parametrizes the normal subgroups of the
form ⟨⟨𝑏𝑘′⟩⟩ of phenotype 𝑞. Comparing Equations (5.24) and (5.18), one can check that
this is exactly the set of integers 𝑘 that are multiple of 𝑞 and that divide 𝑠(𝑞, 𝑚, 𝑛), i.e.
𝑘 = 𝑞 · 𝑗 where
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(1) | 𝑗 |𝑝 = 0 for 𝑝 ∈ P such that |𝑚 |𝑝 = |𝑛|𝑝 = 0;
(2) | 𝑗 |𝑝 ≤ |𝑚 |𝑝 for 𝑝 ∈ P such that |𝑚 |𝑝 = |𝑛|𝑝 > 0 and |𝑞 |𝑝 = 0;
(3) | 𝑗 |𝑝 ≤ min {|𝑛|𝑝 , |𝑚 |𝑝} for 𝑝 ∈ P such that |𝑚 |𝑝 ≠ |𝑛|𝑝 .

Proof of Proposition 5.22. Set 𝑟 B 𝑟 (𝑘). Since 𝑏̄𝑚 and 𝑏̄𝑛 are conjugate in 𝐺𝑚,𝑛,𝑘 , they
have the same order:

ord(𝑏̄)
gcd(ord(𝑏̄), 𝑚)

= ord(𝑏̄𝑚) = ord(𝑏̄𝑛) = ord(𝑏̄)
gcd(ord(𝑏̄), 𝑛)

.

Thus gcd(ord(𝑏̄), 𝑚) = gcd(ord(𝑏̄), 𝑛). Moreover ord(𝑏̄) divides 𝑘 . So by the definition
of 𝑟, the order ord(𝑏̄) divides 𝑟 and hence 𝑏𝑟 ∈ ⟨⟨𝑏𝑘⟩⟩. On the other hand 𝑏𝑘 ∈ ⟨𝑏𝑟 ⟩, so
⟨⟨𝑏𝑟 ⟩⟩ = ⟨⟨𝑏𝑘⟩⟩ and 𝐺𝑚,𝑛,𝑘 = 𝐺𝑚,𝑛,𝑟 .

Since gcd(𝑟,𝑚) = gcd(𝑟, 𝑛), the subgroups generated by 𝑏̃𝑚 and 𝑏̃𝑛 in the groupZ/𝑟Z =
⟨𝑏̃ : 𝑏̃𝑟 = 1⟩ are isomorphic. We can thus consider the HNN-extension ofZ/𝑟Z = ⟨𝑏̃ : 𝑏̃𝑟 = 1⟩
with the relation 𝑡 𝑏̃𝑚𝑡−1 = 𝑏̃𝑛. It admits the presentation ⟨𝑡, 𝑏̃ | 𝑡 𝑏̃𝑚𝑡−1 = 𝑏̃𝑛, 𝑏̃𝑟 = 1⟩ and
it is hence isomorphic to 𝐺𝑚,𝑛,𝑟 .

By the Normal Form Theorem for HNN-extensions, the vertex group injects, i.e., 𝑏̄ has
order exactly 𝑟 . Finally Formula (5.24) imply that Ph𝑚,𝑛 (𝑘) = Ph𝑚,𝑛 (𝑟) = Ph(⟨⟨𝑏𝑟 ⟩⟩).

Theorem 5.26. Let 𝑚, 𝑛 ∈ Z ∖ {0} and 𝑞 be a finite phenotype.
(1) If gcd(𝑚, 𝑛) = 1, then the perfect kernel contains a unique normal subgroup of

phenotype 𝑞, namely ⟨⟨𝑏𝑞⟩⟩.
(2) If gcd(𝑚, 𝑛) ≠ 1, then the perfect kernel contains continuum many normal sub-

groups of phenotype 𝑞.

Proof. The case gcd(𝑚, 𝑛) = 1 follows from Item (5) of Theorem 5.20. Therefore let us
assume that gcd(𝑚, 𝑛) ≠ 1.

Consider a prime 𝑝 which divides both 𝑚 and 𝑛. Then either |𝑞 |𝑝 ≠ 0 and we set 𝑘 B 𝑞

otherwise set 𝑘 B 𝑞𝑝. In both cases, remark that Ph𝑚,𝑛 (𝑘) = 𝑞, that gcd(𝑘, 𝑚) = gcd(𝑘, 𝑛)
and hence 𝑟 (𝑘) = 𝑘 . Then Proposition 5.22 yields that 𝑏̄ has order 𝑘 in𝐺𝑚,𝑛,𝑘 . Furthermore
since 𝑘0 B gcd(𝑘, 𝑚) = gcd(𝑘, 𝑛) > 1, the elements 𝑏̄𝑛 and 𝑏̄𝑚 are not generators of the
subgroup

〈
𝑏̄
〉
: the group 𝐺𝑚,𝑛,𝑘 is not a semi-direct product. We claim that 𝐺𝑚,𝑛,𝑘 is not

amenable. Indeed, we can write the group 𝐺𝑚,𝑛,𝑘 as the amalgamated free product

𝐺𝑚,𝑛,𝑘 = ⟨𝑡, 𝑐 | 𝑡 (𝑐)
𝑚
𝑘0 𝑡−1 = (𝑐)

𝑛
𝑘0 , (𝑐)

𝑘
𝑘0 = 1⟩ ∗𝑐̄=𝑏̄𝑘0 ⟨𝑏̄ | 𝑏̄𝑘⟩

and one can easily check that 𝐺𝑚,𝑛,𝑘 admits as a quotient the non-amenable free product
⟨𝑡⟩ ∗ ⟨𝑏̃ | 𝑏̃𝑘0⟩.

Since 𝐺𝑚,𝑛,𝑘 is the fundamental group of a finite graph of finite groups, it admits a
finite index normal subgroup 𝐹 which is a finitely generated free group [25, Prop. 11 p.
120]. Since 𝐺𝑚,𝑛,𝑘 is non-amenable, this normal free subgroup is not amenable.

Every characteristic subgroup 𝑁 of 𝐹 is itself normal in 𝐺𝑚,𝑛,𝑘 . Thus the pull-back
under the quotient map BS(𝑚, 𝑛) ↠ 𝐺𝑚,𝑛,𝑘 is a normal subgroup 𝑁̃ ⊳ BS(𝑚, 𝑛). Since the
intersection of 𝐹 with the finite group ⟨𝑏̄⟩ is trivial, the same holds for its characteristic sub-
groups: 𝑁 ∩ ⟨𝑏̄⟩ = {id}. Therefore the order of the image of 𝑏 in 𝐺𝑚,𝑛,𝑘/𝑁 = BS(𝑚, 𝑛)/𝑁̃
is the same as in 𝐺𝑚,𝑛,𝑘 , namely 𝑘 . In other words, 𝑁̃ ∩ ⟨𝑏⟩ = ⟨𝑏𝑘⟩. By definition,

Ph(𝑁̃) = Ph𝑚,𝑛 ( [⟨𝑏⟩ : 𝑁̃ ∩ ⟨𝑏⟩] = Ph𝑚,𝑛 (𝑘) = 𝑞.
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There are continuum many characteristic subgroups 𝑁 in the finitely generated free
subgroup 𝐹 [9] (see also [8]). At most countably many of them lie outside the perfect
kernel, so the theorem follows.

6. Limits of finite phenotype subgroups

In this section, we characterize the subgroups of infinite phenotype of BS(𝑚,𝑛) which arise
as limits of finite phenotype subgroups. We will use a version of the straightforward fact
that finitely generated subgroups always form a dense set in the space of subgroups.

Lemma 6.1. Let 𝑚, 𝑛 ∈ Z ∖ {0}. For every phenotype 𝑞 ∈ Q𝑚,𝑛, the finitely generated
subgroups of phenotype 𝑞 are dense in Ph−1 (𝑞).

Proof. Let Λ be a non finitely generated subgroup of phenotype 𝑞. Let 𝑘 ∈ Z≥0 such that
Λ ∩ ⟨𝑏⟩ =

〈
𝑏𝑘

〉
. The group Λ can be written as the increasing union of finitely generated

subgroups all containing 𝑏𝑘 . They have the same phenotype as Λ.

6.1. Limits of subgroups with fixed finite phenotype

Recall from Proposition 5.8 that, for 𝑞 finite, Ph−1 (𝑞) is open while Ph−1 (∞) is closed, and
from Theorem 5.20 (3) that the orbit of anyΛ ∈ Ph−1 (𝑞) ∖MC𝑞 accumulates to Ph−1 (∞).
We now determine the set of such accumulation points in Ph−1 (∞): this is exactly the set
of subgroups contained in the normal closure ⟨⟨𝑏⟩⟩ of ⟨𝑏⟩ but having trivial intersection
with ⟨𝑏⟩ itself (since they belong to Ph−1 (∞)).

Theorem 6.2. Suppose |𝑚 | ≠ |𝑛| and let 𝑞 be a finite phenotype. Then

Ph−1 (𝑞) ∩ Ph−1 (∞) = {Λ ∈ Ph−1 (∞) : Λ ≤ ⟨⟨𝑏⟩⟩}.

We need two preparatory lemmas. We start with an easy consequence of the defining
relation 𝑡𝑏𝑚 = 𝑏𝑛𝑡 of BS(𝑚, 𝑛).

Notation 6.3. Given 𝛾 ∈ BS(𝑚, 𝑛), let us denote:
• by 𝜅𝛾 the 𝑡-length of 𝛾, namely the number of occurrences of 𝑡±1 in the normal form

of 𝛾;
• by Σ𝛾 the number of occurrences of 𝑡 minus the number of occurrences of 𝑡−1 in the

normal form of 𝛾, which is often called the 𝑡-height of 𝛾.
Remark that Σ𝛾 is the image of 𝛾 in BS(𝑚, 𝑛)/⟨⟨𝑏⟩⟩ � Z. In particular Σ𝛾 = 0 if and only
if 𝛾 ∈ ⟨⟨𝑏⟩⟩.

Lemma 6.4. Fix 𝛾 ∈ BS(𝑚, 𝑛). Let 𝐴 ∈ Z be such that for all primes 𝑝 ∈ P
• if |𝑚 |𝑝 = |𝑛|𝑝 then |𝐴|𝑝 ≥ |𝑚 |𝑝;
• otherwise |𝐴|𝑝 ≥ 𝜅𝛾 |𝑚 |𝑝 and |𝐴|𝑝 ≥ 𝜅𝛾 |𝑛|𝑝 .
Then there is 𝐵 ∈ Z, such that 𝛾𝑏𝐴 = 𝑏𝐵𝛾, where |𝐵 | is determined by:

|𝐵 |𝑝 = |𝐴|𝑝 + Σ𝛾 ( |𝑛|𝑝 − |𝑚 |𝑝) for all 𝑝 ∈ P .
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Proof. This follows from a straightforward induction on 𝜅𝛾 using the relation 𝑡𝑏𝑚 = 𝑏𝑛𝑡.
We leave the details to the reader.

The proof of the inclusion in Theorem 6.2 from left to right relies on the following
lemma.

Lemma 6.5. Fix 𝛾 ∉ ⟨⟨𝑏⟩⟩ and let 𝑞 be a finite phenotype. There is an integer 𝑅 = 𝑅(𝑞, 𝛾)
such that every subgroup Λ of phenotype 𝑞 containing 𝛾 must also contain 𝑏𝑅.

Proof. Up to replacing 𝛾 by its inverse, let us assume Σ𝛾 > 0. We first define the integer
𝑀 B max{|𝑚 |𝑝 , |𝑛|𝑝 : 𝑝 ∈ P}, and then we let

𝑅 B 𝑞

©­­­«
∏
𝑝∈P

|𝑚 | 𝑝+|𝑛 | 𝑝>0

𝑝

ª®®®¬
𝜅𝛾𝑀

.

Fix Λ of phenotype 𝑞. Since 𝑞 is finite, we have ⟨𝑏⟩ ∩ Λ =
〈
𝑏𝑁

〉
with 𝑁 > 0. We have to

show that 𝑁 divides 𝑅. Notice that Ph𝑚,𝑛 (𝑁) = 𝑞, thus 𝑁 decomposes as

𝑁 = 𝑞 · 𝑝𝑙11 · · · 𝑝𝑙𝑘
𝑘
𝑝
𝑙𝑘+1
𝑘+1 · · · 𝑝

𝑙𝑟
𝑟 ,

where 𝑟 ≥ 0 and 𝑙1, . . . , 𝑙𝑟 ≥ 1, while the 𝑝𝑖 are distinct prime numbers coprime with 𝑞,
see Definition 4.1. Moreover, we order them so that 𝑝1, . . . , 𝑝𝑘 ∈ P𝑚,𝑛 ∖ P𝑚,𝑛 (𝑁) and
𝑝𝑘+1, . . . , 𝑝𝑟 ∈ P ∖ P𝑚,𝑛.

Observe that |𝑚 |𝑝𝑖 = |𝑛|𝑝𝑖 ≥ |𝑁 |𝑝𝑖 = 𝑙𝑖 ≥ 1 when 𝑝𝑖 ∈ P𝑚,𝑛 ∖P𝑚,𝑛 (𝑁) and |𝑚 |𝑝𝑖 ≠ |𝑛|𝑝𝑖
when 𝑝𝑖 ∈ P ∖ P𝑚,𝑛. Hence, |𝑚 |𝑝𝑖 + |𝑛|𝑝𝑖 > 0 for every 𝑖 ∈ {1, . . . , 𝑟}. Consequently, to
establish that 𝑁 divides 𝑅, it suffices to prove

(6.6) ∀𝑖 ∈ {1, . . . , 𝑟}, 𝑙𝑖 ≤ 𝜅𝛾𝑀.

Observe that 𝜅𝛾 ≥ 1 since 𝛾 ∉ ⟨⟨𝑏⟩⟩. For 𝑖 ∈ {1, . . . , 𝑘}, Equation (6.6) holds since
𝑝𝑖 ∈ P𝑚,𝑛 ∖ P𝑚,𝑛 (𝑁), thus

𝑙𝑖 ≤ |𝑚 |𝑝𝑖 = |𝑛|𝑝𝑖 ≤ 𝑀 ≤ 𝜅𝛾𝑀.

Let us hence fix 𝑖 ∈ {𝑘 + 1, . . . , 𝑟} and suppose by contradiction that 𝑙𝑖 > 𝜅𝛾𝑀 . Consider

𝑁 ′ = 𝑁 × (𝑝1 · · · 𝑝𝑘)𝑀 (𝑝𝑘+1 · · · 𝑝𝑖 · · · 𝑝𝑟 )𝜅𝛾𝑀

where by 𝑝𝑖 we mean that the factor 𝑝𝑖 is removed from the product. Clearly 𝑏𝑁 ′ ∈ Λ and
|𝑁 ′ |𝑝𝑖 = 𝑙𝑖 . Put

𝜀 B sign(|𝑚 |𝑝𝑖 − |𝑛|𝑝𝑖 ).
Note that 𝑝𝑖 ∉ P𝑚,𝑛, hence |𝑚 |𝑝𝑖 ≠ |𝑛|𝑝𝑖 , so 𝜀 ≠ 0. Since we assumed |𝑁 |𝑝𝑖 = 𝑙𝑖 ≥ 𝜅𝛾𝑀 ,
we also have |𝑁 ′ |𝑝𝑖 ≥ 𝜅𝛾𝑀 . It is then clear that 𝑁 ′ satisfies the assumption of Lemma 6.4,
so 𝛾𝜀𝑏𝑁 ′

𝛾−𝜀 = 𝑏𝑁 ′′ , where

|𝑁 ′′ |𝑝𝑖 = 𝑙𝑖 + Σ𝛾𝜀 ( |𝑛|𝑝𝑖 − |𝑚 |𝑝𝑖 ) = 𝑙𝑖 + 𝜀Σ𝛾 ( |𝑛|𝑝𝑖 − |𝑚 |𝑝𝑖 )
= 𝑙𝑖 − Σ𝛾

��|𝑚 |𝑝𝑖 − |𝑛|𝑝𝑖
�� < 𝑙𝑖 .
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Clearly 𝑏𝑁 ′′ ∈ Λ, hence 𝑏𝑁 ′′ ∈
〈
𝑏𝑁

〉
. But |𝑁 ′′ |𝑝𝑖 < |𝑁 |𝑝𝑖 , a contradiction. We thus have

established Equation (6.6), which finishes the proof.

Proof of Theorem 6.2. Set

L B {Λ ∈ Ph−1 (∞) : Λ ≤ ⟨⟨𝑏⟩⟩}.

We first show the inclusion Ph−1 (𝑞) ∩ Ph−1 (∞) ⊆ L. Take Δ ∈ Ph−1 (∞) ∖L and 𝛾 ∈ Δ∖
⟨⟨𝑏⟩⟩. By Lemma 6.5, there is an 𝑅 such that every subgroup Λ of phenotype 𝑞 containing
𝛾 also contains 𝑏𝑅. Thus the clopen neighborhood of Δ given by

O B {Λ ∈ Sub(BS(𝑚, 𝑛)) : 𝛾 ∈ Λ, 𝑏𝑅 ∉ Λ}

does not intersect Ph−1 (𝑞). Thus Δ is not in the closure of Ph−1 (𝑞).
We now show the reverse inclusionL ⊆ Ph−1 (𝑞) ∩Ph−1 (∞).Remark that as in Lemma

6.1, the finitely generated elements of L are dense in L: every element of L is an increasing
union of finitely generated subgroups which have to be in L as well. So take Λ = ⟨𝑆⟩ ∈ L
where 𝑆 is finite; we will show that Λ is a limit of subgroups with phenotype 𝑞. Set 𝜅 B
max𝛾∈𝑆 𝜅𝛾 , where 𝜅𝛾 is the 𝑡-length of 𝛾 (see Notation 6.3). Set 𝑀 B max{|𝑚 |𝑝 , |𝑛|𝑝 : 𝑝 ∈
P}. Note that P ∖P𝑚,𝑛 is finite, since it is composed of primes 𝑝 such that |𝑚 |𝑝 + |𝑛|𝑝 > 0,
and that |𝑚 |𝑝 = 0 for all but finitely many primes 𝑝. Hence, for 𝑗 ≥ 1, we can define the
integer

𝑁 𝑗 B 𝑞 ·
∏

𝑝∈P𝑚,𝑛∖P𝑚,𝑛 (𝑞)
𝑝 |𝑚 | 𝑝 ·

∏
𝑝∈P∖P𝑚,𝑛

𝑝 𝑗 𝜅𝑀 .

Observe that Ph𝑚,𝑛 (𝑁 𝑗 ) = 𝑞.
Since Λ ≤ ⟨⟨𝑏⟩⟩, the height Σ𝛾 is zero (see Notation 6.3) for every 𝛾 ∈ 𝑆, whence,

for every 𝛾 ∈ 𝑆 and every 𝑗 , Lemma 6.4 gives 𝛾𝑏𝑁 𝑗 = 𝑏±𝑁 𝑗𝛾. Thus, Λ = ⟨𝑆⟩ normalizes〈
𝑏𝑁 𝑗

〉
. Moreover, Λ has trivial intersection with

〈
𝑏𝑁 𝑗

〉
because it has infinite phenotype.

In particular for 𝑗 = 1, we have a natural isomorphism

Φ : Λ ⋉
〈
𝑏𝑁1

〉
→

〈
Λ, 𝑏𝑁1

〉
.

Since 𝑁1 divides 𝑁 𝑗 , we get

Φ(Λ ⋉
〈
𝑏𝑁 𝑗

〉
) =

〈
Λ, 𝑏𝑁 𝑗

〉
.

Observe that Φ induces a homeomorphism

Sub(Λ ⋉
〈
𝑏𝑁1

〉
) → Sub(

〈
Λ, 𝑏𝑁1

〉
) ⊆ Sub(BS(𝑚, 𝑛)),

and that the sequence of subgroups (Λ ⋉
〈
𝑏𝑁 𝑗

〉
) 𝑗≥1 converges to Λ ⋉ {id}. Therefore we

have that
〈
Λ, 𝑏𝑁 𝑗

〉
converges to Λ. Since Ph(

〈
Λ, 𝑏𝑁 𝑗

〉
) = Ph𝑚,𝑛 (𝑁 𝑗 ) = 𝑞, the group Λ is

the limit of a sequence of elements of phenotype 𝑞 as wanted.
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6.2. Limits of subgroups with varying finite phenotype

In Theorem 6.2, we showed that Ph−1 (𝑞) ∩ Ph−1 (∞) does not depend on the finite phe-
notype 𝑞. We will now consider the closure of all subgroups with finite phenotype and we
will first analyse what happens if |𝑚 | = |𝑛|.

Proposition 6.7. Let 𝑚, 𝑛 be integers such that |𝑚 | = |𝑛| ≥ 2. Then

Ph−1 (∞) ⊆
⋃

𝑞 finite
Ph−1 (𝑞).

In other words, every subgroup with infinite phenotype is a limit of subgroups with finite
(variable) phenotypes.

Proof. Let us fix Λ ∈ Ph−1 (∞). Note that ⟨𝑏𝑛⟩ is normalized by Λ thanks to the relation
𝑡𝑏𝑛𝑡−1 = 𝑏±𝑛. We now proceed as in the second part of the proof of Theorem 6.2: the group〈
Λ, 𝑏 𝑗𝑛

〉
has finite phenotype, it is isomorphic to Λ ⋉

〈
𝑏 𝑗𝑛

〉
and the sequence of subgroups

(
〈
Λ, 𝑏 𝑗𝑛

〉
) 𝑗≥1 converges to Λ.

The situation is completely different in the case |𝑚 | ≠ |𝑛|.

Proposition 6.8. Let 𝑚, 𝑛 be integers such that |𝑚 | ≠ |𝑛| and |𝑚 |, |𝑛| ≥ 2. Then

Ph−1 (∞) ⊈
⋃

𝑞 finite
Ph−1 (𝑞).

In other words, there are subgroups with infinite phenotype that are not limits of subgroups
with finite (variable) phenotypes.

Let us recall from Corollary 5.4 that Ph−1 (∞) = K∞ (BS(𝑚, 𝑛)) whenever |𝑚 | ≠ |𝑛|.
Hence, the subgroups given by the proposition lie in fact in K∞ (BS(𝑚, 𝑛)).

In the proof of Proposition 6.8, we will need a lemma and a proposition.

Lemma 6.9. Let 𝑚, 𝑛 be integers such that |𝑚 | ≠ |𝑛| and |𝑚 |, |𝑛| ≥ 2. Let 𝑘 B gcd(𝑚, 𝑛).
Let Λ ≤ BS(𝑚, 𝑛) be a subgroup containing the following elements

𝑡, 𝑏𝑡𝑏−1, . . . , 𝑏𝑘−1𝑡𝑏−(𝑘−1) .

If Λ has finite phenotype, then Λ has finite index in BS(𝑚, 𝑛).

Proof. Let 𝛼 be the action Λ\BS(𝑚, 𝑛) ↶ BS(𝑚, 𝑛). Since the phenotype is finite, it is
sufficient to show that the Bass-Serre graph BS(𝛼) is finite (see Remark 4.10).

Since Λ contains 𝑡, there is a loop in BS(𝛼) at the vertex 𝑣 B Λ ⟨𝑏⟩. In particular,
Equation (3.13) gives 𝐿 (𝑣)

gcd(𝐿 (𝑣) ,𝑚) =
𝐿 (𝑣)

gcd(𝐿 (𝑣) ,𝑛) . As Λ has finite phenotype, 𝐿 (𝑣) is finite,
so gcd(𝐿 (𝑣),𝑚) = gcd(𝐿 (𝑣), 𝑛) . Moreover, as BS(𝛼) is a saturated (𝑚,𝑛)-graph, we obtain

degin (𝑣) = gcd(𝐿 (𝑣), 𝑚) = gcd(𝐿 (𝑣), 𝑛) = degout (𝑣).

This number, that we will denote 𝑑, is the greatest common divisor of𝑚, 𝑛 and 𝐿 (𝑣). Hence
𝑑 divides 𝑘 = gcd(𝑚, 𝑛).
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The 𝑑 outgoing edges at 𝑣 are exactly Λ ⟨𝑏𝑛⟩ ,Λ𝑏 ⟨𝑏𝑛⟩ , . . . ,Λ𝑏𝑑−1 ⟨𝑏𝑛⟩. As 𝑑 ≤ 𝑘 , the
subgroup Λ contains 𝑡, 𝑏𝑡𝑏−1, . . . , 𝑏𝑑−1𝑡𝑏−(𝑑−1) . Since Λ𝑏 𝑗 𝑡 = (Λ𝑏 𝑗 𝑡𝑏− 𝑗 )𝑏 𝑗 = Λ𝑏 𝑗 , the
element 𝑡 fixes all the points Λ,Λ𝑏, . . . ,Λ𝑏𝑑−1 ∈ Λ\BS(𝑚, 𝑛). The terminal vertex of the
edge Λ𝑏 𝑗 ⟨𝑏𝑛⟩ is precisely the vertex Λ𝑏 𝑗 𝑡 ⟨𝑏⟩ = Λ𝑏 𝑗 ⟨𝑏⟩ = 𝑣 (see Definition 3.5), so all
outgoing edges at 𝑣 are loops.

Since the outgoing degree at 𝑣 is equal to the incoming degree, all incoming edges at
𝑣 are loops as well. Therefore BS(𝛼) consists only of the vertex 𝑣 and 𝑑 loops. It is thus
finite as wanted.

Proposition 6.10. Let 𝑚, 𝑛 be integers with |𝑚 |, |𝑛| ≥ 2. Let Λ be a finitely generated
subgroup of infinite phenotype and infinite Bass-Serre graph. Then there is a sequence of
conjugates of Λ which converges to {id}. In particular, Λ does not contain any non-trivial
normal subgroup of BS(𝑚, 𝑛).

Proof. First recall that Λ is free. Indeed, having infinite phenotype, it acts freely on the
Bass-Serre tree T of BS(𝑚, 𝑛). Taking the class ⟨𝑏⟩ as a base point in T , the subgroup Λ

is the fundamental group of the quotient graph Λ\T based at Λ ⟨𝑏⟩. This quotient graph is
equal to the Bass-Serre graph of Λ, see Section 3.6, so it is infinite. Since moreover Λ is
finitely generated, it consists of a finite graph to which are attached finitely many infinite
trees. Moving the basepoint along one of those infinite trees toward infinity amounts to
conjugating Λ by a certain sequence of elements 𝛾𝑖 of BS(𝑚, 𝑛) for which we claim that
𝛾𝑖Λ𝛾

−1
𝑖

→ {id}. Indeed, each non-trivial element of 𝛾𝑖Λ𝛾−1
𝑖

is represented by a long path
in the tree, followed by a closed path in the finite graph and the long path back to the new
basepoint. All such elements have a uniformly large 𝑡-length which tends to +∞ with 𝑖:
their 𝑡-length is bounded below by twice the 𝑡-length of 𝛾𝑖 minus the diameter of the finite
graph. In particular, for any finite set 𝐹 ⊂ Γ ∖ {id} and large enough 𝑖, all the elements
of 𝛾𝑖Λ𝛾−1

𝑖
have 𝑡-length larger than all those of 𝐹; so 𝛾𝑖Λ𝛾

−1
𝑖

∩ 𝐹 = ∅. This proves that
𝛾𝑖Λ𝛾

−1
𝑖

→ {id} as wanted.

Proof of Proposition 6.8. Consider the groupΛB
〈
𝑡, 𝑏𝑡𝑏−1, . . . , 𝑏𝑘−1𝑡𝑏−(𝑘−1) 〉. Observe

that by Britton’s Lemma (see e.g. [23, Chapter IV.2]), it is a free group freely generated by
𝑡, 𝑏𝑡𝑏−1, . . . , 𝑏𝑘−1𝑡𝑏−(𝑘−1) . Every non-trivial element of Λ contains at least one 𝑡±1 in its
normal form, in particular Λ ∩ ⟨𝑏⟩ = {id}: the phenotype of Λ is infinite. We claim that

Λ ∉
⋃

𝑞 finite
Ph−1 (𝑞).

Suppose that (Λ𝑖)𝑖≥0 is a sequence of subgroups of finite (variable) phenotypes con-
verging to Λ. For 𝑖 large enough, we have 𝑡, 𝑏𝑡𝑏−1, . . . , 𝑏𝑘−1𝑡𝑏−(𝑘−1) ∈ Λ𝑖 , and thus the
subgroup Λ𝑖 has finite index by Lemma 6.9. However, recall that since |𝑚 | ≠ |𝑛|, the group
BS(𝑚, 𝑛) is not residually finite [24]. Therefore there is a non-trivial normal subgroup
𝑁 ⊴ BS(𝑚, 𝑛) contained in every finite index subgroup, and we have 𝑁 ≤ Λ since Λ𝑖 → Λ.
This is impossible by Proposition 6.10.

Corollary 6.11. Let 𝑚, 𝑛 be integers such that |𝑚 | ≠ |𝑛| and |𝑚 |, |𝑛| ≥ 2. Then⋃
𝑞 finite

Ph−1 (𝑞) ∩ Ph−1 (∞)



44 A. Carderi, D. Gaboriau, F. Le Maître and Y. Stalder

has empty interior in Ph−1 (∞).

Proof. Recall again that Ph−1 (∞) = K∞ (BS(𝑚, 𝑛)), see Corollary 5.4. In this space, the
subset K∞ (BS(𝑚, 𝑛)) ∖ ∪𝑞 finitePh−1 (𝑞) is open and Proposition 6.8 implies that it is non-
empty. By Corollary 5.15, this open subset contains a subgroup Λ whose orbit is dense in
K∞ (BS(𝑚, 𝑛)). Therefore ∪𝑞 finitePh−1 (𝑞) has empty interior in K∞ (BS(𝑚, 𝑛)).

Proposition 6.12. Let 𝑚, 𝑛 be integers such that |𝑚 |, |𝑛| ≥ 2. For any finite phenotype 𝑞0,
the following inclusion is strict:

Ph−1 (𝑞0) ∩ Ph−1 (∞) ⊊
⋃

𝑞 finite
Ph−1 (𝑞) ∩ Ph−1 (∞).

Observe that Proposition 6.12 is trivially true if |𝑚 | = |𝑛|. Indeed, Proposition 6.7
implies that the right hand side is equal to Ph−1 (∞). Since Proposition 5.8 yields that
Ph−1 (𝑞0) is closed, the left hand side is empty.

Proof of Proposition 6.12. For a prime 𝑝 which divides neither 𝑚 nor 𝑛, define Λ𝑝 B
⟨𝑏𝑝 , 𝑡⟩. Then Λ𝑝 clearly has phenotype 𝑝 (and index 𝑝 in BS(𝑚, 𝑛)). Let Λ be an accumu-
lation point of the sequence (Λ𝑝), then by construction Λ has infinite phenotype, so it is in
the set

⋃
𝑞 finite Ph−1 (𝑞) ∩ Ph−1 (∞). However, it contains 𝑡 ∉ ⟨⟨𝑏⟩⟩ so it is not in Ph−1 (𝑞0)

by Theorem 6.2.

Corollary 6.13. Let𝑚,𝑛 be integers such that |𝑚 |, |𝑛| ≥ 2. The following inclusion is strict:⋃
𝑞 finite

Ph−1 (𝑞) ∩ Ph−1 (∞) ⊊
⋃

𝑞 finite
Ph−1 (𝑞) ∩ Ph−1 (∞).

Proof. If |𝑚 | = |𝑛|, then as already remarked the left hand side is empty.
If |𝑚 | ≠ |𝑛|, recall from Theorem 6.2 that Ph−1 (𝑞) ∩ Ph−1 (∞) is independent of 𝑞.

The corollary thus follows from Proposition 6.12.

We can also give a statement analogous to Proposition 6.12 in the perfect kernel, which
is less easy to obtain.

Theorem 6.14. Let 𝑚, 𝑛 be integers such that |𝑚 |, |𝑛| ≥ 2. For any finite phenotype 𝑞0, the
following inclusion is strict:

K𝑞0 (BS(𝑚, 𝑛)) ∩ K∞ (BS(𝑚, 𝑛)) ⊊
⋃

𝑞 finite
K𝑞 (BS(𝑚, 𝑛)) ∩ K∞ (BS(𝑚, 𝑛)).

Proof. For a fixed prime 𝑝 which divides neither𝑚 nor 𝑛, let us define a pre-action (𝛽𝑝 , 𝜏𝑝)
as follows. Consider three 𝛽𝑝-cycles say 𝑜1, 𝑜2 and 𝑜3, of cardinals 𝑝𝑛, 𝑝 and 𝑝𝑚 respec-
tively. Then fix basepoints 𝑦𝑖 ∈ 𝑜𝑖 for 𝑖 = 1,2,3. Remark that 𝑜1 splits into |𝑛| ≥ 2 𝛽𝑛𝑝-orbits
of size 𝑝 and that 𝑜3 splits into |𝑚 | ≥ 2 𝛽𝑚𝑝 -orbits of size 𝑝. Therefore we can define 𝜏𝑝 by
setting

𝑦1𝛽
𝑗𝑛
𝑝 𝜏𝑝 B 𝑦2𝛽

𝑗𝑚
𝑝 , 𝑦2𝛽

𝑗𝑛
𝑝 𝜏𝑝 B 𝑦3𝛽

𝑗𝑚
𝑝 and 𝑦1𝛽

−1+ 𝑗𝑛
𝑝 𝜏𝑝 B 𝑦3𝛽

1+ 𝑗𝑚
𝑝 .
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Clearly the phenotype of such a pre-action is 𝑝 and the associated Bass-Serre graph G0, 𝑝 B
BS(𝛽𝑝 , 𝜏𝑝) is a triangle. Set 𝑥𝑝 B 𝑦1 and note that for every 𝑝, we have

𝑥𝑝𝜏𝑝𝜏𝑝𝛽𝑝𝜏
−1
𝑝 𝛽𝑝 = 𝑥𝑝 .

By Lemma 4.22, we can then extend G0, 𝑝 to a saturated (𝑚, 𝑛)-graph G𝑝 , see Figure
5, and by Proposition 3.23 we can extend the pre-action (𝛽𝑝 , 𝜏𝑝) to an action 𝛼𝑝 whose
Bass-Serre graph is G𝑝 .

3 · 𝑝

𝑣1

2 · 𝑝

𝑣3

𝑝

𝑣2

𝑒3

𝑒1 𝑒2

4 · 𝑝9 · 𝑝

2 · 𝑝

Figure 5. A (2,3)-graph G𝑝 , where 𝑚 = 2 and 𝑛 = 3.

Define Λ𝑝 to be the stabilizer of the action 𝛼𝑝 at 𝑥𝑝 and remark that 𝑡2𝑏𝑡−1𝑏 ∈ Λ𝑝 .
Moreover by construction Ph(Λ𝑝) = 𝑝.

By compactness, we find an accumulation point Λ of the sequence (Λ𝑝)𝑝 . Since Λ𝑝

has phenotype 𝑝, the subgroup Λ has infinite phenotype. Since 𝑡2𝑏𝑡−1𝑏 ∈ Λ𝑝 for every 𝑝,
we have that 𝑡2𝑏𝑡−1𝑏 ∈ Λ. Moreover 𝑡2𝑏𝑡−1𝑏 ∉ ⟨⟨𝑏⟩⟩ so Λ ∉ Ph−1 (𝑞0) by Theorem 6.2.
Therefore the proof is completed.

Acknowledgments. We are very grateful to both referees for their work and their detailed
remarks which helped us to improve the paper.

Funding. A. C. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 281869850 (RTG 2229). D. G. is supported by the CNRS
and partially supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by
the French National Research Agency (ANR). F. L.M. acknowledges funding by the ANR
projects ANR-17-CE40-0026 AGRUME and ANR-19-CE40-0008 AODynG.

References

[1] Pénélope Azuelos and Damien Gaboriau. Perfect kernel and dynamics: from Bass-
Serre theory to hyperbolic groups. to appear in Mathematische Annalen, 2023. doi:
10.1007/s00208-024-03038-w.

https://doi.org/10.1007/s00208-024-03038-w
https://doi.org/10.1007/s00208-024-03038-w


46 A. Carderi, D. Gaboriau, F. Le Maître and Y. Stalder

[2] Gilbert Baumslag and Donald Solitar. Some two-generator one-relator non-Hopfian
groups. Bulletin of the American Mathematical Society, 68(3):199–201, 1962. doi:
10.1090/S0002-9904-1962-10745-9.

[3] Oren Becker, Alexander Lubotzky, and Andreas Thom. Stability and invariant random
subgroups. Duke Mathematical Journal, 168(12):2207–2234, 2019. doi:10.1215/
00127094-2019-0024.

[4] Ivar Bendixson. Quelques théorèmes de la théorie des ensembles de points. Acta
Mathematica, 2(1):415–429, 1883. doi:10.1007/BF02612172.

[5] Sasha Bontemps. Perfect kernel of generalized Baumslag-Solitar groups. arXiv
preprint, 2024. doi:10.48550/arXiv.2411.03221.

[6] Sasha Bontemps, Damien Gaboriau, François Le Maître, and Yves Stalder. On the
space of subgroups of Baumslag-Solitar groups III: The Cantor-Bendixson rank. In
preparation, 2025.

[7] Lewis Bowen, Rostislav Grigorchuk, and Rostyslav Kravchenko. Invariant random
subgroups of lamplighter groups. Israel Journal of Mathematics, 207(2):763–782,
2015. doi:10.1007/s11856-015-1160-1.

[8] Lewis Bowen, Rostislav Grigorchuk, and Rostyslav Kravchenko. Characteristic
random subgroups of geometric groups and free abelian groups of infinite rank. Trans-
actions of the American Mathematical Society, 369(2), 2017. doi:10.1090/tran/
6695.

[9] Roger M. Bryant. Characteristic Subgroups of Free Groups. In M. F. Newman,
editor, Proceedings of the Second International Conference on the Theory of Groups,
Lecture Notes in Mathematics, pages 141–149, Berlin, Heidelberg, 1974. Springer.
doi:10.1007/978-3-662-21571-5_11.

[10] Georg Cantor. Ueber unendliche, lineare Punktmannichfaltigkeiten, part 6. Mathe-
matische Annalen, 23(4):453–488, 1884. doi:10.1007/BF01446598.

[11] Alessandro Carderi, Damien Gaboriau, and François Le Maître. On dense totipotent
free subgroups in full groups. Geometry & Topology, 27(6):2297–2318, 2023. doi:
10.2140/gt.2023.27.2297.

[12] Alessandro Carderi, Damien Gaboriau, François Le Maître, and Yves Stalder. How
to build (m,n)-graphs. Zenodo, 2022. doi:10.5281/zenodo.7225585.

[13] Fedor A. Dudkin. Subgroups of Baumslag–Solitar groups. Algebra and Logic,
48(1):1–19, 2009. doi:10.1007/s10469-009-9038-0.

[14] Pierre Fima, François Le Maître, Soyoung Moon, and Yves Stalder. A characterization
of high transitivity for groups acting on trees. Discrete Analysis, (8), 2022. doi:
10.19086/da.37645.

[15] Max Forester. Splittings of generalized Baumslag–Solitar groups. Geometriae Ded-
icata, 121(1):43–59, 2006. doi:10.1007/s10711-006-9085-9.

https://doi.org/10.1090/S0002-9904-1962-10745-9
https://doi.org/10.1090/S0002-9904-1962-10745-9
https://doi.org/10.1215/00127094-2019-0024
https://doi.org/10.1215/00127094-2019-0024
https://doi.org/10.1007/BF02612172
https://doi.org/10.48550/arXiv.2411.03221
https://doi.org/10.1007/s11856-015-1160-1
https://doi.org/10.1090/tran/6695
https://doi.org/10.1090/tran/6695
https://doi.org/10.1007/978-3-662-21571-5_11
https://doi.org/10.1007/BF01446598
https://doi.org/10.2140/gt.2023.27.2297
https://doi.org/10.2140/gt.2023.27.2297
https://doi.org/10.5281/zenodo.7225585
https://doi.org/10.1007/s10469-009-9038-0
https://doi.org/10.19086/da.37645
https://doi.org/10.19086/da.37645
https://doi.org/10.1007/s10711-006-9085-9


On the space of subgroups of Baumslag-Solitar groups I: perfect kernel and phenotype 47

[16] Damien Gaboriau, François Le Maître, and Yves Stalder. On the space of subgroups of
Baumslag-Solitar groups II: High transitivity. arXiv preprint, 2024. doi:10.48550/
arXiv.2410.23224.

[17] Światosław R. Gal and Tadeusz Januszkiewicz. New a-T-menable HNN-extensions.
Journal of Lie Theory, 13(2):383–385, 2003. URL: https://www.emis.de/journals/
JLT/vol.13_no.2/5.html.

[18] Efraim Gelman. Subgroup growth of Baumslag–Solitar groups. Journal of Group
Theory, 8(6):801–806, 2005. doi:10.1515/jgth.2005.8.6.801.

[19] Yair Glasner, Daniel Kitroser, and Julien Melleray. From isolated subgroups to
generic permutation representations. Journal of the London Mathematical Society,
94(3):688–708, 2016. doi:10.1112/jlms/jdw054.

[20] Alexander S. Kechris. Classical Descriptive Set Theory, volume 156 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1995. doi:10.1007/
978-1-4612-4190-4.

[21] Gilbert Levitt. On the automorphism group of generalized Baumslag–Solitar groups.
Geometry & Topology, 11(1):473–515, 2007. doi:10.2140/gt.2007.11.473.

[22] Gilbert Levitt. Quotients and subgroups of Baumslag–Solitar groups. Journal of
Group Theory, 18(1):1–43, 2015. doi:10.1515/jgth-2014-0028.

[23] Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory, volume 89
of Classics in Mathematics. Springer, Berlin, Heidelberg, 2001. doi:10.1007/
978-3-642-61896-3.

[24] Stephen Meskin. Nonresidually finite one-relator groups. Transactions of the Amer-
ican Mathematical Society, 164:105–114, 1972. doi:10.2307/1995962.

[25] Jean-Pierre Serre. Trees. Springer-Verlag, Berlin Heidelberg, 1980. doi:10.1007/
978-3-642-61856-7.

[26] Rachel Skipper and Phillip Wesolek. On the Cantor–Bendixson rank of the Grig-
orchuk group and the Gupta–Sidki 3 group. Journal of Algebra, 555:386–405, 2020.
doi:10.1016/j.jalgebra.2020.02.034.

[27] Yves Stalder. Moyennabilité intérieure et extensions HNN. Annales de l’institut
Fourier, 56(2):309–323, 2006. doi:10.5802/aif.2183.

Alessandro Carderi
No longer affiliated with any mathematical institution.

Damien Gaboriau
Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon
46 allée d’Italie, 69364 Lyon, France;
gaboriau@ens-lyon.fr

https://doi.org/10.48550/arXiv.2410.23224
https://doi.org/10.48550/arXiv.2410.23224
https://www.emis.de/journals/JLT/vol.13_no.2/5.html
https://www.emis.de/journals/JLT/vol.13_no.2/5.html
https://doi.org/10.1515/jgth.2005.8.6.801
https://doi.org/10.1112/jlms/jdw054
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.2140/gt.2007.11.473
https://doi.org/10.1515/jgth-2014-0028
https://doi.org/10.1007/978-3-642-61896-3
https://doi.org/10.1007/978-3-642-61896-3
https://doi.org/10.2307/1995962
https://doi.org/10.1007/978-3-642-61856-7
https://doi.org/10.1007/978-3-642-61856-7
https://doi.org/10.1016/j.jalgebra.2020.02.034
https://doi.org/10.5802/aif.2183
mailto:gaboriau@ens-lyon.fr


48 A. Carderi, D. Gaboriau, F. Le Maître and Y. Stalder

François Le Maître
IMB UMR 5584, Université Bourgogne Europe, CNRS
F-21000 Dĳon, France;
flemaitre@math.cnrs.fr

Yves Stalder
Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne, CNRS
F-63000 Clermont-Ferrand, France;
yves.stalder@uca.fr

mailto:flemaitre@math.cnrs.fr
mailto:yves.stalder@uca.fr

	1. Introduction and presentation of the results
	2. Preliminaries and notations
	3. Bass-Serre graphs
	4. Phenotype
	5. Perfect kernel and dense orbits
	6. Limits of finite phenotype subgroups
	References

